

American Institute of Aeronautics and Astronautics

1

Ontology and Modeling Patterns for State-Based Behavior
Representation

Jean-Francois Castet1, Matthew L. Rozek2, Michel D. Ingham3, Nicolas F. Rouquette4, Seung H. Chung5, Aleksandr
A. Kerzhner6, Kenneth M. Donahue7, J. Steven Jenkins8, David A. Wagner9, Daniel L. Dvorak10, Robert Karban11

Jet Propulsion Laboratory – California Institute of Technology, Pasadena, CA

This paper provides an approach to capture state-based behavior of elements, that is, the
specification of their state evolution in time, and the interactions amongst them. Elements
can be components (e.g., sensors, actuators) or environments, and are characterized by state
variables that vary with time. The behaviors of these elements, as well as interactions among
them are represented through constraints on state variables. This paper discusses the
concepts and relationships introduced in this behavior ontology, and the modeling patterns
associated with it. Two example cases are provided to illustrate their usage, as well as to
demonstrate the flexibility and scalability of the behavior ontology: a simple flashlight
electrical model and a more complex spacecraft model involving instruments, power and
data behaviors. Finally, an implementation in a SysML profile is provided.

I. Introduction
VER the past few years, the Jet Propulsion Laboratory (JPL) has been developing and implementing a model-
driven systems engineering process, known generally in industry and academia as Model-Based Systems

Engineering (MBSE). To support this process, a number of tools and infrastructure elements are currently in
development under the JPL’s Integrated Model-Centric Engineering (IMCE) initiative1. One of these infrastructure
elements is a series of ontologies2 that support standard modeling for JPL space missions and other projects. As a
subset of these ontologies, we present in this paper a novel ontology that enables a consistent means to formally
describe and specify state-based behavior of systems, as well as associated modeling patterns that capture its usage.
In our ontological representation, system state is captured through the use of state variables, i.e. key time-varying
properties that represent features of the system necessary to describe its behavior and perform various engineering
analyses. For example, component position and velocity are state variables usually found in the mechanical domain,
and component voltage and current are state variables usually found in the electrical domain. State-based behavior
of a system is then asserted to be the set of constraints on these state variables, constraints that define how the
dynamic state of the system can evolve in time (the term “behavior” refers to “state-based behavior” in the
remainder of this paper).

The development of the behavior ontology was motivated by the difficulty of maintaining a consistent behavior
specification within the existing systems engineering process. This made it problematic for engineers to
systematically evaluate interactions between behaviors in various elements of the system, and how behaviors of
individual elements affect the system as a whole. In addition, it was possible to introduce discrepancies between
specified behavior (in the design phase) and its implementation due to a lack of common vocabulary between the
engineers involved in each phase. These discrepancies could result in unexpected or even hazardous situations

1 Systems Engineer, Autonomy and Fault Protection Group, 4800 Oak Grove Drive, Pasadena, CA 91109, M/S 321-560.
2 Systems Engineer, Flight System Systems Engineering Group, 4800 Oak Grove Drive, Pasadena, CA 91109, M/S 301-490.
3 Technical Group Supervisor, System Architectures and Behaviors Group, 4800 Oak Grove Drive, Pasadena, CA 91109, M/S 301-490, AIAA
Associate Fellow.
4 Principal Computer Scientist, System Architectures and Behaviors Group, 4800 Oak Grove Drive, Pasadena, CA 91109, M/S 301-490.
5 Technical Group Supervisor, Modeling and Verification Group, 4800 Oak Grove Drive, Pasadena, CA 91109, M/S 301-270, and AIAA Senior
Member.
6 Software Systems Engineer, System Architectures and Behaviors Group, 4800 Oak Grove Drive, Pasadena, CA 91109, M/S 321-560.
7 Software Systems Engineer, System Architectures and Behaviors Group, 4800 Oak Grove Drive, Pasadena, CA 91109, M/S 321-560.
8 Principal Engineer, Engineering Development Office, 4800 Oak Grove Drive, Pasadena, CA 91109, M/S 301-237.
9 System Architect, System Architectures and Behaviors Group, 4800 Oak Grove Drive, Pasadena, CA 91109, M/S 301-490, AIAA Member.
10 Principal Engineer, Engineering Development Office, 4800 Oak Grove Drive, Pasadena, CA 91109, M/S 301-237.
11 Senior Systems Architect, System Architectures and Behaviors Group, 4800 Oak Grove Drive, Pasadena, CA 91109, M/S 301-490.

