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This paper provides an approach to capture state-based behavior of elements, that is, the
specification of their state evolution in time, and the interactions amongst them. Elements
can be components (e.g., sensors, actuators) or environments, and are characterized by state
variables that vary with time. The behaviors of these elements, as well as interactions among
them are represented through constraints on state variables. This paper discusses the
concepts and relationships introduced in this behavior ontology, and the modeling patterns
associated with it. Two example cases are provided to illustrate their usage, as well as to
demonstrate the flexibility and scalability of the behavior ontology: a simple flashlight
electrical model and a more complex spacecraft model involving instruments, power and
data behaviors. Finally, an implementation in a SysML profile is provided.

I. Introduction

VER the past few years, the Jet Propulsion Laboratory (JPL) has been developing and implementing a model-

driven systems engineering process, known generally in industry and academia as Model-Based Systems
Engineering (MBSE). To support this process, a number of tools and infrastructure elements are currently in
development under the JPL’s Integrated Model-Centric Engineering (IMCE) initiative'. One of these infrastructure
elements is a series of ontologies” that support standard modeling for JPL space missions and other projects. As a
subset of these ontologies, we present in this paper a novel ontology that enables a consistent means to formally
describe and specify state-based behavior of systems, as well as associated modeling patterns that capture its usage.
In our ontological representation, system state is captured through the use of state variables, i.e. key time-varying
properties that represent features of the system necessary to describe its behavior and perform various engineering
analyses. For example, component position and velocity are state variables usually found in the mechanical domain,
and component voltage and current are state variables usually found in the electrical domain. State-based behavior
of a system is then asserted to be the set of constraints on these state variables, constraints that define how the
dynamic state of the system can evolve in time (the term “behavior” refers to “state-based behavior” in the
remainder of this paper).

The development of the behavior ontology was motivated by the difficulty of maintaining a consistent behavior
specification within the existing systems engineering process. This made it problematic for engineers to
systematically evaluate interactions between behaviors in various elements of the system, and how behaviors of
individual elements affect the system as a whole. In addition, it was possible to introduce discrepancies between
specified behavior (in the design phase) and its implementation due to a lack of common vocabulary between the
engineers involved in each phase. These discrepancies could result in unexpected or even hazardous situations
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occurring during operation of the system. Using a common behavioral semantic allows for improving
communication in a collaborative environment — hence reducing the associated risks mentioned above —, for
performing efficient design trades and optimization, and for performing formal querying, verification and validation
of the behavioral model using powerful reasoning engines (e.g., SPARQL?). In addition, it increases productivity by
allowing for re-use of model elements and behavior patterns from project to project. Finally, a common vocabulary
allows for the exchange of behavior information between different tools or languages.

As a basis for this work, technical literature related to behavior modeling was investigated. This included
reviews of function modeling’, other work on behavioral descriptions of systems™®, existing modeling language
paradigms’, and previous work conducted at JPL, such as behavior engineering® approaches, the State-Analysis
methodology’,'* and the Timeline representation (with focus on operations and scenario modeling)''. While this
body of work has strongly influenced the scope, definition, and elaboration of this behavior ontology, it did not
provide us with modeling languages that have either the breadth or the depth to capture the semantics of behavior to
a desired level of specification.

For example, modeling languages such as the Object Management Group (OMG) UML'*/SysML" provide
semantics for capturing only a subset of behaviors, and do not integrate them in their base form without further
extension’. Another standard modeling language, Modelica'* (with large offering of open-source and commercial
solvers), captures flow-based multi-domain physics models, and supports differential algebraic equations (i.e.
ordinary differential equations with algebraic constraints) with both continuous and discrete variables. One of the
strengths of Modelica is that the models can be defined using composable and reusable building blocks. On the other
hand, there are a number of domains that Modelica is not designed to model, for example logical existential or
universal assertions. Also, the composability in Modelica is focused on creating binary connections between pre-
defined interfaces using Kirchhoff semantics'’. Although this is well suited for many physical systems, it can also
lead to complex models. The same effect applies to the behavioral approach proposed by Willems®. This is
illustrated in section III.B, and the behavior pattern proposed in this work aims to offer flexible behavioral
representations to the modeler. Previous efforts have attempted to integrate SysML and Modelica'®; SysML would
contain systems engineering knowledge such as requirements and test plans and Modelica would contain behavioral
equations. These previous approaches have developed a Modelica concrete syntax for SysML, hence restricting the
behavior equations to those captured by Modelica. In the approach in this paper, a goal is to provide a flexible
representation that can then be transformed into any number of languages for analysis (for example Mathematica'’,
Maple'®, Modelica, or JPL tools such as APGEN'"), and save users from learning multiple analysis languages.

Finally, State Analysis”'* provides a methodology for modeling behavior of a system and using these models to
specify the control design and operations for this system, but does not impose any particular modeling formalism.
As such, our work developing the behavior ontology is complementary to the State Analysis methodology, and can
be used to capture the results of applying this methodology.

This paper describes several features of the behavior ontology, such as a carefully designed relationship between
behavior specification and structural definition, allowing for flexible (and potentially multiple) characterizations to
be applied to the same structural elements based on varying degrees of fidelity (analysis usage or customer
presentation).

A note regarding the scope of this paper and its implementation: while there is a difference between the actual
behavior of a system and modeled behavior (which is an engineering approximation of the actual behavior), only
modeled behavior will be discussed for the purpose of this paper.

The remainder of this paper is organized as follows: Section II describes the key concepts and relationships of
the proposed behavior ontology. Section III presents two example applications to illustrate the behavioral concepts
and demonstrate the flexibility and scalability of the ontology. Finally, Section IV discusses a SysML
implementation of the behavior ontology.

II. Behavior ontology

A. Conventions

Before describing the ontology, a brief discussion about the conventions used in the figures of this paper to
present concepts and relationships is provided. Figure 1 is a notional figure in the style of subsequent figures of the
paper and is used to introduce conventions.
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relationship r [0..7]

Y

Concept X Concept Y

[0..1] finverse of r

Figure 1. Diagram conventions for concepts, relationships and multiplicities.

Concepts are represented using rectangles; abstract concepts are written in italics. For example in Figure 1,
“Concept X” and “Concept Y” are concepts. In addition, “Concept X” is an abstract concept, i.e., concrete concepts
will implement it.

