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Convective Momentum Transport

; The transfer of momentum from the convective to synoptic and planetary scales

= Momentum equation

Cloud MCS CCEWs
| > MIO

Arakawa & Shubert (1974) Cetrone and Houze (2011)  Straub & Kiladis (2003)

GCM: Unresolved Part-unresolved, part-resolved Resolved



CMT: Roles for the MJO in observation

westerly onset WWB

upscale downscale

Tung and Yanai (2002a,b) - TOGA-COARE

u
v' Define CMT as the residual of momentum
budget using 6-hourly objective analysis with
ool 2.5° x2.5° spatial resolution, 43 vertical
S W levels.
v' CMT and local time change of u have the same
: order of magnitude of 3-6 m/sec/day.
v" Westerly onset: Upscale CMT (help large scale
Q,/C, e maintain vertical shear)
' v WWB: Downscale CMT (decelerate the large
scale-flow and reduce wind shear by vertical
| mixing of momentum)
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MJO1: late Dec-early Jan



An ldealized Dynamical Model with CMT

Majda and Stechmann (2009)

Two-way interaction between
the MJO and synoptic-scale CCWs




Cloud Resolving Model: NICAM (7 km)

Miyakawa et al (2012)

Composited MJO CMT by MCS based on 32 days simulation (western Pacific)
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Longitude relative to the MJO center




Role of CMT for the MJO:

= Slow down: more realistic MJO eastward propagating speed

GCM: ISUCCM3

lag(days)

60E 120E 180 120W 60W 0 0 20 180 120W 60W
without CMT Deng and Wu (2010)
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Part 1

= Characterize 3D CMT structure associated with

the MJO

= Evaluate relative contributions from different
temporal/spatial scale systems

Period Resolution Parameterized CMT
output
CFS Reanalysis 1998-2010 (+ 10 yrs) 0.5 degree Yes
NDJFMA 6-hourly

Submitted to J. Climate




Method using CFSR

=" Momentum equation in model grid

l____

6_1,7 auu auv. Eiua)' au'u'_au'v'_

oy |

: CMT due to large scale CMT due to meso-scale 5° - spatial scale
l 1. Resolved scale separathdmnakawa et al (2012) l

L CMT parameterization



Vertical structure of the grid scale CMT
associated with the MJO (10)

Regressed CMT (shaded) onto the MJO index: (55-5N averaged)
ditw/dp [Meso-scale (-0u'0'/dp)]

MJO rain
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ltiplied by 4
(m/sec/day) mutiphied by

Cannot be fully resolved

v' Same vertical structure in sign & in
due to model resolution

agreement with MJO wind direction




Temporal scale separation for large scale u-transport

Temporal filtering with different cut-off frequencies

Time
filter
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Shaded: regressed d[u][w]/dp
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Temporal scale separation for large scale u-transport

The total grid-scale
tendency is mainly
contributed by the
transport of seasonal
mean u-wind [> 91 days ]
by the MJO-scale vertical
motion [21 days <u <90
days ]



Vertical structure of the subgrid (=parameterized)

CMT associated with the MJO (10)

Regressed CMT (shaded) onto the MJO v" Three layer vertical structure of the

index (5S-5N averaged)
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CMT: interfere with the establishment
of the MJO circulation (except for PBL)
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|, MJOTain. 1o structure is consistent with the result based
on cloud resolving model by Miyakawa et al. 2012
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2 Subgrid CMT
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Part 2

* Momentum budget analysis associated with the westerly
wind event of MJOs during DYNAMO

Analysis domain:
Northern Array (NA: 73-80E, Eq-5N)
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Period Resolution

ECMWEF analysis DYNAMO 0.25 degree
2011: 010CT-31DEC 6-hourly
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Case study

MJO2: zonal wind MJO2:Q1
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zonal adv

merid adv Time series of individual
PoF terms of zonal momentum

f\ £ budget averaged between
' V-C:'\--' > 1000 hPa and 700 hPa over
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Different kinematic processes could bear on the occurrence of WWEs




zonal wind (Kelvin)

WWE1L WWE2 Dynamical contribution of synoptic
scale equatorial waves to the WWEs
during MJO2
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Concluding remark

Part 1.

Three-layer vertical structure of CMT associated with the
MJO: opposite in sign with respect to scale, balancing each
other.

The results can be applied to implement the vertical
structure of the CMT into CMT parameterization of GCMs
to improve the MJO prediction skill.

Part 2.

Three dominant terms inducing WWEs in momentum
budget analysis: PGF, vertical advection, meridional
advection

But, different kinematic processes could bear on the occurrence
of WWEs (interplay of CCEWSs).
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