

American Institute of Aeronautics and Astronautics

1

Connecting Requirements to Architecture and Analysis via
Model-Based Systems Engineering

Bjorn F. Cole1 and J. Steven Jenkins2
Jet Propulsion Laboratory, Califormia Institute of Technology, Pasadena, CA, 91101

In traditional systems engineering practice, architecture, concept development, and
requirements development are related but still separate activities. Concepts for operation, key
technical approaches, and related proofs of concept are developed. These inform the
formulation of an architecture at multiple levels, starting with the overall system composition
and functionality and progressing into more detail. As this formulation is done, a parallel
activity develops a set of English statements that constrain solutions. These requirements are
often called “shall statements” since they are formulated to use “shall.” The separation of
requirements from design is exacerbated by well-meaning tools like the Dynamic Object-
Oriented Requirements System (DOORS) that remained separated from engineering design
tools. With the Europa Clipper project, efforts are being taken to change the requirements
development approach from a separate activity to one intimately embedded in formulation
effort. This paper presents a modeling approach and related tooling to generate English
requirement statements from constraints embedded in architecture definition.

Nomenclature
DOORS = Dynamic Object-Oriented Requirements System
IMCE = Integrated Model-Centric Engineering
OWL = Web Ontology Language
SysML = Systems Modeling Language

I. Introduction
EQUIREMENTS development is a cornerstone of systems engineering. It is the mechanism by which engineering
work is passed along the same lines as the decomposition of a system into manageable pieces. This work is

assured, because there are tangible, objectively verifiable (in theory) criteria by which work products will be accepted
with payment or a discharge of further duties.
The development of requirements has become an art of its own. Writing clear, testable, and atomic requirements that
speak to an actual need rather than design in disguise is a challenging thing to do. Requirements are often captured as
parent-child relationships, where a given child requirement is supposed to be a refined (more concrete or smaller in
scope) statement relative to the parent. Software systems such as DOORS have been developed in order to manage
this linking and track tens of the thousands of requirements for large projects.
In the INCOSE Handbook, the system architecture is presented as a response to the formulation of requirements,
although some discussion addresses the need to iterate. The Europa Clipper pre-project team regards requirement
definition and architectural iteration as concurrent activities that are meant to be intimately tied. In this view, the
development of top-level requirements is a conversation rather than a dictate. As the architecture is developed, key
assumptions and limits are identified, and these serve as the basis for refining requirements from stakeholders. They
are first treated as constraints, and a disciplined approach and tooling are used to transform these constraints into
requirement statements.
An important enabler for the vision of making architecture and requirements more intimate is system modeling. The
technology of system modeling intents to provide systems engineers with the same increases in productivity and
quality in their work that was experienced by mechanical or electrical engineers when provided with computer-aided
design tools. A given project at JPL will have tens of thousands of requirements and a few architecture documents.

1 Systems Engineer, Project Systems and Formulation Section, AIAA Member.
2 Systems Engineer, Engineering Development Office.

R

American Institute of Aeronautics and Astronautics

2

When this information is captured in separate databases or flat documents, the amount of communicaton required to
coordinate efforts becomes quite expensive. System modeling is enabling because audits and queries can be used to
make basic assurances of consistency while creating views of systems information that are tailored to various needs.
In addition to providing tools for increasing quality and consistency of systems engineering information, systems
modeling technology provides many interesting avenues for quickly bootstrapping one form of product into another.
Demonstrations with model transformation at JPL have shown the ability to quickly create both individual simulation
analyses [2] and analyses that adapt to architectural changes [3]. In addition, documents have been automatically
generated [5]. System models have also been transformed into analyses productively in academia [9]. Finally,
modeling languages have been improved by auditing models of themselves [6].
When applied to requirements engineering, these transformations provide interesting possibilities. Flat “shall”
statements that adhere to a certain template can be pulled directly into system models, or vice versa. Parameters with
many requirements can be highlighted as important and dependencies separated by multiple degrees can be mapped
out. Multiple requirements that ultimately talk about the same thing to varying degrees can be detected and
consolidated. In addition, requirements can be scrubbed for whether or not they actually can be mapped to testable
parameters or if they are simply statements of interest that will never be confirmed or denied, merely argued.
With systems modeling technology that draws inspiration from the Sematic Web, there are additional queries that can
be made. Requirements can be made very specific about who has the authority to levy them and who has the
responsibility to verify. These relationships can then be audited locally or globally by using recursive queries to look
for large cycles or other pathologies in the requirements network. Model-based requirements can also be specific about
what is being required – not only entities like hardware components but relationships such as the process that is tied
to a specific component.
All of these possibilities are explored within this paper.