Relationships are represented using directed arrows, pointing from the source to the target of the relationship.
The relationship name is written next to the target of the relationship. For example in Figure 1, “#” is the relationship
from Concept X and Concept Y, X being the source of » and Y being the target of ». We also provide the inverse
relationship: it is written close to the source of r, and preceded by “/” to indicate its derived nature (it is not
independent from 7). For example in Figure 1, the inverse relationship of r relates Concept Y to Concept X.

Finally, we indicate the multiplicities associated with relationships between brackets: for example in Figure 1, a
Concept X instance (i.e., a realization of Concept X) can be related through the relationship » to zero to many
Concept Y instances. Conversely, a Concept Y instance can be related to at most one Concept X instance.

B. BehavingElement

The behavior ontology is centered around the concept of a BehavingElement, that is an element that exhibits a
behavior (inherent physics or intended specification). BehavingElements can be engineered components (physical or
logical entities of a system designed through an engineering process), environments (e.g., the radiation environment
around the Jovian moon Europa) or any element that may exhibit behavior, such as a team, a person, etc. As such,
BehavingElement is an abstract concept in this ontology, and is implemented by the classes of objects described
(examples of this implementation are shown in section II1I.A).

The ontology can be described in relation to BehavingElement through three distinct but related segments:
“Properties”, “Internal Behavior” (Intra-BehavingElement), and “External Behavior” (Inter-BehavingElements). We
also describe in general terms its relation with “Scenarios” and “Trajectories”. Examples of application of these
concepts are described in section III.

C. Properties of BehavingElements

Two types of properties of BehavingElements are defined as part of the behavior ontology: StateVariable and
Parameter.

A StateVariable is a variable that represents a particular quantity* or nominal property’ (as per ISO-80000-1°°) of
a BehavingElement that changes with time. Two important concepts are introduced to formally define a
StateVariable: a TimeDomain and a Codomain. A TimeDomain represents the set of possible times encompassed by
the StateVariable; a Codomain represents the set of possible States, i.e., values of the quantity represented by the
StateVariable. Using set theory representation, a StateVariable is then defined in Eq. (1) as the Cartesian product of
its TimeDomain X and its Codomain Y-

XxY={(x,y)‘xEXAyEY} M

TimeDomains and Codomains can both be either discrete or continuous. For example, the discrete StateVariable
representing the power status of a television (ON, OFF or STANDBY) for five times in a 20-minute time interval is
shown in Figure 2. The StateVariable then represents all possible combinations (pairs) of times and States from the
defined TimeDomain and Codomain.

In the case of a continuous StateVariable such as temperature shown in Figure 3, the TimeDomain (continuous time
interval of 350 seconds) and the Codomain (temperatures in a continuous interval between 10 and 20°C) cannot be
represented graphically as easily. The StateVariable is then the infinite set of possible pairs (time, State).

" “Property of a phenomenon, body, or substance, where the property has a magnitude that can be expressed by means of a
number and a reference.” E.g., voltage, current, temperature.
T “Property of a phenomenon, body, or substance, where the property has no magnitude.” E.g., color, switch position

3
American Institute of Aeronautics and Astronautics



Codomain
StateVariable
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TimeDomain and the Codomain
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Figure 2. Example of a discrete StateVariable: power status of a television.

Codomain
\ StateVariable
Cartesian product (product set) of the
TimeDomain and the Codomain
{T € R|10°C < T < 20°C} {(#.T) e R?|(0s < t < 3505) A (10°C < T < 20°C)}

( {t € Rj0s < t <350} )

Figure 3. Example of a continuous StateVariable: temperature.

A Parameter is a quantity or nominal property” of a BehavingElement that does not dynamically change in
time. Hence it does not have a TimeDomain (nor a Codomain). An example of a Parameter could be the resistance
of a resistor that obeys Ohm’s law.

Figure 4 shows the concepts and relationships related to properties. Parameters and StateVariables “characterize”
BehavingElements. The “analysis” namespace (or prefix) indicates that this relationship has been defined in another
IMCE ontology, named Analysis®. This relationship has been defined to indicate that the source of the relationship
describes the target of the relationship. The concept of characterization is an important aspect of the IMCE
ontological approach that allows engineers to “describe components in ways that are not intrinsic to the definition of
components but are necessary to work within their problem space.”*' Characterizations allow clear separation of the
structural definition of these components from their characteristics of interest for the engineer. The behavior
ontology takes advantage of this mechanism, as properties (Parameters and StateVariables) of a BehavingElement
can vary across engineering discipline domains, or even across behavioral model levels of detail. One set of
StateVariables might be of interest to one engineer, but not to another. This mechanism also handles different and/or
conflicting StateVariable definitions caused by differences in fidelity of modeled behavior, as properties are not part
of the intrinsic definition of the component.

Finally, a word on the usage of StateVariable versus Parameter. The specific selection of a Parameter or
StateVariable is left to the intent of the modeler: when s/he wants to capture the time dynamics of that quantity, then
a StateVariable is the logical choice; when the dynamical aspect in time of the quantity is of no interest to the
modeler, then a Parameter could be selected. However, nothing prevents the modeler from exclusively using
StateVariables, but that choice could be for example at the expense of complexity or computation, as it takes more
memory or more computation to store or resolve StateVariables (time history to resolve) compared to Parameters
(single value).
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BehavingElement

[0.1] t10.1)
analysis:characterizes analysis:characterizes
Ianalysis:\scn aramerizeclBy fan alyms: isCharacterized B‘,u'
[0.7] [0.7]

Parameter StateVariable

[0..1) [0..1)

fisTimeDomainOf fisCodomainOf
hasTimeDomain hasCodomain
[0..1] . [0..1]
Time i [0..1] isElementOf
. Codomain |« State
Domain /hasElement [0.."]

Figure 4. Properties concepts and relationships. Conventions on how to read this figure are provided in section
1I.A.

D. Internal Behavior

Internal behavior is described by the concept of ElementBehavior, i.e., a specification of how the dynamic state
of a BehavingElement is allowed to evolve in time. An ElementBehavior is conceptually intrinsic in nature.
However, this does not preclude ElementBehavior specifications from using external information (signals,
commands, etc.), or providing some to external elements. For example, in the case of a variable Ohmic resistor, both
Ohm’s law (voltage across the resistor is equal to the resistance times the current through it) and the calibration
relation between the knob position and the resistance value would be the ElementBehavior. This specification
accepts the knob position as a driver of the behavior, but both Ohm’s law and the calibration relationship are
independent of a specific value of the knob position.