O

American Institute of Aeronautics and Astronautics

2

occurring during operation of the system. Using a common behavioral semantic allows for improving
communication in a collaborative environment – hence reducing the associated risks mentioned above –, for
performing efficient design trades and optimization, and for performing formal querying, verification and validation
of the behavioral model using powerful reasoning engines (e.g., SPARQL3). In addition, it increases productivity by
allowing for re-use of model elements and behavior patterns from project to project. Finally, a common vocabulary
allows for the exchange of behavior information between different tools or languages.

As a basis for this work, technical literature related to behavior modeling was investigated. This included
reviews of function modeling4, other work on behavioral descriptions of systems5,6, existing modeling language
paradigms7, and previous work conducted at JPL, such as behavior engineering8 approaches, the State-Analysis
methodology9,10 and the Timeline representation (with focus on operations and scenario modeling)11. While this
body of work has strongly influenced the scope, definition, and elaboration of this behavior ontology, it did not
provide us with modeling languages that have either the breadth or the depth to capture the semantics of behavior to
a desired level of specification.

For example, modeling languages such as the Object Management Group (OMG) UML12/SysML13 provide
semantics for capturing only a subset of behaviors, and do not integrate them in their base form without further
extension5. Another standard modeling language, Modelica14 (with large offering of open-source and commercial
solvers), captures flow-based multi-domain physics models, and supports differential algebraic equations (i.e.
ordinary differential equations with algebraic constraints) with both continuous and discrete variables. One of the
strengths of Modelica is that the models can be defined using composable and reusable building blocks. On the other
hand, there are a number of domains that Modelica is not designed to model, for example logical existential or
universal assertions. Also, the composability in Modelica is focused on creating binary connections between pre-
defined interfaces using Kirchhoff semantics15. Although this is well suited for many physical systems, it can also
lead to complex models. The same effect applies to the behavioral approach proposed by Willems6. This is
illustrated in section III.B, and the behavior pattern proposed in this work aims to offer flexible behavioral
representations to the modeler. Previous efforts have attempted to integrate SysML and Modelica16; SysML would
contain systems engineering knowledge such as requirements and test plans and Modelica would contain behavioral
equations. These previous approaches have developed a Modelica concrete syntax for SysML, hence restricting the
behavior equations to those captured by Modelica. In the approach in this paper, a goal is to provide a flexible
representation that can then be transformed into any number of languages for analysis (for example Mathematica17,
Maple18, Modelica, or JPL tools such as APGEN19), and save users from learning multiple analysis languages.

Finally, State Analysis9,10 provides a methodology for modeling behavior of a system and using these models to
specify the control design and operations for this system, but does not impose any particular modeling formalism.
As such, our work developing the behavior ontology is complementary to the State Analysis methodology, and can
be used to capture the results of applying this methodology.

This paper describes several features of the behavior ontology, such as a carefully designed relationship between
behavior specification and structural definition, allowing for flexible (and potentially multiple) characterizations to
be applied to the same structural elements based on varying degrees of fidelity (analysis usage or customer
presentation).

A note regarding the scope of this paper and its implementation: while there is a difference between the actual
behavior of a system and modeled behavior (which is an engineering approximation of the actual behavior), only
modeled behavior will be discussed for the purpose of this paper.

The remainder of this paper is organized as follows: Section II describes the key concepts and relationships of
the proposed behavior ontology. Section III presents two example applications to illustrate the behavioral concepts
and demonstrate the flexibility and scalability of the ontology. Finally, Section IV discusses a SysML
implementation of the behavior ontology.

II. Behavior ontology

A. Conventions
Before describing the ontology, a brief discussion about the conventions used in the figures of this paper to

present concepts and relationships is provided. Figure 1 is a notional figure in the style of subsequent figures of the
paper and is used to introduce conventions.

American Institute of Aeronautics and Astronautics

11

The representation shown in Figure 13 is less compact than the representation in Figure 12, but it is important to
note that it still conforms to the behavior ontology introduced in this paper. Here, the Interactions are captured in a
nodal analysis point-of-view, focusing on the physical electrical connections between components. Three Interaction
blocks are now necessary to capture the series circuit: they represent the conservation of the current across the nodes
and the equality of the electrical potentials at the nodes (this is similar to the “connect” function in Modelica14). As a
consequence, the number of StateVariables necessary close to double in this model; the advantage is that this
provides for modularity, such that the components and behaviors can be stored in and drawn from a library, without
having to know in what circuits they will be used. ElementBehaviors were written to handle the new StateVariables,
and this model can of course be reduced to the model presented in the previous section.