II. Models for Tying Together Systems Engineering Products
Systems modeling is a body of technologies that is currently being promoted by professional organizations such

as INCOSE and implemented at aerospace institutions such as JPL [1], Thales [7], ESA [4], and investigated at
academic institutions such as Georgia Tech [9] and University of Michigan [13]. A major, but not only, standard is
the Systems Modeling Language (SysML) currently hosted by the Object Modeling Group (OMG). Multiple tools
implement SysML as a profile on top of UML, which has many years of software industry investment to leverage.

A key part of systems modeling is the capture of entities and relationships within a system description in a
computer model. This model often has a diagrammatic representation (some kind of box-circle-line depiction) as well
as a node-and-arc underlying description. The nodes and arcs lend themselves to structural examination for things like
degrees of separation or graph size. Different semantics on different elements leads to further interpretation, such as
the diagrammatic representation on systems of equations in SysML parametric diagrams or the Petri-based semantics
of the activity diagram. These semantics, while quite formal by typical systems engineering standards, are still
somewhat fuzzy by the standards of ontological frameworks. Work has been started in the UML and SysML
community, but is still in progress. A great deal of work at JPL has been expended to take the graphical depictions
that systems engineers work with and combine them with the semantic rigor of description logics like OWL [12].

Regardless of the progress of systems modeling toward a fully formalized platform, one striking improvement to
systems engineering is already apparently. Many systems engineering products are ad hoc (proponents would say
tailor-made) and specific to a particular topic for the system. However, multiple products inevitably reference the
same information or have overlapping topics. This overlap implies a coordination tax because the information must
be kept consistent.

The improvement to the overlap situtaiton comes when a system model is combined with a product generation
capability. Documents can be produced automatically from such a capability. This is done by the systems engineer
specifying a layout and basis of content for a document in the form of model queries, which dutifully retrieve the
relevant information and insert it into the right location. At this point, redundancy almost becomes an efficiency,
because the same information is captured once and reported often.

For a requirements document, a given requirement may apply only in a certain scenario. For example, a given
active damping system may only be used on a car when the road has a certain roughness. What is the scenario for
driving in this condition? Are aggressive maneuvers anticipated? And what is the dynamic response? Is there a case
where the car may have sufficient flexibility in its passive suspension to make the active system overpriced? In the
world of documentation, one must capture the scenario, the requirement, and the design separately and hand-feed
these parameters into a dynamic analysis. In the modeling world, the requirement defines a property of interest
(suspended load acceleration, for example), a scenario where it is important, and a limit on its value. These data are

American Institute of Aeronautics and Astronautics

3

the makings of a simulation. With the system model, the relevant constraints can be encoded, simulated, and then
reported on all from the same basis of information. Also, the requirement may or may not stick depending on the car’s
architecture, since some passive suspensions will perform better than others on a given track. This is where we start
to see the motivation for considering architecture and requirements together once we have the tooling in place to track
the many relevant interactions efficiently.

III. Objectives for the Model
The system model for the Europa Clipper project was not formulated in a vacuum. There are several pragmatic

objectives that were taken as drivers for the modeling work.
The uppermost objective for the model is simply to capture whatever is asserted about the system under

consideration and to serve as the authoritative repository for all such assertions. If that were the only objective, one
might argue that simply collecting all design into a single access point is substantial advance, compared to present
practices of strewing design data across multiple discrete documents in various locations. To achieve the integration
described in foregoing sections, however, it is necessary to impose some structure on the captured assertions and
associated rules.