An ElementBehavior is represented through constraints on StateVariables (with Parameters potentially appearing
in such constraints), such as mathematical expressions, state-machine formalisms, temporal-logic constraints, and
predicate logic statements. In this paper, examples of mathematical expressions and state machines are given, as
they were the most logical and compact representation of the ElementBehavior for these application cases. Note that
the definition of any behavior is only valid within a scope. For example, Ohm’s law would break if a massive
current were to be applied to the resistor (the resistor would blow instead). However, this paper does not generally
discuss the scope specification.

To summarize, an ElementBehavior characterizes a BehavingElement, constrains StateVariables (of that
BehavingElement) and uses Parameters. Figure 5 shows these concepts and their relationships.

BehavingElement
0.1 ! [0..1]
analysis:characterizes analysis:characterizes
[0..1]

analysis:characterizes

fanalysis:isCharacterizedBy fanalysis:isCharacterizedBy /analysis:isCharacterizedBy
* 0.." 0.."
[0.."] uses Element constrains [0.."] .
Parameter |« . N = StateVariable
/isUsedBy [0.."] Behavior [0.."] fisConstrainedBy

Figure 5. ElementBehavior concepts and relationships.
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E. External Behavior

This section presents the concepts necessary for describing behavioral interactions among BehavingElements:
Interaction and InteractionBehavior.

An Interaction is a link that joins at least two different BehavingElements in the context of their interaction. It
does not represent any physical or logical entity of the system: it is merely a connection point that defines a context
space where the StateVariables and Parameters of joined BehavingElements are allowed to affect one another
through the definitions of InteractionBehaviors. Interactions represent n-ary interactions among BehavingElements
(contrary to the “connect” in Modelica, or the “affects” relationship in State Analysis, for example, that are strictly
binary). This allows the modeler to choose potentially more efficient representations of interaction behaviors, as
demonstrated in later examples.

InteractionBehavior is the counterpart of ElementBehavior in the context of an Interaction: it is the specification
describing how different BehavingElements interact with one another, by constraining the StateVariables of the
BehavingElements involved in that Interaction. InteractionBehaviors are external in nature: they depend on a
particular deployment of BehavingElements in relation to each other. Once again, the definition of any interaction is
only valid within a scope, as for ElementBehavior. A key difference between ElementBehavior and
InteractionBehavior is that ElementBehavior constrains StateVariables of only one BehavingElement, while an
InteractionBehavior constrains StateVariables of at least two different BehavingElements.

The concepts and relationships introduced in this section are summarized in Figure 6.

. [0.."] joins .
BehavingElement |+ — Interaction
fisJoinedBy [0.."]
A I’ I’
[0..1] [0..1] [0.1]
analysis:characterizes analysis:characterizes describes
fisDescribedBy
0.."]
/analysis:isCharacterizedBy /analysis:isCharacterizedBy .1
[0 Interaction
. Behavior
Parameter StateVariable
[0..7] [0..7]
2 fisConstrainedBy fisUsedBy
[0.7] 0.7
uses constrains

Figure 6. Interaction concepts and relationships.

F. Scenarios and Trajectories

Scenarios and Trajectories are the object of a current investigation that will lead to the definition of their own
ontology, but are briefly discussed in this paper to describe how they relate to behavior.

A Scenario is defined as a set of constraints on StateVariables and other specifications (such as initial conditions)
without any guarantee that these will actually happen in any particular execution case. Scenarios orchestrate the
execution of behaviors: for example in the case of the television presented in Figure 2, a scenario can indicate at
which times the television will be turned on or off. Examples of scenarios are given in Section II1.

A Trajectory of a StateVariable results from a fully constrained combination of behaviors and scenarios: it
represents the particular single path for that StateVariable (one State per time of the TimeDomain). It is formally
defined as a “functional subset""** of a StateVariable that spans the entire TimeDomain.

The FamilyOfTrajectories generalizes the concept of Trajectory by combining a set of Trajectories. It is formally
defined as a subset of a StateVariable that spans the entire TimeDomain. Figure 7 provides a visual representation of
Trajectory and FamilyOfTrajectories.

* In the behavior context, the functional subset is a set of ordered pairs of times and States in which no time values are repeated.
6
American Institute of Aeronautics and Astronautics



Codomain

\ﬁ

StateVariable

/

Trajectory

/

Ye ‘ (34-)’6) ‘ {15-}’6) ‘ (tesJ’e) . (I7,y6) . (IgvyE,)
Ys (tg ¥5) (ts, ¥s) (tg: ¥'5) (t7, 5 (tg, ¥5)
- 090
Ty, t4¥d | 57 | oy [ €Y | o
Vs (teys) s ya) | ey | 7o) | tg,vs)
%) (ts. o) 3“5’ ¥o) (ts: ¥2) E(t7, ¥o) (tg. V)
¥q 3“4-)/1) 3“5-%) 3“5:)’1) ;(37:}’1)5(3313’1)
) : : : : :
(& t, |ty ot |t | tg | b it

TimeDomain

Figure 7. Example of Trajectory and FamilyOfTrajectories of a StateVariable.

G. Complete Behavior Ontology
The complete behavior ontology introduced in this paper is given in Figure 8.

FamilyOfTrajectories

. [0.."] joins i
BehavingElement - Interaction
fisJoinedBy [0.."]
[0..1] [0..1]
analysis:characterizes analysis.characterizes
[0..1]
analysis:characterizes .

Interaction

Behavior

/analysis:isGharacterizedBy /analysis:isCharacterizedBy fanalysis:isCharacterizedBy 0.1 0.7

[0.7] [0-] [0.] fisConstrainedBy /AisUsedBy
[0.."] uses Element constrains [0.."]
Parameter ; StateVariable
/isUsedBy [0..] Behavior [0.."] fisConstrainedBy [0..*] constrains
[0.1 [0..1] [0..1] 7
uses fisTimeDomainOf /isCodomainOf
hasTimeDomain hasCodomain
[0..1] [0..1]
Time i [0..1] isElementOf
Domain Codomain /hasElement [0.."] State

Figure 8. Complete behavior ontology.