As demonstrated with the flashlight models, the behavior ontology introduced in this paper was designed to
allow flexibility in how modelers capture behavior specification.

C. Spacecraft Instruments, Power and Data Subsystems
The example presented in this section demonstrates the capability of the behavior ontology to handle more

complex behaviors and interactions. It presents the behavior model of two spacecraft instruments (a camera and a
magnetometer) and two related spacecraft subsystems: the power subsystem and the data subsystem (command and
data handling, and telecommunications). The model is presented in Figure 14 and described below.

In this model, seven components are considered, and shown in green in Figure 14:
• a magnetometer instrument,
• a camera instrument,
• a Multi-Mission Radioisotope Thermal Generator (MMRTG), acting as the primary electric power

source,
• a battery, used when power demand exceeds the capability of the MMRTG,
• a power manager that acts as the medium between the MMRTG power source, the battery, and the power

loads (instruments, C&DH and Telecom subsystems),
• a Command and Data Handling (C&DH) subsystem that manages the storage of the data generated by the

two instruments,
• a Telecom subsystem that transmits the data stored by the C&DH.

In this example, the behaviors of some components capture more complex dynamics than in the flashlight

example (such as for the battery model). The ElementBehaviors of the two instruments are briefly described below:

• Magnetometer: the magnetometer behavior captures four states of the magnetometer: OFF, SURVIVAL
or ON at a low sampling rate, and ON at a high sampling rate (the survival state indicates that the
survival heaters of the magnetometer are turned on). For each state, an estimated power load has been
captured as a characterization of the magnetometer component (i.e., the magnetometer consumes 0 W
when turned off, and 5 W when turned on). A similar approach for data generation has been taken: for
each state, an associated generated data rate has been determined. For example, when on, the
magnetometer data output rate is a function of the number of sensors, the sampling rate associated with
the current sampling rate mode (low or high) and the sampling size. The transitions between states have
been captured as commands, but have not been elaborated further.

• Camera: the camera behavior captures three states of the camera: OFF, SURVIVAL or TAKING
PICTURES (the survival state indicates that the survival heaters of the camera are turned on; the taking
pictures state indicates that data is being captured and/or transmitted out of the camera). For each state,
an estimated power load has been captured (i.e., the camera consumes 0 W when turned off, and 15 W
when actively taking pictures). A similar approach was taken for the data generation capture: for each
state, a data output rate has been determined. In particular, a choice was made to model the behavior of
the camera using a data rate based on a data volume determined by the number of pictures taken. This is
particularly of interest for transitioning out of the taking pictures state: this transition is based on the
time necessary to transmit the generated data volume based on the given data rate output. Other models
for the camera can be envisioned.

American Institute of Aeronautics and Astronautics

13

The power aspect of this system is described as follows:
• The C&DH is assumed to be always on and consuming 20 W of power. More detailed power load

behavior could be supported by the behavior pattern.
• The Telecom has two power states: transmitting or not transmitting with associated power loads.
• The MMRTG power behavior is modeled using an exponentially decaying model. It produces 125 W of

power at the beginning of life and 100 W after 14 years. This model is based on published work by
Misra23.

• The power manager behavior captures the power margin and the internal losses on top of the total power
load of the spacecraft. The net power is then captured by subtracting the total load to the available
power.

• The battery behavior model is more complex than the one presented in the flashlight, as it takes into
consideration the state of charge of the battery, and its influence on the voltage and current of the
battery. The battery itself is idealized with zero internal resistance, resulting in the linear variation of
voltage with state of charge24. The battery can be charging or discharging based on the battery bus
power sign.

The information above captured the ElementBehavior of each of the components. The following describes how
these components interact with one another from a power perspective. Three interactions are modeled:

• The interaction between the MMRTG and the power manager: this interaction indicates that the power
produced by the MMRTG is equal to the source power available to the power manager.

• The interaction between the power manager and the four power loads (Telecom, C&DH, camera and
magnetometer): the total power load is the sum of each of the power load of the four components.

