
Spot: A Programming Language for
Verified Flight Softwar

Rob Bocchino
Ed Gamble

Kim Gostelow
Rafi Som

Jet Propulsion Laboratory
Califor nia Institute of Technology

High-Integrity Language Technology (HILT)
October 21, 2014

© 2014 Califor nia Institute of Technology
Government sponsorship acknowledged

Motivation

• Most flight soft are (FSW) today is written in C

• Pros
✓ Familiar
✓ Simple
✓ Low overhead
✓ Easy to reason about resource use (speed, memory, pow er)

• Cons
X Lacks important abstractions for FSW
X Requires unsafe, low-level code
X Verification and alidation (V&V) is ver y expensive

2
© 2014 Califor nia Institute of Technology
Government sponsorship acknowledged

Example

Passed

Failed

Not Checked

Mars Science Laboratory (MSL) FSW coverage
using the Spin model checker

3
© 2014 Califor nia Institute of Technology
Government sponsorship acknowledged

Experience

• Spin is under-utilized for FSW
− Extracting a Spin model is hard wor k
− Three man-months per module

• Reason: C is ver y unstr uctured

Program Proper ty Expressed in C as
Spacecraft state malloc, pointers
Concurrency C librar y calls
FSW abstractions C librar y calls

4
© 2014 Califor nia Institute of Technology
Government sponsorship acknowledged

Our Solution: Spot

• A new domain-specific language (DSL) or FSW

• Based on C
− Retains the benefits of C or FSW programming
− Linkage compatible with C in both directions
− Suppor ts incremental adoption

• Key features
− FSW abstractions: modules and messages
− Improved memor y management and precise accounting of state
− Annotations for automatic testing and ver ificatio
− Improved arrays, no pointer arithmetic
− Value type system suppor ting safe parallelization

5
© 2014 Califor nia Institute of Technology
Government sponsorship acknowledged

Outline

• The Spot language

• Benefit

• Implementation status

• Future plans

6
© 2014 Califor nia Institute of Technology
Government sponsorship acknowledged

Modules and Messages

Module Code
module Counter {
priority P qsize 100
constructor create () {}
state int count = 0
message void increment () priority P {

next count = count + 1;
}
message int read() priority P {
return count;

}
}

Client Code
val Counter c = Counter.create ();
var int count;
send c.increment ();
send c.read () receive count;
printf ("count is %d\n", count);

Messages

Counter

Client

7
© 2014 Califor nia Institute of Technology
Government sponsorship acknowledged

Modules and Messages

Module Code
module Counter {
priority P qsize 100
constructor create () {}
state int count = 0
message void increment () priority P {

next count = count + 1;
}
message int read() priority P {
return count;

}
}

Modules have state

Client Code
val Counter c = Counter.create ();
var int count;
send c.increment ();
send c.read () receive count;
printf ("count is %d\n", count);

Messages

Counter

Client

7
© 2014 Califor nia Institute of Technology
Government sponsorship acknowledged

Modules and Messages

Module Code
module Counter {
priority P qsize 100
constructor create () {}
state int count = 0
message void increment () priority P {

next count = count + 1;
}
message int read() priority P {
return count;

}
}

Modules have state

Messages operate on state

Client Code
val Counter c = Counter.create ();
var int count;
send c.increment ();
send c.read () receive count;
printf ("count is %d\n", count);

Messages

Counter

Client

7
© 2014 Califor nia Institute of Technology
Government sponsorship acknowledged

Modules and Messages

Module Code
module Counter {
priority P qsize 100
constructor create () {}
state int count = 0
message void increment () priority P {

next count = count + 1;
}
message int read() priority P {
return count;

}
}

Modules have state

Messages operate on state

Client Code
val Counter c = Counter.create ();
var int count;
send c.increment ();
send c.read () receive count;
printf ("count is %d\n", count);

Messages

Counter

Client

increment

7
© 2014 Califor nia Institute of Technology
Government sponsorship acknowledged

Modules and Messages

Module Code
module Counter {
priority P qsize 100
constructor create () {}
state int count = 0
message void increment () priority P {

next count = count + 1;
}
message int read() priority P {
return count;

}
}

Modules have state

Messages operate on state

Client Code
val Counter c = Counter.create ();
var int count;
send c.increment ();
send c.read () receive count;
printf ("count is %d\n", count);

Messages

Counter

Client

increment read

7
© 2014 Califor nia Institute of Technology
Government sponsorship acknowledged

Memor y Management

1. Stack var iables: As in C

2. Message-local heap var iables
− Are created during a message invocation
− Do not persist across messages
− Are automatically reclaimed at the end of a message

3. State var iables
− Must be declared

• With state keyword
• Inside a module definitio

− Are associated with a module instance m
− Persist across all messages received by m

There are no global variables in Spot 8
© 2014 Califor nia Institute of Technology
Government sponsorship acknowledged

Typing Guarantees

1. No two module instances share memory
− Modules communicate by passing values
− Easy to move modules between cores

2. State memory stores no pointers
− State memory nev er points to non-state memory
− Deallocation of message-local memory is safe

9
© 2014 Califor nia Institute of Technology
Government sponsorship acknowledged

Updating State

• State update
− Is called out with the next keyword
− Occurs all at once at the end of message processing

• Pur pose
− Buffer current state for possible undo
− Separate current state from next state in assertions

module Counter {
state int count = 0
...
message int read_and_increment () priority P {

next count = count + 1;
return count;

}
}

10
© 2014 Califor nia Institute of Technology
Government sponsorship acknowledged

Updating State

• State update
− Is called out with the next keyword
− Occurs all at once at the end of message processing

