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Agenda

* Europa gravitational tide estimation via a flyby mission
* Low Gain Antennas for deep space tracking

* Uplink-only telecommunication system design

* Expected DSAC performance

* Doppler tracking data quality

Analysis of gravitational tide estimation performance

* Linearization issues for perturbed initial conditions

* B-plane target constraints to maintain filter linearization

Approach orbit determination to satisfy B-plane constraints

Conclusions
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Europa Gravity Science: Subsurface Ocean Confirmation

* Primary science goal at Europa to confirm existence of and
characterize Europa’s subsurface liquid ocean

* Liquid/ice ocean perturbed by Jupiter and causes Europa
gravitational fluctuations

* Europa tidally locked to Jupiter, with k,, gravitational tide
coefficient dominating time-varying response

* Estimating k,, term with uncertainty < 0.05 strongly
supports ocean’s existence

* Europa flyby mission has limited radiometric data to estimate
gravity field coefficients and their time variations

* Gravitational tide sensitivities limited to close approach

* Potential ~ 2.5-year tour includes 45 flybys of Europa, and
accumulates a few hours of useful X-band tracking data per
flyby
* Gravity information from each flyby accumulated to

produce a global gravity solution; solution quality strongly
correlated to Doppler quantity and quality

* Jovian moon tour designed in part to optimize Europa
graVity SCienCG return http://www_jpl_nasa.gov/spaceimages
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Low Gain Antennas for Deep Space Tracking

* Deep space telecommunications design limited by vast distances signal must traverse and achievable
spacecraft transmit power

* Deep Space Network (DSN) typically utilizes two-way radiometric tracking

* Downlink requires large spacecraft transmit antenna gain from high gain antenna (HGA) or medium
gain fan beam antennas

* Small HGA/fan beam field of view and spacecraft attitude constraints may result in limited amount of
flyby tracking data

* Desire solution to provide ample tracking data regardless of flyby attitude \
* One-way uplink low SNR tracking possible with low gain
antennas (LGAs) which are typically baselined into s/c design

* Open-loop Doppler carrier tracking, collected onboard
during flybys and stored until later downlink to Earth

* Hemispherical LGA FOV imposes no attitude constraints
while providing complete tracking coverage

* One-way Doppler data includes onboard clock errors

* High accuracy/stability onboard frequency source such as Deep
Space Atomic Clock necessary to produce high-quality one-way
Doppler data
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LGA Telecommunication System Design

LGA uplink-only link budget assessed to determine whether sufficient SNR can be realized
at the spacecraft

* Received power-to-noise requirements for tracking (including 3 dB-Hz margin):
* Closed-loop > 20 dB-Hz

* Open-loop > 10 dB-Hz

Standard LGA and DSN values represent realistic telecommunication design parameters:

Table 1. X-Band Uplink Link Budget
0 P
Transmitter Parameters -
Transmit Frequency (f) 7.1531 GHz 2
Transmitter Power (F;) 20 kW EE
Transmitt Antenna Gain (G4) 66.96 dBi £-10
Wave Guide Loss (L,g) -0.6 dB -1
Transmit Antenna Pointing Loss (Lpoint, x) -0.2dB ; -14
2-16
Path Parameters -18
l..Modeled from MRO L GA
Atmospheric Attenuation Loss (L) -0.2dB _Zﬂ
D 10 20 30 40 50 60 T0 80 90
Off—Boresight Angle, deg
Receiver Parameters —
Polarization Loss (L) 004 dB—"
Receive Antenna Pointing Loss (Lpoint,r) ||[212.75 dB, 0 dB] for ¢ = [75°, 0°]
Receive Antenna Gain (G,.) [5 dBi, 6 dBi]
Lumped Ckt/Antenna Loss (L.x¢) Z1.50D

P - - - - 5
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Spacecraft Received Power-to-Noise

* Assessment of received C/N, over flyby tour shows that LGA can supply sufficient gain for
open-loop uplink-only tracking

* With 5.5 dBi of gain, can tolerate off-boresight angle up to ~ 75°
* Assume one LGA per spacecraft side = continuous LGA coverage (open-loop)
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Expected DSAC Performance