If the bare sentence The Flight System dry mass shall not exceed 200 kg. alone were captured in the model, that
would be insufficient for concluding that there is such a formal requirement on some system element. While it may
be true that every requirement should contain the word shall, the word itself does not create a requirement by mere
appearance. It might also appear in a particularly apropos quotation from T. S. Eliot3 in an inspiring address by the
Project Manager. To guard against such ambiguity we might introduce a classification system for utterances that
indicates unambiguously which are requirements and which are not. This is again a step forward in expressiveness
and rigor, but not yet enough for our purposes. At some point in the system life cycle we are going to collect all
requirements on the Flight System and arrange them into, say, a system requirements document. So we need to ensure
that all Flight System requirements (and only those requirements) can be distinguished from all other assertions in the
model. As in the case of the word shall, it is risky to rely on purely lexical conventions for recognizing Flight system
requirements. A spelling error or abbreviation could cause an expensive omission. Once again, we can create a
category, say component, and a relationship contains to describe what classical systems engineering calls a Product
Breakdown Structure. Then we might introduce a relationship specifies and the constraint that every requirement
specifies exactly one component.

In practice, anyone can utter a requirement about anything, but a potential supplier is bound to respect only those
requirements levied by the customer or his/her/its agent. Consequently, our model needs vocabulary and rules to
indicate units of authority and the delegation of authority from one unit to another. In classical system this delegation
structure is called a Work Breakdown Structure. Finally, we can introduce a relationship authorizes to indicate that a
particular assertion (e.g., a requirement) is made with, say, the authority of Project Management or Project Systems
Engineering.

This small vocabulary and rule set has given us the ability to identify unambiguously the requirements on a given
component and the authority that asserted each. It does not yet enable us to capture precisely what each requirement
means, nor the analysis and validation that led the authority to assert it in the first place. We can continue adding
vocabulary and rules as before with the ultimate objective of recording every pertinent assertion abou the system, who
made it, and why.

The above discussion covers the proper and unambiguous capture of not only system requirements, but also the
full context needed for their tracking and application. There is more to the conversation, namely how the requirements
were formulated in the first place, and how the constraints they levy on system elements are kept apart from the long
list of assumptions, design notes, and other information that may guide development but is not strictly in the set of
requirements that bind a system’s delivery to a customer.

The next objective for the model then is to provide a traceable and readable source of engineering work and thought
that provides rationale and some flexibility for adapting requirements for unforeseen events in development. The
systems engineering teams on the project are of the view that the traditional, stand-alone rationale statement in a
requirements document is insufficient to provide this basis. The desire is to instead create a series of coherent
narratives that focus on only one or two stakeholder concerns at a time, and use these narrative as the context and
departure point for formulating requirements. The aim for these descriptions is that anyone with questions about the
context or the rationale for a requirement can read these narratives for a deeper understanding. These narratives should

3 We shall not cease from exploration / And the end of all our exploring / Will be to arrive where we started / And
know the place for the first time.

American Institute of Aeronautics and Astronautics

4

also serve to separate the true requirements from stray design thoughts that may typical enter requirements documents.
The initial narratives especially are intended to have many statements of the form “a response to the concern is to
provide the function to do X.” The response to this objective is described in the “Architecture and Constraints” section
of this paper.

Another objective for the model is to make requirements easy to access for those that must implement against
them. Requirements could apply through a variety of channels. Interfaces and functional requirements are typically
directed against the hardware in question. Those requirements that are harder to trace are those from documents that
apply to the entire system such as requirements imposed by external environments. While there are processes that
flow requirements from these high-level documents to the set provided to implementers, a direct connection provides
a useful check from the bottom up on the quality of the flowdown.

A final set of objectives for this model have to do with the practicalities of developing a major engineering artifact
on a project. These objectives bring the model more into the territory of the traditional requirements management
system. The maturity of requirements under development should be tracked, metrics should be reported, and best
practices should be cross-referenced against candidates.

IV. Infrastructure
The work described in this paper takes advantage of several pieces of systems modeling infrastructure that have

been developed at JPL in the previous few years. These tools work together to provide the capability to work
requirements directly into architectural efforts, and vice versa. This infrastructure has been developed by projects and
tasks on an as-needed basis, with coordination and strategic efforts supported by the institutional Integrated Model-
Centric Engineering (IMCE) initiative.