• The interaction between the power manager and the battery: the net power (available power minus total
load) is equal to the power that the battery experiences: if the net power is negative (the MMRTG is not
providing enough power for the load current demand), then the battery provides that extra power
(within the limits of its capacity) and is thus discharging; if the net power is positive, then the battery
uses this extra power to recharge if necessary.

Finally, the data aspect of this system is described as follows:

• The C&DH commits to memory the data it receives and removes from memory the data it outputs for
transmission. This model does not capture the practice of keeping data in storage until the ground has
acknowledged reception.

• As described above, the Telecom has two states: a non-transmitting state, and a transmitting one with a
fixed data output rate.

The information above is captured in the ElementBehavior of each of the components. The following describes how
these components interact with one another from a data perspective. Two interactions are modeled:

• The interaction between the C&DH and the two instruments: the data the C&DH receives is the sum of
the data generated by the two instruments.

• The interaction between the C&DH and the Telecom: the data the Telecom transmits is the data the
C&DH outputs.

One of the benefits of constructing such models is the ability to generate Trajectories for StateVariables given

some Scenario. This also allows modelers to conduct trade studies and optimizations (for example sizing the battery
or on-board memory storage) by modifying the model or Scenario and observing the resulting effect in the
Trajectories. An example Scenario is shown in Figure 15: the camera and the magnetometer are turned on and back
to survival mode according to a specified schedule, and the Telecom transmitting all of the data generated. The
scenario is captured using a goal network representation form State Analysis: the green rectangles represent
constraints on the StateVariables of the relevant components, the grey circles are timepoints (dotted lines indicates
timepoints that occur at the same time), and the arcs between timepoints indicate duration intervals or conditions.
The reader is referred to Ingham et al.9 for more details on this representation.

Assuming some values for all Parameters of the model, the Trajectories of several StateVariables can be
determined by solving the constraint equations of the ElementBehavior and InteractionBehavior blocks. The
StateVariables of interest in this analysis are the power of the MMRTG, the total load with margin, the individual
power loads, the battery state of charge, and the total memory used by the C&DH. The results of the analysis are
shown in Figure 16.

American Institute of Aeronautics and Astronautics

15

Table 1. SysML embedding of behavior ontology concepts and relationships.

Concept SysML embedding
BehavingElement Abstract concept, concrete classes embedded instead
Codomain Value Property
ElementBehavior Component ConstraintBlock or StateMachine
InteractionBehavior Component ConstraintBlock
Interaction Component Block
Parameter Value property
State State
StateVariable Value property
TimeDomain Value property
Relationship SysML embedding
analysis:characterizes Dependency
constrains No direct embedding – see examples
hasCodomain No direct embedding, using Value Type (see Figure 17)
hasTimeDomain No direct embedding, using Value Type (see Figure 17)
isDescribedBy Composite association
isElementOf No direct embedding – see examples
joins Shared association
uses No direct embedding – see examples

BehavingElement is an abstract concept that is realized using concrete classes, such as mission:Component or

mission:Environment from the IMCE mission ontology. Both of these classes are embedded in SysML as
Components.

In addition to the concepts listed in Table 1, value types have been used to handle the definition of TimeDomain
and Codomain of StateVariables: specifically, two value type stereotypes have been created:

• StateVariableValueType: this value type is used to type StateVariables and possesses two value
properties: one for the TimeDomain and one for the Codomain;

• ParameterValueType: this value type is used to type Parameters.
Both these specialized value types takes advantage of the ISO 80000 Model Library from OMG13, and examples of
StateVariables from the flashlight example are shown in Figure 17. Using the flashlight example, the StateVariable
CurrentThroughBattery is typed by the StateVariableValueType “currentSV” shown in Figure 17: this value type
has two properties: (i) a domain (representing the TimeDomain of the StateVariable) typed by the value type “time”
from the ISO library (associated with the time quantity kind); and (ii) a codomain (representing the Codomain of the
StateVariable) typed by the value type “electric current” from the ISO library (associated with the electric current
quantity kind). More specialized and customized value types and quantity kinds can also be created as necessary.
Also, the handling of discrete StateVariables is described later in this paper.