* Deep Space Atomic Clock (DSAC) Technology Demo Mission will demonstrate on-orbit
performance of small, low-mass mercury ion atomic clock in LEO

* Planned launch in May 2016 as hosted payload (SST-US Orbital Test Bed)

e TRL5 TRL7 10 -
APL 600 gm USO performance i 7

- - /7
* Expected LEO performance _ 4= ’space - P
< 3e-15 at 1 day 10-13 Il (Drift Removed) | |, /‘
PASSS |

* Performance on par with

DSN Frequency and Timing TN \£

System 0 Cassini-Grade

E . T, S
* DSAC corrects USO- > USO ~ 2kg e
generated frequency signal / ¥,

* USO frequency errors 10-15
randomly walk with
large integration times

4
Space Rb
\"\. Drift

186—25 AR

ho
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* After control cycle,
frequency noise falls off 107 ' . . . J .
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Doppler Data Quality

* 60-second X/X and X-up Doppler noise profiles generated over course of flyby tour

* With small DSAC onboard clock noise, both X/X and X-up signal noise dominated by
plasma variations

* Generally, X-band two-way noise ~ ./2x one-way noise, with 2x measurement sensitivity
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:E:::::"::SEP < 320: oo 1—RSS Total [ ER— SEP < 230 : 1—RSS Total
i i Finite SNR _ _ Finite SNR
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F s —Tropo : : —Plasma
: —FTS —Tropo
w 100 e o m —DST -4 ™ ”—FI'S
E b Sk ' —Ground Antenna E —Ground Antenna
\é’ I —Ground Electronics ‘é’ —Ground Electronics
= =1 .-
g 10 =)
Z E B Z
8 ; 5
& : &
2 02H..... S o B ] w L =]
A 10 '____,' s ,@i‘ 9 g R L o ool 0 Y4 /A
.? : "..., .......... B n’ A ("R P
J ‘“\___/ LN T N A
107} T
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Gravitational Tide Recovery: Simulation Configuration

* Gravity science filter performance assessed via numerical simulation
* 4-hour truth trajectory numerically integrated for each flyby (+ 2 hours about periapsis)

* Point mass gravity (Sun, planets, other Jovian moons), 20x20 Europa static gravity field +
gravitational tide (k,, = k,; = k,, = 0.2)
X-band one-way uplink Doppler tracking data generated from truth trajectory

* LGAs on each s/c face = continuous tracking data available
* Measurements degraded with white phase noise based on flyby-dependent Doppler noise model

Filter nominal initial conditions perturbed by a priori errors on all estimated states
Sequential UD Kalman filter configuration:

. Estimated Parameter Parameter Type A Priori Uncertainty
Unique to
each flyby \ Position (EME2000) Local 10 km
N Velocity (EME2000) Local 1 cm/sec
_ RTN accelerations Local 5e-12 km/sec? (8 hr stochastic batches)
B Europa p Global 320 km®/sec?
Europa koo, kay, koo Global 0.3
Universal Europa 20x20 spherical harmonic coefficients: n =2 Global o = 10000 * (2?55) (@)
parameters ¢
Europa 20x20 spherical harmonic coefficients: n > 2 Global o= (%‘Zﬁ) (R%:‘“)
9
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Gravitational Tide Recovery: Stitching Flyby Solutions Together

Filter nominal initial conditions defined via truth values + Gaussian random errors (10)

* Local parameters: a priori errors injected on each flyby

Global parameters: a priori errors injected on first flyby only, with filter solutions from flyby N
passed forward to initialize flyby N+1 nominal states

Love number error injection constrained such that filter nominal Love numbers > 0

* A priori covariance definition reflects feed-forward of global parameter solutions
* Flyby 1 a priori covariance initialized as diagonal matrix with nominal 1o values

After first flyby, a priori global covariance is initialized as the previous flyby’s covariance solution

* A priori local covariance always reinitialized as uncorrelated nominal values

Flyby N solution covariance: P(N) = [P(]I\D]gN)locaz P!jDN(N!l ) 1/ alol l]
local / global global

D p oca 6
Flyby N+1 a priori covariance: P(N +1)y = [ 0[%,] ! ITD(]\/L)]I —
globa
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Gravitational Tide Recovery: Initial Results