A key element of IMCE infrastructure effects the integration of SysML as a graphical notation with the formal
logical analysis enabled by the technologies of the semantic web, including the Web Ontology Language (OWL). This
integration takes place in a set of complementary workflows.

The anchoring operation is community development of a set of ontologies for systems engineering as practiced at
JPL. These ontologies define rules for describing and relating fundamental systems engineering concepts such as
Component, Interface, Function, etc., as well as relationships such as contains, presents, performs, etc. We then
elaborate and extend these concepts and properties for specific discipines (e.g., electrical, mechanical, thermal, etc.)
or applications (star scanner, camera, etc.).

Merely creating a set of ontologies does not ensure that they will have any particular properties of well-
formedness. The next step in our process takes a defined set of ontologies (which we call a bundle) and uses off-the-
shelf reasoners and custom SPARQL queries to ensure that all axioms in the bundle are consistent, that every class in
the bundle is satisfiable (that is, it could in principle be nonempty), and that the the axioms comply with a set of local
practices (e.g., that every object property has a single class as its domain and a single class as its range). This validation
is implemented using a software continuous integration system and runs whenever there is a change to any ontology.

In order to formally map between SysML and our OWL ontologies, we need a description of each in a single
language. OWL itself is a useful language for this purpose, so the next major step in our integration process is to create
by software transformation an OWL ontology for SysML (and its underlying specifications, including UML).

The next step is to create the mapping. For example, we embed the notion of Component as a SysML Block and
Work Package as a UML Package. These embeddings are expressed as a set of subclass and subproperty axioms.

SysML inherits from UML the notion of a profile, which is a set of user-defined terminology implemented in the
form of stereotypes. The next operation in our integration process creates a profile containing a stereotype for each
concept and property in an ontology bundle. A SysML modeling tool that imports this profile supports model-building
using the IMCE ontologies. Models with this profile applied have richer semantics than possible with bare SysML,
but because they employ the OMG-provided extension mechanism (the profile), they are valid instances of the SysML
metamodel.

Finally, these profiled models can be transformed (again by software) into semantically-equivalent representations
in OWL, in which form we can reason about their consistency and well-formedness using reasoners and custom
queries.

This collection of infrastructure has enabled us to begin regularizing our modeling practice, limiting our expression
to constructs of agreed-upon meaning and upon which standard reasoning and analysis applications are effective. This
regularization is done through a practice of developing modeling patterns, which are analogues to the guided practice
of software patterns as described by the so-called Gang of Four.

The idea of the modeling pattern has started to prove to be very useful for flexibility of modeling practice. Because
there are many ways to express a concept in SysML using multiple entities and relationships, there are often many

American Institute of Aeronautics and Astronautics

5

discussions about how to optimally capture and describe information. Last year, an effort began within IMCE to
support a Pattern Factory tool that would interpret a collection of SysML elements that were defined as describing a
given compound concept or modeling idiom. An example of this would be a potential pattern for the constraints
leading up to a functional requirement, which is shown below in Figure 1.

Figure 1. Pattern for functional requirements with conditions.

The pattern shows how the behavior of a component is intended to be constrained during a given scenario. A
Parametric diagram binds the values of a characterization to a given constraint. In the above case, the constraint is
written with a prefix notation. It is an if-then statement that says when the value of the #WhenProp Boolean property
is true, there is an enforced equality on the #What variable, which is typed by a #Wild Type. This type could be set to
an enumerated list, or be a value like power or data rate.

While there are many SysML elements that combine to make up this pattern, each element also participates in
other patterns and connections. A single piece of information in the model may participate in many different contexts
for understanding the larger system. In the example above, the scenario may also be used to plan out the ordering of
activities that utilize component functionality.