H. Discussion about InteractionTerminals

An additional concept that was discussed during the elaboration of the behavior ontology is the concept of
InteractionTerminal. An InteractionTerminal is defined as a construct that acts as a filter for selecting the
StateVariables and Parameters of one BehavingElement involved in an interaction with other BehavingElements.
Their use would be similar to declaring a variable public or private in a programming language. They would also be
a potential hook to reconcile structural interface definition and behavior specification. Figure 9 shows how the
InteractionTerminal relates to other concepts introduced in this ontology. The added complexity of introducing
InteractionTerminal compared to their potential, but unproven, usage benefits, led us to propose them as optional to

the modeler.
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presents [0.."] Interaction |[0-7] joins
BehavingElement 1 i
9 [0..1] /isPresentedBy Terminal fisdoinedBy [0.] Interaction
[0.1] [0..1] 0.." [0.] [0..1]
analysis:characterizes analysis:characterizes /isExposedBy | | /isExposedBy describes
/isDescribedBy
/analysis:isCharacterizedBy /analysis:isCharacterizedBy .
[0.] [0.1 Interaction
Behavior
Parameter StateVariable 0] 0.1
fisGonstrainedBy /isUsedBy
[0.7] [0.7] [0.7] [0.M
uses exposes constrains exposes

Figure 9. InteractionTerminal concepts and relationships.

III. Examples

This section discusses two application cases. The first case was selected to present a straightforward application
of the behavior ontology and illustrate each of the concepts and relationships introduced. It shows the electrical
behavior model of a simple flashlight design, consisting of three components connected in series, namely a battery, a
switch, and a lamp (light bulb). The second case was selected to demonstrate the capability of the behavior ontology
and its application patterns to handle complex component behaviors and interactions. This example presents the
behavior model of two representative spacecraft instruments (a camera and a magnetometer) and two related
spacecraft subsystems that are tightly coupled: the power subsystem and the data subsystem (data handling and data
transmission).

A. Flashlight Example

Three BehavingElements are of interest in this example: a battery, a switch and a lamp, connected in series. As
mentioned earlier, BehavingElement is an abstract class; it is realized in this example using a concept from another
IMCE ontology, named mission:Component” (physical or logical entity/element of a system that is
designed/specified through an engineering process). StateVariables of interest are the voltages and currents
associated with each component, as well as the switch position and the lamp luminous flux.

Simple idealized internal behaviors for each component were built: the battery provides a constant nominal
voltage across its electrical terminals; the switch can be in two States—open (with zero current through the switch)
or closed (with zero voltage across the switch terminals); and the incandescent lamp is idealized as a Ohmic resistor
with Joule heating that produces light due to the resulting thermal radiation. Note that the Ohmic resistance was
chosen to remain constant in this simplified model, and as such, a Parameter is the logical choice for capturing it. A
more detailed model could have represented it as a StateVariable varying with the temperature of the filament for
example.

Figure 10 depicts the ElementBehavior of the lamp. The ElementBehavior models of the battery and the switch
can be seen in Figure 12. Note that the ElementBehavior of the switch was represented using state-machine
formalisms (the choice of the formalism, such as Harel statechart or UML state machine, is left to the agreement
between modelers).
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« mission:Component »

Lamp

I W A A A [ 3

« behavior:
ElementBehavior »

e R T « behavior:StateVariable »

Ohmic resistance, R s u AV, =R- iL
« behavior:Parameter » * %i?:‘awzrg:‘;es:i::fle ” L=AV;-ipn
Luminous efficacy, 9 [
av,
« behavior:StateVariable » Legena:
Current through lamp, |«
i —_— analysws:characlenzes »
g —— : « behavior:constraing »

: « behavior:uses »

Figure 10. Example of Properties and ElementBehavior for the lamp.

The interaction behavior between the components connected in series is based on a mesh (or loop) analysis of
the electrical circuit and captures the conservation of current flow through the electrical circuit loop, and Kirchhoff’s
voltage law (the directed sum of voltages in a closed loop is equal to zero). Figure 11 shows this interaction model.

Legena: « behavior:StateVariable »
Voltage across switch, |«—

_—

: « analysis:characterizes »
: « behavior:describes »

: « behavior:joins »

: « behavior:constrains »

Aavg

« behavior:StateVariable »
Current through switch, |«—

« mission:Component »
Battery

« behavior:StateVariable »

Iy

« mission:Component »

Switch

« behavior:Interaction »
Circuit

[ 3

« mission:Component »
Lamp

« behavior:StateVariable »
! Voltage across battery, « behavior:InteractionBehavior » ——»| Voltage across lamp, |—
B ] - ] L
Ip=lig=1I; ]
« behavior:StateVariable » _ « behavior:StateVariable »
| Current through battery, B s Al S .| Current through lamp, |—

g

Figure 11. Example of an Interaction for the flashlight components.

The complete behavior model of the flashlight is given in Figure 12. Note that the grey boxes do not represent an
ontological concept; their only purpose is for readability and to graphically highlight concepts related to each

component.
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Figure 12. Complete behavioral flashlight model.

B. Alternative Flashlight Example

Note that the Interaction in the previous section was joining three BehavingElements at the same time, allowing
for a compact representation of the InteractionBehavior constraints. Should Interaction be restricted to binary
connections (i.e., connect exactly two BehavingElements), it would not have been possible to capture the flashlight
model as in Figure 12. Instead, the flashlight model would be captured as in Figure 13.
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Current at terminal 1, i,
« behavior:Parameter »
- Ohmic resistance, R Lumen output, L
| Dehavior:Parameter » « behavior:StateVariable »
? v, Voltage at terminal 1, v, ,

Vig=Viz=R iy
i +0,=0
L=V =Viz) i m

Current at terminal 1, i,
« behavior:Interaction
Behavior » « behavior:StateVariable »
Voltage at terminal 2, vV,
gy +ip,=0 Current at terminal 2, iy,
Vg =V,2=0

Figure 13. Alternate model for the behavioral flashlight model. [ncoming currents are positive and outgoing
currents are negative.
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The representation shown in Figure 13 is less compact than the representation in Figure 12, but it is important to
note that it still conforms to the behavior ontology introduced in this paper. Here, the Interactions are captured in a
nodal analysis point-of-view, focusing on the physical electrical connections between components. Three Interaction
blocks are now necessary to capture the series circuit: they represent the conservation of the current across the nodes
and the equality of the electrical potentials at the nodes (this is similar to the “connect” function in Modelica'*). As a
consequence, the number of StateVariables necessary close to double in this model; the advantage is that this
provides for modularity, such that the components and behaviors can be stored in and drawn from a library, without
having to know in what circuits they will be used. ElementBehaviors were written to handle the new StateVariables,
and this model can of course be reduced to the model presented in the previous section.