• Pur pose
− Buffer current state for possible undo
− Separate current state from next state in assertions

module Counter {
state int count = 0
...
message int read_and_increment () priority P {

next count = count + 1;
return count;

}
}

count is n

10
© 2014 Califor nia Institute of Technology
Government sponsorship acknowledged

Updating State

• State update
− Is called out with the next keyword
− Occurs all at once at the end of message processing

• Pur pose
− Buffer current state for possible undo
− Separate current state from next state in assertions

module Counter {
state int count = 0
...
message int read_and_increment () priority P {

next count = count + 1;
return count;

}
}

count is n

Set count to n + 1 and return n

10
© 2014 Califor nia Institute of Technology
Government sponsorship acknowledged

Annotation Language

• Spot has a simple but powerful annotation language built in

• Syntax: @ identifie (expression)

• Semantics: define by pluggable checker
− Spin code generation
− Design-by-contract-style runtime checks

module Counter {
state int count = 0
...
message void increment () priority P

private @assumes (count >= 0)
private @guarantees (next count == count + 1)

{
next count = count + 1;

}
}

11
© 2014 Califor nia Institute of Technology
Government sponsorship acknowledged

≠

Outline

• The Spot language

• Benefit

• Implementation status

• Future plans

13
© 2014 Califor nia Institute of Technology
Government sponsorship acknowledged

Benefits of Spo

• Improved programmability vs. C
− Module and message abstractions
− Memor y management and state partitioning
− Improved arrays and value types

• Atomic update of state

• Auto-generation of
− Verificatio
− Telemetr y

• Multicore support

• C compatibility

14
© 2014 Califor nia Institute of Technology
Government sponsorship acknowledged

′
′

′

Verificatio

• Easy to translate annotations into runtime checks
− Test cases

• Input ranges
• All cases satisfying condition B

− @assumes, @guarantees, @assert

• Spin code generation is also straightforward
− Concurrency is explicit
− Typing guarantees reduce the state space

• Should vastly reduce the cost of V&V for FSW

16
© 2014 Califor nia Institute of Technology
Government sponsorship acknowledged

Telemetr y

• Telemetr y causes lots of code generation
− A pain to manage using current techniques
− Duplicates infor mation already in FSW code

• Spot can do much of this with simple annotations

module GnC {
@periodic (q, planet)
@onchange (planet)
state GncVector x
...
@param
state GncParms z
...

}

type GnCVector = struct {
var double[4] q
var Planet planet
var GncMode mode
var int a

}

17
© 2014 Califor nia Institute of Technology
Government sponsorship acknowledged

Telemetr y

• Telemetr y causes lots of code generation
− A pain to manage using current techniques
− Duplicates infor mation already in FSW code

• Spot can do much of this with simple annotations

module GnC {
@periodic (q, planet)
@onchange (planet)
state GncVector x
...
@param
state GncParms z
...

}

Send q, planet per iodically to the ground

type GnCVector = struct {
var double[4] q
var Planet planet
var GncMode mode
var int a

}

17
© 2014 Califor nia Institute of Technology
Government sponsorship acknowledged

Telemetr y

• Telemetr y causes lots of code generation
− A pain to manage using current techniques
− Duplicates infor mation already in FSW code

• Spot can do much of this with simple annotations

module GnC {
@periodic (q, planet)
@onchange (planet)
state GncVector x
...
@param
state GncParms z
...

}

Send q, planet per iodically to the ground
Send planet to the ground
when it changes
type GnCVector = struct {

var double[4] q
var Planet planet
var GncMode mode
var int a

}

17
© 2014 Califor nia Institute of Technology
Government sponsorship acknowledged

Telemetr y

• Telemetr y causes lots of code generation
− A pain to manage using current techniques
− Duplicates infor mation already in FSW code

• Spot can do much of this with simple annotations

module GnC {
@periodic (q, planet)
@onchange (planet)
state GncVector x
...
@param
state GncParms z
...

}

Send q, planet per iodically to the ground
Send planet to the ground
when it changes

z is a parameter var iable

type GnCVector = struct {
var double[4] q
var Planet planet
var GncMode mode
var int a

}

17
© 2014 Califor nia Institute of Technology
Government sponsorship acknowledged

Multicore Support

• Each module
− Is logically a thread
− Can go on its own core

• Message bodies can be parallelized
− Value types minimize access to shared mutable data

• Wr ite helpers as pure functions
• Enables auto-parallelization

− Where mutable data is required (e.g., arrays)
• Encapsulate parallel data structures behind librar y APIs
• Update state at top-level only

• Concurrent message handling is future wor k

18
© 2014 Califor nia Institute of Technology
Government sponsorship acknowledged

Outline

• The Spot language

• Benefit

• Implementation status

• Future plans

19
© 2014 Califor nia Institute of Technology
Government sponsorship acknowledged

Implementaton Status

• Draft language specification is don
− Formal syntax
− Infor mal semantics

• Compiler implementation is in process
− Complete parser
− Mostly-complete C code generator
− Prototype Spin code generator

• Case studies
− We have compiled, run, and ver ifie several simple examples
− Working on more extensive examples drawn from MSL code

20
© 2014 Califor nia Institute of Technology
Government sponsorship acknowledged

Outline

• The Spot language

• Benefit

• Implementation status

• Future plans

21
© 2014 Califor nia Institute of Technology
Government sponsorship acknowledged

Future Plans

• Fur ther ev aluation to answer research questions
− What are the gains vs. plain C

• In safety and ver ification
• In productivity?

− What is the perfor mance cost?

• Evaluate for deployment

• Several f ight projects have expressed interest

22
© 2014 Califor nia Institute of Technology
Government sponsorship acknowledged