The Pattern Factory processes the model by looking first at the base pattern. This is captured within the SysML
model in a marked package. All elements in that package and their relationships are taken as the pattern. Once the
Pattern Factory parses this base pattern, it searches the model for groups of elements that match roles within the pattern
until a bipartite graph matching is completed. This matching is illustrated below in Figure 2, with the UML pattern
model and user model being transformed into mathematical graphs for analysis. Currently, the element-by-element
matches are performed by considering stereotypes, element names including wildcards, and the base types of elements
using UML Generalization. Element-by-element matching is treated as a subroutine to a state-of-the-art graph query
algorithm called Quick Subgraph Isomorphism [8]. Other groups of elements that serve as partial matches are stored
for cases where the user is looking to complete or create pattern instances with imported information.

American Institute of Aeronautics and Astronautics

7

Figure 3. Pattern for functional requirements with template.

The transformation of a model into requirements text according to a template is not itself a new idea [10]. What is
different in this case is that the capability is couched as a general pattern-matching problem. If the modeling team
decides that a revision to the pattern is necessary to handle some new piece of information, the requirement reports
can be changed very rapidly. A recent such refactoring by the first author was achieved in roughly twenty minutes.

The graphical template given above falls on a spectrum of tools for model transformation. The most sophisticated
version is declarative model-to-model transformation like Query-View-Transform Relations [spec reference], with
full model-to-text languages like Acceleo as a less complex framework. The graphical template is the simplest to set
up but also the least flexible. The benefit of using this template with a pattern is that the pattern provides a degree of
complexity in expression that can be translated literally into text. A notional trade-off between flexibility and ease of
use for multiple model transformation frameworks is shown below in Figure 4.

American Institute of Aeronautics and Astronautics

9

to establish a Budget on how much we are willing to spend on various development activities and the acquisition of
parts. In order to describe either the Suspension or the Budget in more detail, we may work on dedicated Conceptual
Views that describes the elaboration of our Suspension into more elements like Dampers or Struts. Each of these
Conceptual Views will likely deal with bundles of properties and constraints together, and serve as the rationale
context rather than working rationales requirement-by-requirement.

As we work on the network of Conceptual Views, clear sets of constraints are developed. A reason to call them
constraints rather than requirements is that we haven’t yet talked about specific items to be built, only general design
approaches. Our Suspension is a Platonic ideal – we don’t make this description worry about cost or weight or
durability. It only has to address the problems of getting the desired dynamic response. We work in these additional
worries by weaving the elements from our Conceptual Views together into Realizational Views. We then have a real
Suspension to be built by a particular build group with detailed design and budgeting authority. From our example,
we now have two candidate requirements: an upper limit on the acceptable acceleration and an upper limit on the
acceptable cost. Our Realization View allows us to discuss how the antagonism between these candidate requirements
resolves itself into a compromise that satisfies our stakeholders. The requirement is now set and can be handed off for
development of the actual hardware. Because the constraints originated from formal properties and scenarios, we also
now have a solid beginning for verification. Because these constraints are traceable to our stakeholders, we can
validate those requirements with them, perhaps with simulated system behavior.

Another change in requirements practice that the modeling approach allows is for requirements to be tied more
carefully to an integration hierarchy rather than “levels” of design. The system model clearly identifies who is
delivering the hardware as well as the next step for hardware integration. Thus, requirements can be looked at for
change impact. If a requirement is changed for one delivering work element, do other work elements have to be made
aware for likely changes in the flow down? If a requirement involves the aggregation of many pieces of hardware and
software working together, what is the first time in the development process that this aggregation will be in existence
for testing?

We can revisit the functional requirement template from Figure 3. An instance of the pattern would be a Country
Road Driving Scenario connected to an ElementBehaviorCharacterization that describes the suspended mass vertical
travel. The WhenProp Boolean would correspond to something like “Road mean rock size(t) < 10 cm.” When it is
true, the constraint could be set to restrict vertical travel (filling in for Wild Type) to a given maximum value. These
model elements could be transformed into “During Country Road Driving, when road mean rock size < 10 cm,
Suspended Mass shall vertical travel less than 5 cm.” There is some stiltedness to this statement, but it is atomic,
verifiable, and descriptive.

With system model in hand, it is possible to do these queries. The connection between constraints and requirements
should also now motivate the desire to convert from the mathematical expression of constraints into the contractual
“shall” statement for those responsible for delivery.