As demonstrated with the flashlight models, the behavior ontology introduced in this paper was designed to
allow flexibility in how modelers capture behavior specification.

C. Spacecraft Instruments, Power and Data Subsystems
The example presented in this section demonstrates the capability of the behavior ontology to handle more
complex behaviors and interactions. It presents the behavior model of two spacecraft instruments (a camera and a
magnetometer) and two related spacecraft subsystems: the power subsystem and the data subsystem (command and
data handling, and telecommunications). The model is presented in Figure 14 and described below.
In this model, seven components are considered, and shown in green in Figure 14:
* a magnetometer instrument,
* acamera instrument,
* a Multi-Mission Radioisotope Thermal Generator (MMRTGQG), acting as the primary electric power
source,
* a battery, used when power demand exceeds the capability of the MMRTG,
* apower manager that acts as the medium between the MMRTG power source, the battery, and the power
loads (instruments, C&DH and Telecom subsystems),
* a Command and Data Handling (C&DH) subsystem that manages the storage of the data generated by the
two instruments,
* a Telecom subsystem that transmits the data stored by the C&DH.

In this example, the behaviors of some components capture more complex dynamics than in the flashlight
example (such as for the battery model). The ElementBehaviors of the two instruments are briefly described below:

* Magnetometer: the magnetometer behavior captures four states of the magnetometer: OFF, SURVIVAL
or ON at a low sampling rate, and ON at a high sampling rate (the survival state indicates that the
survival heaters of the magnetometer are turned on). For each state, an estimated power load has been
captured as a characterization of the magnetometer component (i.e., the magnetometer consumes 0 W
when turned off, and 5 W when turned on). A similar approach for data generation has been taken: for
each state, an associated generated data rate has been determined. For example, when on, the
magnetometer data output rate is a function of the number of sensors, the sampling rate associated with
the current sampling rate mode (low or high) and the sampling size. The transitions between states have
been captured as commands, but have not been elaborated further.

* Camera: the camera behavior captures three states of the camera: OFF, SURVIVAL or TAKING
PICTURES (the survival state indicates that the survival heaters of the camera are turned on; the taking
pictures state indicates that data is being captured and/or transmitted out of the camera). For each state,
an estimated power load has been captured (i.e., the camera consumes 0 W when turned off, and 15 W
when actively taking pictures). A similar approach was taken for the data generation capture: for each
state, a data output rate has been determined. In particular, a choice was made to model the behavior of
the camera using a data rate based on a data volume determined by the number of pictures taken. This is
particularly of interest for transitioning out of the taking pictures state: this transition is based on the
time necessary to transmit the generated data volume based on the given data rate output. Other models
for the camera can be envisioned.
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Figure 14. Spacecraft power and data behavioral model.
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The power aspect of this system is described as follows:

* The C&DH is assumed to be always on and consuming 20 W of power. More detailed power load
behavior could be supported by the behavior pattern.

* The Telecom has two power states: transmitting or not transmitting with associated power loads.

* The MMRTG power behavior is modeled using an exponentially decaying model. It produces 125 W of
power at the beginning of life and 100 W after 14 years. This model is based on published work by
Misra®.

* The power manager behavior captures the power margin and the internal losses on top of the total power
load of the spacecraft. The net power is then captured by subtracting the total load to the available
power.

* The battery behavior model is more complex than the one presented in the flashlight, as it takes into
consideration the state of charge of the battery, and its influence on the voltage and current of the
battery. The battery itself is idealized with zero internal resistance, resulting in the linear variation of
voltage with state of charge®®. The battery can be charging or discharging based on the battery bus
power sign.

The information above captured the ElementBehavior of each of the components. The following describes how
these components interact with one another from a power perspective. Three interactions are modeled:

* The interaction between the MMRTG and the power manager: this interaction indicates that the power
produced by the MMRTG is equal to the source power available to the power manager.

* The interaction between the power manager and the four power loads (Telecom, C&DH, camera and
magnetometer): the total power load is the sum of each of the power load of the four components.

* The interaction between the power manager and the battery: the net power (available power minus total
load) is equal to the power that the battery experiences: if the net power is negative (the MMRTG is not
providing enough power for the load current demand), then the battery provides that extra power
(within the limits of its capacity) and is thus discharging; if the net power is positive, then the battery
uses this extra power to recharge if necessary.

Finally, the data aspect of this system is described as follows:

* The C&DH commits to memory the data it receives and removes from memory the data it outputs for
transmission. This model does not capture the practice of keeping data in storage until the ground has
acknowledged reception.

* As described above, the Telecom has two states: a non-transmitting state, and a transmitting one with a
fixed data output rate.

The information above is captured in the ElementBehavior of each of the components. The following describes how
these components interact with one another from a data perspective. Two interactions are modeled:

* The interaction between the C&DH and the two instruments: the data the C&DH receives is the sum of
the data generated by the two instruments.

* The interaction between the C&DH and the Telecom: the data the Telecom transmits is the data the
C&DH outputs.

One of the benefits of constructing such models is the ability to generate Trajectories for StateVariables given
some Scenario. This also allows modelers to conduct trade studies and optimizations (for example sizing the battery
or on-board memory storage) by modifying the model or Scenario and observing the resulting effect in the
Trajectories. An example Scenario is shown in Figure 15: the camera and the magnetometer are turned on and back
to survival mode according to a specified schedule, and the Telecom transmitting all of the data generated. The
scenario is captured using a goal network representation form State Analysis: the green rectangles represent
constraints on the StateVariables of the relevant components, the grey circles are timepoints (dotted lines indicates
timepoints that occur at the same time), and the arcs between timepoints indicate duration intervals or conditions.
The reader is referred to Ingham et al.” for more details on this representation.

Assuming some values for all Parameters of the model, the Trajectories of several StateVariables can be
determined by solving the constraint equations of the ElementBehavior and InteractionBehavior blocks. The
StateVariables of interest in this analysis are the power of the MMRTG, the total load with margin, the individual
power loads, the battery state of charge, and the total memory used by the C&DH. The results of the analysis are
shown in Figure 16.
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Figure 15. Example scenario for the spacecraft power and data behavior model.
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Figure 16. StateVariable Trajectories given the behavior model in Figure 14 and the scenario in Figure 15.