Finally, a word on the SysML implementation of the optional InteractionTerminal: an InteractionTerminal is
embedded as InterfaceBlock, and the “presents” relationship is embedded as a full port, owned by components
grouping properties and typed by the InterfaceBlock. The properties are then exposed by binding them (using
binding connectors) to associated UML ports nested in the full port. InteractionTerminals are not used in the
examples presented in the remainder of this paper.

American Institute of Aeronautics and Astronautics

16

Figure 17. Value type example for three StateVariables from the flashlight example: current, voltage, and
luminous flux.

Figure 18 shows a SysML model of the properties defined for the battery from the flashlight example, as well as
the associated ElementBehavior. This behavior was described conceptually in Figure 12.

American Institute of Aeronautics and Astronautics

17

Figure 18. ElementBehavior model in SysML for the battery in the flashlight example.

As discussed earlier, the use of IMCE characterizations results in the separation of the properties used in this

behavior model from the battery component itself. As a consequence, the StateVariables and Parameters are grouped
into Component Blocks that characterize the component. The meaning of the grouping is left to the modeler: in
Figure 18, all properties of interest are gathered into one characterization, while in Figure 20, the properties are split
between StateVariables and Parameters. Note that the StateVariables are typed by the value types shown in Figure
17.

Regarding the embedding of ElementBehavior, Figure 18 shows the presence of additional elements.
For example, the Battery ElementBehaviorCharacterization has been added in SysML to act as an grouping
mechanism of several ConstraintBlocks (stereotyped by «behavior:ElementBehavior»). This mechanism is used for
different reasons, such as: (i) for example in Figure 19 to indicate that the OPEN constraint and the CLOSE
constraint are part of the same ElementBehavior specification; (ii) to define in the same model alternative
characterizations for a given BehavingElement: e.g., one Battery ElementBehaviorCharacterization can be used to
represent a battery model with constant voltage output, while another ElementBehaviorCharacterization of the
Battery could be used to define a more realistic model with usage-dependent voltage level; or (iii) to separate
different types of behavior of the same BehavingElement: e.g., all the constraints related to its power aspect would
be grouped with one ElementBehaviorCharacterization, and all the constraints related to its data aspect would be
grouped with another one.
In addition, constraint parameters are used in the ConstraintBlocks (such as “eb_batteryVoltage”) in an effort to
make the ConstraintBlocks reusable. One can envision the creation of library of behavior specifications (such as
Ohm’s law in Figure 20), and the constraint parameters are then bound using binding connectors to the appropriate
properties of the BehavingElement in the parametric diagram of the ElementBehavior Characterization block,
referencing the appropriate property characterization. In Figure 18,, the Battery ElementBehavior Characterization
references the Battery Properties, and the constraint parameters eb_batteryVoltage and eb_batteryNominalVoltage
are bound respectively to the StateVariable VoltageAcrossBattery and the Parameter NominalVoltage.

American Institute of Aeronautics and Astronautics

18

Finally, the ConstraintBlock “Battery Simple Model” is constrained by a constraint that represents the mathematical
expression equating the battery voltage to the battery nominal voltage. It is currently embedded in SysML using
expression trees, operations and Element Values, but the specification of the constraint language is out of the
purview of the behavior ontology and is part of an agreement amongst modelers.

Figure 19 shows the SysML model of the switch ElementBehavior, and it introduces State Machines and the

handling of discrete StateVariables.

Figure 19. ElementBehavior model in SysML for the switch in the flashlight example.

As described in Figure 12, the behavior of the switch is captured using a state machine formalism, and is shown
in Figure 19 using UML State Machines. Note that the value type of the StateVariable “SwitchPosition” is shown in
the top right corner of Figure 19, and indicates that the Codomain of this particular discrete StateVariable is typed
by the State Machine “Switch Position STM”, represented as one of the ElementBehaviors of the switch component
in Figure 19. The flexibility of SysML to use State Machines as classifiers allows us to avoid the duplication of the
specification of the Codomain of the discrete StateVariable with the specification of the relevant behavior using a
State Machine. In this example, the State Machine serves both roles: the states of the State Machine enumerate the
States (OPEN and CLOSED , elements of the Codomain of the StateVariable SwitchPosition), and the State
Machine is also used to specify the ElementBehavior constraints associated with each state. For example, if the
switch is open, then the current across the switch is zero. This constraint is captured by the ConstraintBlock named
“SP_OPEN Constraint”, and is linked to the OPEN state in the state machine by a dependency stereotyped by
«analysis:characterizes», as indicated by the notes and the relationMap diagram in Figure 19. This is a convention to
indicate the domain of applicability of the constraint: the constraint is applicable only for the states it characterizes
(using the dependency). Alternatively, if a constraint does not characterize any state in the presence of a state
machine, then it is assumed that the constraint applies to all states of the state machine. Note that this convention
could also be handled by using conditional logic statements instead in the Constraint Blocks:

IF (SwitchPosition = OPEN)
 CurrentThroughSwitch = 0

ELSEIF (SwitchPosition = CLOSED)
 VoltageAcrossSwitch = 0

ENDIF

American Institute of Aeronautics and Astronautics

19

Figure 20 shows the ElementBehavior model of the lamp, capturing the Ohmic behavior of the lamp and the
light generation behavior. These behaviors were described conceptually in Figure 10.

Figure 20. ElementBehavior model in SysML for the lamp in the flashlight example.

Finally, the interaction between the three components from a mesh analysis’s perspective is shown in Figure 21,
and was described conceptually in Figure 11.

American Institute of Aeronautics and Astronautics

20

Figure 21. Interaction model in SysML for the flashlight example using a mesh analysis.

The embedding of the InteractionBehavior is captured similarly as for the ElementBehavior, using
ConstraintBlocks, constraint parameters, constraints, and binding connectors. Note that in the ontology, the
Interaction joins BehavingElements; however in our SysML implementation, due to the separation of the
BehavingElement and the property characterizations, the «behavior:joins» shared associations relate the Interaction
to the property groupings directly. Also the “isDescribedBy” relationship (inverse of “describes” relationship
between an InteractionBehavior and Interaction) is captured using a composite association (i.e., a “black diamond”
arrow).

V. Conclusion
The behavior ontology presented in this paper provides a consistent behavior specification within the existing

systems engineering process, and improves upon current best practices to allow for efficient design trades and
optimization, re-use of model elements from project to project, more rigorous and formal behavioral analyses, and
exchange of behavior information between different tools or languages.

The behavior ontology provides an approach to capture the state-based behavior of elements and the interactions
amongst them. These elements are characterized by state variables that vary with time, and the dynamic evolution of
the state of the system is represented using constraints on these state variables. This paper discussed the various
concepts and relationships introduced to capture behavioral specifications: the properties (StateVariables and
Parameters) necessary to characterize BehavingElements, ElementBehaviors to capture the internal behavior of
these elements, and Interactions and InteractionBehaviors to capture the dynamics among them. In addition,
Scenarios and Trajectories of StateVariables were introduced to capture a driving mechanism for behavioral

American Institute of Aeronautics and Astronautics

21

analyses that consider the resulting evolution in time of StateVariables. Two examples were discussed in this paper:
(i) a simple flashlight electrical model to illustrate the concepts and relationships introduced by the ontology and
their flexible usage to the modeler; and (ii) a more complex spacecraft model involving instruments, power and data
behaviors to demonstrate the ability of the behavior ontology to handle real-world engineering problems. Finally, an
implementation in a SysML profile was provided to enable engineers to use the behavior ontology in a compatible
fashion with related models already captured in SysML.

Wider-scale application of the behavior ontology to flight projects is currently under way at JPL, as is further
work on scenario specification. This will allow performance of end-to-end behavioral analyses and identification of
areas for further development of the approach proposed in this paper. Another area of investigation is to extend the
behavior ontology to describe off-nominal behaviors and provide capabilities for fault management activities, such
as automatic generation of reliability artifacts (FMECA, fault trees) or fault coverage analyses.

Acknowledgments
The work described in this paper was performed at the Jet Propulsion Laboratory, California Institute of

Technology, under a contract with the National Aeronautics and Space Administration.
We wish to acknowledge Robert Rassmussen, John Day, Maddalena Jackson, Chris Delp, Elyse Fosse, Bjorn

Cole, Johannes Gross and Sandy Friedenthal for their participation in the maturation of the behavior ontology and
the SysML embedding.

References

1Bayer, T. J., Bennett, M., Delp, C. L., Dvorak, D., Jenkins, J. S., and Mandutianu, S., “Update – Concept of Operations for
Integrated Model-Centric Engineering at JPL,” IEEE Aerospace Conference, Paper AC1122, March 2011. doi:
10.1109/AERO.2011.5747538.