VI. Requirement Pattern for Model and Shall Statement
With all of the motivation and methodology described, it is time to look to the model. The core of the modeling

information is the Requirement Pattern, which is presented below. The Requirement Pattern starts with a basic core,
which is that there is a mission:Requirement that binds something on the model.

Requirements participate in two fundamental relationships in our ontology. Firstly, a requirement specifies some
characteristic of an article to be acquired, in doing so it states a necessary condition for every acceptable realization
of that article. Secondly, a requirement may refine one or more other requirements.

It has been traditional practice in systems engineering to classify requirements as one of non-functional, functional,
interface, environmental, etc. We take a somewhat different but more rigorous approach. Because specifies is a
formally-defined object property in OWL, we can specify its domain and range explicitly. So we control the
expressiveness of the relationship and then classify a requirement according to the kind of thing it specifies:

• A requirement may constrain some essential property of a component, such as its material composition,
color, finish. In that case it specifies the component directly and we call such a requirement a “Component
Requirement”.

• Some requirements have the form The X shall perform Y; we have traditionally called those functional
requirements. In this case we create a model element to represent the relationship between X and Y; in
this case it is an instance of the class Performs. We call this process reification. The requirement then
specifies the Performs instance, which is in keeping with the original intent of the requirement: it specifies
a relationship of performance between a component (X) and a function (Y).

American Institute of Aeronautics and Astronautics

10

• Similarly we can reify a Presents relationship between a component and an interface and specify that to
denote what is traditionally called an interface requirement.

• It is common in acquisition to instruct the supplying authority on details of the processes by which the
acquired component is designed, manufactured, tested, shipped, etc. These requirements are not binding
on the component itself, nor its functions, nor its interfaces. Instead we reifiy an Executes relationship
between an Authority (typically a work package) and a Process. The requirement can then specify this
reified relationship; we call such requirements process requirements.

Figure 5. Various types of requirements with their association SysML encodings.

The functional requirement is a good example of the transformation apparatus in operation, and was previously
presented in Figure 3. There is also a template for rendering the appropriate shall statement. The figure shows that the
template has a series of specially marked placeholders for model information. These placeholders are pointed directly
at model elements by way of SysML properties and Element Values (concrete pointers to model elements). When the
Pattern Factory is used to find matches to this pattern, the information in pattern instances that match the elements
from the base pattern are substituted into the template. The pattern example and a filled-out requirement are depicted
next to each other in the next figure.

VII. Constraint Synthesis via Transformation

In the same way that the pattern templates can be used to render English text, they can also be used to render inputs

for various analytical tools. This use case works well with algebraic computer systems like Mathematica. To set this
up, a separate pattern and template is used. This one shows how architectural constraints and requirements are
connected. It is presented in Figure 6.

American Institute of Aeronautics and Astronautics

11

Figure 6. Constraint pattern for Mathematica.

When templates for this pattern are filled out, specific constraints are gathered in a group for Mathematica. Where
the constraints share common parameters, they can be intersected. This serves to simplify and combine constraints
into the most useful possible requirement, rather than levying multiple overlapping requirements that must be
manually reconciled.

We can take as an example multiple requirements for our Suspension stiffness. One value is the constraint to give
a comfortable ride to the passenger. The other value is the constraint to support cornering and handling concerns. It is
clear that one constraint is stronger than the other, and combination is simple. However, if typical practice was
followed, these two constraints may be combined prematurely and stored in a requirements document. If one of the
constraints were to change, it is possible that the driving case may change. Rather than do this check manually, we
leave it to the model to tell us when the driving constraint has changed and what the new requirement is.

Once the constraints are resolved in this way, their simplified forms can be used for re-importation to the system
model.

VIII. Requirement Audits
One final topic for the use of a requirements model has been the application of regular audits. This aspect of

working with the system model is still under development. But some basic audits are currently available.

American Institute of Aeronautics and Astronautics

12

The first audit is a basic word-matching audit. By using the model, the systems engineering team can decide to
group or choose select words or regular expressions to find. These words can also be categorized by configuring a
package of key words in the model that the query uses for base data.