IV. SysML Implementation

In order to practically utilize the behavior ontology, a SysML extension (from SysML 1.3) was produced in the
form of a stereotype profile. SysML is “a general-purpose graphical modeling language for representing systems”>’
and this profile allows for the projection of the behavior concepts and relationships identified in this work onto
SysML model elements. This implementation was developed to provide engineers with the ability to use the
behavior ontology in a compatible fashion with related models already captured in SysML. This section heavily uses
UML/SysML concepts, and the reader interested in the definition of these concepts and their usage is referred to the
OMG specifications' "%, or to the book by Friedenthal et al.*”.

Table 1 presents the SysML embedding that was chosen for each of the ontology concept and relationship from
Figure 8.
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Table 1. SysML embedding of behavior ontology concepts and relationships.

Concept SysML embedding

BehavingElement Abstract concept, concrete classes embedded instead
Codomain Value Property

ElementBehavior Component ConstraintBlock or StateMachine
InteractionBehavior Component ConstraintBlock

Interaction Component Block

Parameter Value property

State State

StateVariable Value property

TimeDomain Value property

Relationship SysML embedding

analysis:characterizes Dependency

constrains No direct embedding — see examples

hasCodomain No direct embedding, using Value Type (see Figure 17)
hasTimeDomain No direct embedding, using Value Type (see Figure 17)
isDescribedBy Composite association

isElementOf No direct embedding — see examples

joins Shared association

uses No direct embedding — see examples

BehavingElement is an abstract concept that is realized using concrete classes, such as mission:Component or
mission:Environment from the IMCE mission ontology. Both of these classes are embedded in SysML as
Components.

In addition to the concepts listed in Table 1, value types have been used to handle the definition of TimeDomain
and Codomain of StateVariables: specifically, two value type stereotypes have been created:

¢ StateVariableValueType: this value type is used to type StateVariables and possesses two value
properties: one for the TimeDomain and one for the Codomain;
¢ ParameterValueType: this value type is used to type Parameters.
Both these specialized value types takes advantage of the ISO 80000 Model Library from OMG", and examples of
StateVariables from the flashlight example are shown in Figure 17. Using the flashlight example, the StateVariable
CurrentThroughBattery is typed by the StateVariableValueType “currentSV” shown in Figure 17: this value type
has two properties: (i) a domain (representing the TimeDomain of the StateVariable) typed by the value type “time”
from the ISO library (associated with the time quantity kind); and (ii) a codomain (representing the Codomain of the
StateVariable) typed by the value type “electric current” from the ISO library (associated with the electric current
quantity kind). More specialized and customized value types and quantity kinds can also be created as necessary.
Also, the handling of discrete StateVariables is described later in this paper.

Finally, a word on the SysML implementation of the optional InteractionTerminal: an InteractionTerminal is
embedded as InterfaceBlock, and the “presents” relationship is embedded as a full port, owned by components
grouping properties and typed by the InterfaceBlock. The properties are then exposed by binding them (using
binding connectors) to associated UML ports nested in the full port. InteractionTerminals are not used in the
examples presented in the remainder of this paper.
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bdd [Package] Time and Primitive Value Types [ Value Type Example |]

IMCE.1S0-80000::IMCE.|IEC80000-6 Electromagnetism::Quantities::
electric current

«QuantityKind»
elactric current : SimpleQuantityKind
description = "IEC 80000-6, 6-1"

[Fbehavior SateVarabievakTypor | behavier,Cocemains codorman VakieTypes
e electric current

wialueTypen

quantityKind = = electric current
IMCE.ISC-80000::IMCE.|S0B0000-3 Space and Time::Quantities::
time IMCE.|S0-80000::IMCE.IEC80000-6 Electromagnetism::Quantities::
voltage
«QuantityKinds
time : SimpleQuantityKind «Quantity Kind»
description = "ISO 80000-3, 3-7" yoltage : SimpleQuantityKind

description = "IEC 80000-6, 6-11.3"

«behavior: TimeDomain» domain

ValueTypen

time «behavior TimeDomains domain e " e s coxbornain «ValueTypes

= i e
quantityKind = Etime | «behavior TimeDomains domain =

ValeTyper
quantityKind = [@voltage

IMCE.1S0-80000::IMCE.ISOB80000-7 Light::Quantities::
luminous flux

«QuantityKind»
luminous flux : DerivedQuantityKind
description = "ISO 80000-7, 7-32"

ebehavior:StateVariableValueTypes abehavior:Codomains codomain RTINS
luminous flux
luminousFluxSV
«ValueTypes

quantityKind = [@luminous flux

Figure 17. Value type example for three StateVariables from the flashlight example: current, voltage, and
luminous flux.

Figure 18 shows a SysML model of the properties defined for the battery from the flashlight example, as well as
the associated ElementBehavior. This behavior was described conceptually in Figure 12.
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bdd [Package] Battery ElementBehavior [ Battery Elcmcr'thhavioru

- .
«analysis:characterizess - ~. «analysis:characterizess
- st
-~ e
- e

- -
Battery Properties e |Battery ElementBehavior Characterization

«beh iables VoltageAcrossBattery : voltageSV
«beh blew CurrentThroughBattery : currentSW
«beh ters NominalMoltage : batteryNominalVoltage

«behavior: ElementBehaviors
Battery Simple Model
{equals(eb_battery\Voltage,eb_batteryMNominalMoltage)}
DEETIETETE
eb_batteryVoltage : voltageSV
eb_batteryMominalVoltage : batteryMominalvVoliage

par [behavior:ElementBehaviorCharacterization] Battery ElementBehavior Characterization [ |3 Battery ElementBehavior Characterization U

«behavior:ElementBehaviors
: Battery Simple Model
: Battery Properties {equals(eb_batteryoltage,eb_batteryMominalVoltage)}

«behavior:StateVariables
VoltageAcrossBattery : voltageSV D eb_batteryVoltage : voltageSV

abehavior:Parameters
NeminalVeltage : batteryNominalVoltage i:l eb_batteryNominalVoltage : batteryMeminalVeltage

Figure 18. ElementBehavior model in SysML for the battery in the flashlight example.

As discussed earlier, the use of IMCE characterizations results in the separation of the properties used in this
behavior model from the battery component itself. As a consequence, the StateVariables and Parameters are grouped
into Component Blocks that characterize the component. The meaning of the grouping is left to the modeler: in
Figure 18, all properties of interest are gathered into one characterization, while in Figure 20, the properties are split
between StateVariables and Parameters. Note that the StateVariables are typed by the value types shown in Figure
17.