* Initial simulations injected a priori local errors at 0%, 1%, 10%, and 100% of 1o levels
* Global state errors injected at 100% of 1o level

* Filter performs well when little to no local errors injected, but errors deviate outside formal
uncertainty bounds as a priori errors are increased =¥ filter linearization issues

k22 Error & 3—o Uncertainty
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Statistical Assessment of Linearization Conditions

* Randomization of local state initial conditions utilized to develop constraints such that
filter’s linearization assumptions are not violated

* 100+ randomized realizations generated = 3.7 % of solution errors outside 3o bounds
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Statistical Assessment of B-Plane Target Errors

Mapping each realization to close approach B-plane reveals conditions which will drive filter’s
linearization assumptions to be violated

Flyby 2 is first very low altitude Europa encounter (100 km) =» coupling of large gravity a priori
uncertainties & measurement sensitivity can push filter solution outside of linear region
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Approach Orbit Determination: B-Plane Targeting Constraint

* Statistically-derived B-plane constraints may be satisfied with additional pre-flyby

tracking
* Process tracking data preceding flyby period to estimate corrections to the local
states at the gravity science filter’s reference epoch

* No additional s/c attitude constraints given LGA (hemispherical FOV)

* Parametrically determine required 14 . . . T
approach tracking arc to meet Flyby 2 All B-plane BT
B-plane constraints 2 l:nge{taln’fty o |-+ Time to Periapsis
constraints satistie
* Process tracking data up to 2 g 10 with at least 12 hours o
£ _
hours before close approach B g of approach tracking | — /]
(gravity science reference epoch) ?? s
* Map formal state uncertainty at A M 7 N
data cut off (DCO) to close il . >
approach B-plane I
* Compare mapped uncertainties T
against statically-determined B- s S S s S B S S S B
-13 -12 -11 -10 -9 -8 =7 -6 -5 -4 -3
Hours of Approach OD

plane requirements

R . : : : 14
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Approach Orbit Determination: Solution for 12 Hours Pre-Flyby Tracking

50+ realizations generated to assess gravitational tide estimation with the addition of 12 hours of pre-
flyby approach OD tracking

All initial conditions perturbed at the 1-0 level (local & global states)
* State errors injected at approach orbit determination filter’s reference epoch

Results demonstrate that the approach orbit determination successfully constrains nominal trajectory
to within filter’s linear region
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Conclusions

* Explored the feasibility of using LGAs and DSAC for deep space uplink-only open-loop
Doppler tracking
* LGAs provide sufficient gain across a nearly hemispherical FOV for Jovian tour

* Doppler tracking via LGAs imposes no attitude constraints on spacecraft

* DSAC provides onboard frequency accuracy, stability performance necessary to realize
high-quality uplink-only Doppler data

* Numerical simulation of Europa flyby gravitational tide estimation revealed filter
linearization issues tied to E2 B-plane targeting performance

* 12+ hours of approach OD tracking provides a solution to maintain filter linearization
assumptions and produce a gravity solution that is accurately represented by formal
uncertainty bounds

* DSAC+LGA tracking configuration satisfies gravity science requirement in first15 flybys, with 80%
margin on the final solution

R . : : : 16
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Backup Slides: Link Budget Equations

* Effective isotropically radiated power:
FEIRP = P;,; + Gm + ng + Lpoint,m

® Space loss:
( A )2
s A7 R

* Spacecraft received power:

C = FEIRP + Ls+ Lq + Lypol + L(®)point.r + Gr + Lekt

* Receiver noise spectral density:

Ny = kT,

18
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Backup Slides: B-Plane Description

* “Derivation of the B-plane (Body Plane) and it’s Associated Parameters”, Moriba Jah:
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2
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Backup Slides: Approach Orbit Determination Implementation

1

o Approach OD Filter
Local errors injected per-flyby ~——1  Process 12 hrs of approach tracking
Global errors injected on Flyby 1 Estimate corrections to local states

Feed forward local state solution

A 4

Gravity Science Filter
Process 4 hr flyby pass

Estimate corrections to local & global states

Flyby loop
A 4
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