2Jenkins, J. S., and Rouquette, N. F., “Semantically-Rigorous Systems Engineering Modeling using SysML and OWL,” 5th
International Workshop on Systems & Concurrent Engineering for Space Applications, Lisbon, Portugal, October 17–19, 2012.

3W3C, SPARQL 1.1 Query Language, 21 March 2013, http://www.w3.org/TR/sparql11-query [retrieved 11/18/2014].
4Erden, M. S., et al., “A Review of Function Modeling: Approaches and Applications,” Artificial Intelligence for Engineering

Design, Analysis and Manufacturing, Vol. 22, pp. 147–169, 2008.
5Bock, C., and Odell, J., “Ontological Behavior Modeling,” Journal of Object Technology, Vol. 10, 2011.
6Willems, J. C., “The Behavioral Approach to Open and Interconnected Systems – Modeling by Tearing, Zooming, and

Linking,” IEEE Control Systems Magazine, December 2007.
7Mattsson, S. E., and Elmqvist, H., “Modelica – An International Effort to Design the Next Generation Modeling Language,”

7th IFAC Symposium on Computer Aided Control Systems Design, CACSD ‘97, Gent, Belgium, April 28–30 1997.
8Ingham, M. D., et al., “A Model-Based Approach to Engineering Behavior of Complex Aerospace Systems,”

Infotech@Aerospace 2012 Conference, Santa Ana, CA, June 19–21 2012.
9Ingham, M. D., et al., “Engineering Complex Embedded Systems with State Analysis and the Mission Data System” Journal

of Aerospace Computing, Information, and Communication, Vol. 2, 2005.
10Wagner, D. A., et al., “An Ontology for State Analysis: Formalizing the Mapping to SysML,” IEEE Aerospace Conference,

March 3–10, 2012.
11Chung, S. H., and Bindschadler, D. L., “Timeline-Based Mission Operations Architecture: An Overview,” Proceedings of

the 12th International Conference on Space Operations (SpaceOps 2012), Stockholm, Sweden, June 11–15 2012
12Object Management Group, Unified Modeling Language (UML), Version 2.5, http://www.omg.org/spec/UML/2.5/Beta2

[retrieved 11/18/2014].
13Object Management Group, Systems Modeling Language (SysML), Version 1.3, http://www.omg.org/spec/SysML/1.3

[retrieved 11/18/2014].
14 Modelica Association, Modelica Language Specification, Version 3.3 Rev. 1, July 11, 2014,

https://modelica.org/documents/ModelicaSpec33Revision1.pdf [retrieved 11/18/2014].
15Paredis, C., et al., “An Overview of the SysML-Modelica Transformation Specification,” INCOSE International

Symposium, 2010.
16Johnson, T., Kerzhner, A., Paredis, C. J., and Burkhart, R., “Integrating Models and Simulations of Continuous Dynamics

into SysML,” Journal of Computing and Information Science in Engineering, Vol. 12, No. 1, 2012.
17Wolfram Research, Mathematica, http://www.wolfram.com/mathematica [retrieved 11/18/2014]

American Institute of Aeronautics and Astronautics

22

18Maplesoft, Maple, http://www.maplesoft.com/products/maple [retrieved 11/18/2014]
19Wissler, S., Maldague, P., Rocca, J. and Seybold, C., “Deep Impact Sequence Planning Using Multi-Mission Adaptable

Planning Tools with Integrated Spacecraft Models,” SpaceOps 2006 Conference, Rome, Italy, June 19–23, 2006.
20International Organization for Standardization, Quantity and Units – Part 1: General, 2009.
21Characterization Pattern Description, JPL internal document URS 247599, available upon request.
22Bourbaki, N., Elements de Mathematique,Theorie des Ensembles, Hermann & Cie, 1954.
23Misra, A. K., "Overview of NASA Program on Development of Radioisotope Power Systems with High Specific Power,"

4th International Energy Conversion Engineering Conference and Exhibit (IECEC), San Diego, CA, 2006.
24Pang, S., Farrell, J., Du, J., and Barth, M., “Battery State-of-Charge Estimation,” in Proceedings of the American Control

Conference, Vol. 2, pp. 1644–1649, June 2001.
25Friedenthal, S., Moore, A., and Steiner, R., A Practical Guide to SysML: The Systems Modeling Language, 2nd ed.,

Elsevier, 2012.

