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Cassini Spacecraft 

• Major science objectives of the 
Cassini mission include 
investigations of 

– The configuration and dynamics of 
Saturn’s magnetosphere 

– The structure and composition of the 
rings 

– The characterization of several of 
Saturn’s icy satellites (e.g., 
Enceladus) 

– Titan’s atmosphere constituent 
abundance 

• Spacecraft general parameters 
– Main engine: 445 N (2) 
– Thrusters: 1 N at launch (16) 
– Launch mass: 5,574 kg 
– Propellant mass: 3000 kg 

• Hydrazine: 132 kg 
• Fuel/Ox: 2868 kg 

– Flexible appendages 
• Magnetometer boom 
• RPWS Antennae (3) From NASA/JPL Cassini website 
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Cassini Spacecraft 

From Ref. 1 
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Propellant Management Device (PMD) 

8 Vane panels 
45° spacing 

Supporting 
structure/sump 
cover 

Sector 

• Cassini fuel/oxidizer (MMH/NTO) tanks 
• Hydrazine has comparably insignificant slosh mass, no PMD 

– 132 kg vs. 2868 kg 
– Instead, a polymeric rubber diaphragm was used 

• Decrease participating slosh mass and control center of mass 
• Create two slosh frequencies: sector and full tank 

MGS PMD 
From Ref. 2 
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PMD Continued 

• When PMD is fully submerged, only expect to see full-tank 
frequency 

• When PMD is not fully submerged, expect to see two frequencies: 
sector and full-tank 
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Theoretical Slosh Predictions: High-g 

• See paper for discussion regarding the calculation of these values 

*True values are slightly different – see next page 
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Theoretical Slosh Predictions 

Spacecraft at Launch (1997) Analytical (1994) 

• Thrust: 490 N 
• Launch mass: 5,300 kg 
• a = 0.009428 g’s 

• Thrust: 445 N 
• Launch mass: 5,574 kg 
• a = 0.008141 g’s 
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Cassini Frequencies 

0.23 Hz 

30 mHz 

3.3 – 6.9 mHz 

0.134 – 0.175  Hz 

0.6909 Hz** 

Figure from Ref. 3 
**Ref. 4  

0.031 – 0.168 Hz 
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Cassini Frequencies 

0.23 Hz 

30 mHz 

3.3 – 6.9 mHz 

0.134 – 0.175  Hz 

aliasing 0.6909 Hz** 

Figure from Ref. 3 
*Ref. 3 
**Ref. 4  

0.031 – 0.168 Hz 
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High-g Fuel Slosh 

• Need main engine burns of sufficient duration to get meaningful 
power spectrum 

• Top 5 longest ME burns: 
 

Maneuver Date 
[UTC] 

Burn Time 
[min] 

NTO Fill 
Fraction 

MMH Fill 
Fraction 

TCM-05 (DSM)* 12/03/1998 86.95 92.6% 93.4% 

TCM-09  07/06/1999 7.63 68.0% 68.5% 

SOI** 07/01/2004 97.40 60.8% 61.2% 

OTM-002 (PRM)*** 08/23/2004 50.88 34.6% 34.8% 

OTM-144 02/06/2008 3.80 11.2% 11.4% 

*Deep Space Maneuver 
**Saturn Orbit Insertion 
***Periapsis Raise Maneuver 
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High-g Fuel Slosh 

• Take the FFT of the X-axis body rate during the first ~5 minutes of 
each burn 

• NOTE: In all “dynamics”-related telemetry for all “long” ME burns, 
there are observed limit cycles frequencies (~0.035 Hz) from a 
stable interaction between nonlinear elements of the engine gimbal 
and thrust vector control algorithm (see Ref. 1 of the paper for 
discussion of this limit cycling mode) 
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Conclusions 

• Due to low telemetry sampling rate and effectiveness of the PMD, it 
was challenging to find examples of fuel slosh in telemetry 

– Gyro data at high frequency, if available, would be beneficial 

• Low-g fuel slosh was unidentifiable because the frequencies are all 
well below the bandwidth of both RCS and RWA controllers 

– Low-g slosh disturbance did not degrade S/C pointing stability performance. The 
S/C stability requirements are met by a factor of >5 (see Ref. 3) 

• Predictions for high-g full-tank and sector modes are good (5 – 6%) 
at higher fill fractions 

– More than 163 main engine burns (as per 2/24/14) were executed sucessfully 
and with high accuracy 

• Predictions for high-g full-tank and sector modes deteriorate (>10%) 
at low fill fractions  

– At low fill fractions, all fuel is in the spherical cap, which the analytical models do 
not include 

• Observed frequency of magnetometer boom was predicted within 
1% of ground-based measurements 
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