Regarding the embedding of ElementBehavior, Figure 18 shows the presence of additional elements.

For example, the Battery ElementBehaviorCharacterization has been added in SysML to act as an grouping
mechanism of several ConstraintBlocks (stereotyped by «behavior:ElementBehavior»). This mechanism is used for
different reasons, such as: (i) for example in Figure 19 to indicate that the OPEN constraint and the CLOSE
constraint are part of the same ElementBehavior specification; (ii) to define in the same model alternative
characterizations for a given BehavingElement: e.g., one Battery ElementBehaviorCharacterization can be used to
represent a battery model with constant voltage output, while another ElementBehaviorCharacterization of the
Battery could be used to define a more realistic model with usage-dependent voltage level; or (iii) to separate
different types of behavior of the same BehavingElement: e.g., all the constraints related to its power aspect would
be grouped with one ElementBehaviorCharacterization, and all the constraints related to its data aspect would be
grouped with another one.

In addition, constraint parameters are used in the ConstraintBlocks (such as “eb_batteryVoltage”) in an effort to
make the ConstraintBlocks reusable. One can envision the creation of library of behavior specifications (such as
Ohm’s law in Figure 20), and the constraint parameters are then bound using binding connectors to the appropriate
properties of the BehavingElement in the parametric diagram of the ElementBehavior Characterization block,
referencing the appropriate property characterization. In Figure 18,, the Battery ElementBehavior Characterization
references the Battery Properties, and the constraint parameters eb_batteryVoltage and eb_batteryNominalVoltage
are bound respectively to the StateVariable VoltageAcrossBattery and the Parameter NominalVoltage.
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Finally, the ConstraintBlock “Battery Simple Model” is constrained by a constraint that represents the mathematical
expression equating the battery voltage to the battery nominal voltage. It is currently embedded in SysML using
expression trees, operations and Element Values, but the specification of the constraint language is out of the
purview of the behavior ontology and is part of an agreement amongst modelers.

Figure 19 shows the SysML model of the switch ElementBehavior, and it introduces State Machines and the
handling of discrete StateVariables.

bdd [Package] Switch Elem [ Switch J

«behavior:StateVariableValue Types
. switchPositionSV
«analysisicharacterizess =

" . sanalysis:characterizess
analy ainsdomain : time:

naincodomain : Switch Position STM

Switch Properties = Switch navior Characterization

oltageAcrossSwitch : vollageSV
urrentThroughSwitch : currentSV
SwitchPosition : swiichPos tionSV

|

«behaviorElementBehaviors
Switch Position STM

«behavior:ElementBehavicrs
SP_OPEN Constraint
{equals(eb_swhchCurrent 0}

stm [behavior:ElementBehavior] Switch Position STM [ {5 Switch Position STM U

porameters
eb_switchCurrent : currentSV
* |

N

ebehavior ElementBehavidr
SP_CLOSED Constraint
{equals(eb_switchVoltags 0)}
parsmeters A
eb_switchVioltage : voltageSV \
o N «behavior:States
CLOSED

wbehavior:Staten
OPEN

\ \

par [behavior: ElementBehaviorCharacterization] Switch ElementBehavior Characterization [ |55 Switch EIr:rnt:r‘(Bt:haumrbharaz(cr\za(w‘ U -
-
LN - -

relationMap [Package] Switch ElementBehavior [ 5 OPEN corstr;\int—slamu

«behavior:ElementBehaviors x
: SP_OPEN Constraint

{equals (sb_switchCurrent,0j}

-
analysis:characterizes relationship |-
from the constraint block tothe .~ [ —
OPEN state of the STM >

-

£] SP_OPEN Constraint® = 0 OPEN

: Switch Properties A [

«behavior. StateVariable»
CurrentThroughSwitch : currentSV

«behavior. StateVariable»

_,—D eb_switchCurrent : currentSV

wbehavior:ElementBehaviors
: SP_CLOSED Constraint

analysis:characterizes relationship
from the constraint block to the:
CLOSED state of the STM

relationMap [Package] Switch ElementBehavior [ 5% CLOSED cnr‘slra\r‘t—st;\mu

~| €1 SP_CLOSED Constraint@ = 1 CLOSED

VoltageAcrossSwitch : voltageSV {equals(eb_switchVoltage,0)}
\—i sb_switchVoltage : voltageSV

Figure 19. ElementBehavior model in SysML for the switch in the flashlight example.

As described in Figure 12, the behavior of the switch is captured using a state machine formalism, and is shown
in Figure 19 using UML State Machines. Note that the value type of the StateVariable “SwitchPosition” is shown in
the top right corner of Figure 19, and indicates that the Codomain of this particular discrete StateVariable is typed
by the State Machine “Switch Position STM”, represented as one of the ElementBehaviors of the switch component
in Figure 19. The flexibility of SysML to use State Machines as classifiers allows us to avoid the duplication of the
specification of the Codomain of the discrete StateVariable with the specification of the relevant behavior using a
State Machine. In this example, the State Machine serves both roles: the states of the State Machine enumerate the
States (OPEN and CLOSED , elements of the Codomain of the StateVariable SwitchPosition), and the State
Machine is also used to specify the ElementBehavior constraints associated with each state. For example, if the
switch is open, then the current across the switch is zero. This constraint is captured by the ConstraintBlock named
“SP_OPEN Constraint”, and is linked to the OPEN state in the state machine by a dependency stereotyped by
«analysis:characterizes», as indicated by the notes and the relationMap diagram in Figure 19. This is a convention to
indicate the domain of applicability of the constraint: the constraint is applicable only for the states it characterizes
(using the dependency). Alternatively, if a constraint does not characterize any state in the presence of a state
machine, then it is assumed that the constraint applies to all states of the state machine. Note that this convention
could also be handled by using conditional logic statements instead in the Constraint Blocks:

IF (SwitchPosition = OPEN)

CurrentThroughSwitch = 0

ELSEIF (SwitchPosition = CLOSED)

VoltageAcrossSwitch = 0
ENDIF
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Figure 20 shows the ElementBehavior model of the lamp, capturing the Ohmic behavior of the lamp and the
light generation behavior. These behaviors were described conceptually in Figure 10.