For example, such unverifiable actions like “minimize” or “maximize” are labelled as unverifiable because it is
impossible to prove that a true minimum has been found. There are also rules such as looking for negation that prints
out a prompt for the author to think of a way of formulating the requirement as a positive statement.

Another simple audit is to count the to be determined (TBD), to be reviewed (TBR), and to be confirmed / corrected
(TBC) values for various requirements. These placeholders are acceptable early on, but regular review of them
supports steady improvement in requirement quality.

Another audit for the model is basic well-formedness. Is the requirement currently applied to something? Has a
responsible party for it yet been identified?

Some audits apply to the graph structure of requirement relationships. For example, we mentioned earlier the
refines relationship between lower- and higher-level requirements. Such a relationship is obviously directed
(asymmetric). With some reflection we can also see that the graph of such relationships must be acyclic. That is if it
is possible to reach R2 from R1 by following a chain of refines relationship, it must not be possible to reach R1 from
R2 by another such chain. Efficient algorithms for finding cycles in a directed graph are well known; auditing a
requirement set to detect cycles is an efficient and effective way to avoid errors.

More complex audits are also possible. For example, the refines relationship imposes a partial order on
requirements and the contains relationship imposes a partial order on components. The specifies relationship imposes
a mapping from requirements to components (possibly through functions, processes, or interfaces). This mapping
should have the property that if R1 > R2 and R1 maps to C1 and R2 maps to C2, then C1 > C2. It is straightforward to
implement at audit for this property using SPARQL and an auxiliary function to compute transitive closure.

Finally, the relationship between requirements and the stakeholder needs can be mapped in the graph analysis. In
the architectural approach of Europa Clipper, all requirements must ultimately flow from the success criteria
(constraints) of the stakeholders. A graph analysis like the one used to detect cycles is used to determine that
requirements have a path back to these ultimate constraints.

With regular audits, there is a constant data stream to support continuous improvement in requirements quantity
or an action list to know how much work is to go in improvement before reaching formal reviews.

IX. Future Work
The capability described in this paper is still in its early phases on the pre-project. As with a great deal of the

modeling technology developed for the team so far, user adoption is a key challenge. In order to make the first
generation of requirements templates, the statements come across in a fairly stilted English. While these are technically
valid requirements, there will likely be an instinct for wordsmithing that distracts from the other advances this
technique provides.

Another direction for future work will clearly be to work on practical issues that will crop up with scaling. The
scale of managing an integrated model with product defition, requirements, and architecture has not been attempted
at JPL before. Many separate pieces of the puzzle have been forming up nicely, however, and so it is likely that there
will be growing pains rather than show-stoppers. Previous experience shows that the scaling challenge will appear
more in reconciling different styles of description and interacting with different engineering disciplines rather than
issues with database or processing sizes. There is much work ahead in seeing how the differences in how engineers of
different ages and with different backgrounds will interact with the model and what challenges they will encounter.
For example, there are many domains of engineering that have never encountered object-oriented practices. Thus, the
UML ideas of Classes and Generalization and Properties are often challenging to describe in an intuitive way.
Modeling infrastructure deployed on the pre-project and training have helped to dull the sharpest of these conceptual
corners, but many more certainly remain.

Also, whle some basic audits are now available for use, there are certainly many, many more that will be conceived
and deployed on the team. The tracking of development progress is also underway but immature in both formulation
and practice. The relevant monitors in the model are continuously being improved.

X. Summary
There is now a facility available to the Europa Clipper pre-project team for the deep connection of requirements

to architecture development and analysis. This facility is being stood up with a series of audits and queries to provide
checks on best practices for requirement construction and traceability. In addition, the facility connects a readily
analyzable format for mathematically defining architectural constraints and the series of statements that is handed to

American Institute of Aeronautics and Astronautics

13

hardware and software implementers. The facility is still in development, but many of its facets are already coming
into focus for both practitioners and its creators. Individual capabilities, such as creating English requirements from
the model and checking for suspicious words and phrases in the requirements text in hand-written versions are in
place. It is anticipated that the work presented here will continue to be expanded, hardened, and deployed throughout
the pre-project.

XI. Acknowledgements
This work was developed under funding from the National Aeronautics and Space Administration. It draws upon

efforts by the Integrated Model-Centric Engineering (IMCE) initiative at the Jet Propulsion Laboratory (JPL), JPL
Modeling Early Adopters (MEA), and Europa Clipper pre-project systems engineering and architecture teams.

XII. References
[1] Bayer, T.J., Bennett, M., Delp, C.L., Dvorak, D., Jenkins, J.S., Mandutianu, S., Update -Concept of

Operations for Integrated Model- Centric Engineering at JPL, IEEE Aerospace Conference, Big Sky,
MT., March 2011.

[2] Cole, B., Chung, S., " Getting a cohesive answer from a common start: Scalable multidisciplinary analysis
through transformation of a systems model, " Aerospace Conference, 2012 IEEE, 3-10 March 2012.

[3] Cole, B. "Analyses made to order: Using transformation to rapidly configure a multidisciplinary
environment", Aerospace Conference, 2013 IEEE, On page(s): 1 – 9.

[4] De Koening, P., “Open Concurrent Design Tool - ESA Community Open Source Ready to Go!” Presented
at SECESA 2014.

[5] Delp., C., Lam, D., Fosse, E., Lee, C.Y., Model based document and report generation for systems
engineering. Presented at 2013 IEEE Aerospace Conference.

[6] Elaasar, M., Briand, L., Labiche, Y.: “Domain-Specific Model Verification with QVT”. Proceedings of
ECMFA 2011, LNCS, vol. 6689, pp. 282-298, Birmingham, England, June, 2011.

[7] Exertier, D., Bonnet, S., “Arcadia / Capella, a field-proven modeling solution for system and software
architecture engineering.” Presentated at EclipseCon 2014. Video available online and accessed on Nov.
16, 2014 at [https:// eclipsecon.org / na2014 / session / arcadia-capella-field-proven-modeling-solution-
system-and-software-architecture-engineering].

[8] Haichuan Shang , Ying Zhang , Xuemin Lin , Jeffrey Xu Yu, Taming verification hardness: an efficient
algorithm for testing subgraph isomorphism, Proceedings of the VLDB Endowment, v.1 n.1, August
2008.

[9] Kerzhner, A. A., and C. J. J. Paredis, "Model-Based System Verification: A Formal Framework for
Relating Analyses, Requirements, and Tests", Proc. 4th International Workshop on Multi-Paradigm
Modeling (MPM 2010), 2011.

[10] London, B., Miotto, P. "Model-based requirement generation", Aerospace Conference, 2014 IEEE, On
page(s): 1 – 10

[11] Rasmussen, R. “Principled System Architecture,” Viewgraph presentation to Keck Institute of Space
Studies workshop 2012. [http:// www.kiss.caltech.edu/ workshops/ systems2012/ presentations/
rasmussen.pdf].

[12] Rouquette, N., Jenkins, S., Transforming OWL2 Ontologies into Profiles Extending SysML,12th NASA-
EST Workshop on Product Data Exchange, Oslo, Norway, May 2010.

[13] S. Spangelo, D. Kaslow, C. Delp, L. Anderson, B. Cole, E. Foyse, L. Cheng, R. Yntema, M. Bajaj, G.
Soremekum, and J. Cutler, “Model Based Systems Engineering (MBSE) Applied to Radio Aurora
Explorer (RAX) CubeSat Mission Operational Scenarios”, Accepted for IEEE Aerospace Conference,
2013, Big Sky, MT, March 2013.

http://www.kiss.caltech.edu/

	Connecting Requirements to Architecture and Analysis via Model-Based Systems Engineering
	Nomenclature
	I. Introduction
	II. Models for Tying Together Systems Engineering Products
	III. Objectives for the Model
	IV. Infrastructure
	V. Architecture and Constraints
	VI. Requirement Pattern for Model and Shall Statement
	VII. Constraint Synthesis via Transformation
	VIII. Requirement Audits
	IX. Future Work
	X. Summary
	XI. Acknowledgements
	XII. References