/ «analysis:characterizess

bdd [Package] Lamp ElementBehavior [ Lamp ElementBenavior |]

«analysis:characterizess .~ ~ _ «analysis:characterizes»

Lamp StateVariables

) Lamp
beleyor Siielaratic: VolageciossLamp | votageS /
behavior StaieVariabies CUrrentThroughLamp : currentsy
B 5 i ooy /
/
«behavior:ElementBehaviors
Lamp Paramators Ohm's Law
«behavior Paramelers OhmicResistance : lampElectricResistance {squals(eb_lampVichtage, muliply(eb_resistance,eb_ampCurrent)])
wbehavior Parameters LuminousEfficacy : lampLuminousEfficacy
b._lampVottage : voltagaSV
eb_lampCurrent : currentSV'
eb_resistance : lampElectricResistance
«behavior. ElemeniBehaviors
Light Production
{equals(eb_lumenOutput, muttiply3(eb_| _lampGurrent,eb,_|
parsmeters
8b_lumenOutput : iminousFIuxSV
ob_lampVoliage : voltagoSV
eb_lampCurrent : currentsV
b_luminousEfficacy : lampLuminousEfficacy
par [behavior I Lamp c 1[5 Lame c )
| :Lamp StateVariables 7|
,,,,,,,,,,, |
| abehavior:StateVariable 11 «behavior:ElementBehavior
" VoltageAcrossLamp : voltagesV : Light Production
e | {equals{eb_lumenGutput,mutiply3{eb_tampVoltage eb_lampCurrent.eb_luminousEfficacy))}
«behavior: ElementBehaviorn | o ie Varist e Il
e =il ———  GumentThroughtLamp : cumentsy  TT——— ] eb_menOutput : WiminousFluxSV

{equals{eb_lampVoliage, muliply (eb_resistance eb_ampCurrent))}

=i eb_lampVoltage : voktageSV
I «behavior. StateVariables | || eb_lampValtag ge

eb_lampVoltage : vokagesV [ | || LumenOutput : luminousFluxSV

{"] eb_lampCurrent : currentSV

eb_lampCurrent : currentsV [+ ] el ¥+ lampL

eb_resistance ; lampElectricResistance || | «behavior.PropertyGroup» =
| : Lamp Parameters |
T |

abehavior Parameters | |

i Iy : lampL m—

Figure 20. ElementBehavior model in SysML for the lamp in the flashlight example.

Finally, the interaction between the three components from a mesh analysis’s perspective is shown in Figure 21,
and was described conceptually in Figure 11.
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bdd [Package] Circut Interaction [ Circut Interaction 1]
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|
Switch Properties

» VoltageAcrossSwitch : voltageSV
» CurrentThroughSwiteh : currentSV
» SwitchPosttion : switchPositionSV

«behavior joins»
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«behaviorjoinss

Battory Proparties P ) «behaviorjoins»

«behavior:InteractionBehavior» !
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{equals3(io_batteryCurrent,ib_switchCurrent,io_lampCurrent), hanalysis:characterizee
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parametars Lamp StatoVariables
ib_batteryVotage : batteryVoltageSV
ib_batteryCurrent : batteryCurrentSV
ib_switchVioltage : switchiVoltageSV.
ib_switchCurrent : switchCurrantSV
ib_lampVoltage : lampVoltageSV

ib_tampCurrent : lampCurrents\

» VoltageAcrossBattery : voltageSV
» CurrentThroughBattery : currentSV
NominalVoltage : batteryNominalVollage

{ablos VoltageAcrossLamp : voltageSV
iables CurrentThroughLamp : currentSV/
iables LumenOutput | luminous FluxSV

par [behavior:Interaction] Circut Interaction [ [E§) Circuit \rmracmr'u

«wbehavior:interactionBehaviors
: Mesh Constraints

{equals3(ib_batteryCurrent,b_switchCurrent,ib_lampCurrent),
equals {adds(minus{ib_batteryVotiage) lo_switchVohage,ib_lampVohage) 0]}

: Battery Properties : Lamp StateVariables

«behavior:StateVariables | Jio_atteryVoltage : batteryVoliag ib_lampVoltage : lampVokiageSy | ¢ «behaviorStateVariables
VoltageAcrossBattery : voltagoSV VoltageAcrossLamp : voltageSV
- io_batteryCurrent : battery CurreniSV i g I —
wbahavior StateVariabies | |io_attery Ty ib_lampCurrent : lampCurrentSV bahaviorStaleVariabies

CurrentThroughBattery : currentSV CurrentThroughLamp : currentSV

ib_switchioltage : switchVioltageSV  ib_switchCurrent : switehCurrentSV

: Switeh Properties

«behavior:StateVariables
CurrentThroughSwitch : currentSV

«behavicr:StateVariables
VoltageAcrossSwitch : voltageSV

Figure 21. Interaction model in SysML for the flashlight example using a mesh analysis.

The embedding of the InteractionBehavior is captured similarly as for the ElementBehavior, using
ConstraintBlocks, constraint parameters, constraints, and binding connectors. Note that in the ontology, the
Interaction joins BehavingElements; however in our SysML implementation, due to the separation of the
BehavingElement and the property characterizations, the «behavior:joins» shared associations relate the Interaction
to the property groupings directly. Also the “isDescribedBy” relationship (inverse of “describes” relationship
between an InteractionBehavior and Interaction) is captured using a composite association (i.e., a “black diamond”
arrow).

V. Conclusion

The behavior ontology presented in this paper provides a consistent behavior specification within the existing
systems engineering process, and improves upon current best practices to allow for efficient design trades and
optimization, re-use of model elements from project to project, more rigorous and formal behavioral analyses, and
exchange of behavior information between different tools or languages.

The behavior ontology provides an approach to capture the state-based behavior of elements and the interactions
amongst them. These elements are characterized by state variables that vary with time, and the dynamic evolution of
the state of the system is represented using constraints on these state variables. This paper discussed the various
concepts and relationships introduced to capture behavioral specifications: the properties (StateVariables and
Parameters) necessary to characterize BehavingElements, ElementBehaviors to capture the internal behavior of
these elements, and Interactions and InteractionBehaviors to capture the dynamics among them. In addition,
Scenarios and Trajectories of StateVariables were introduced to capture a driving mechanism for behavioral
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analyses that consider the resulting evolution in time of StateVariables. Two examples were discussed in this paper:
(1) a simple flashlight electrical model to illustrate the concepts and relationships introduced by the ontology and
their flexible usage to the modeler; and (ii) a more complex spacecraft model involving instruments, power and data
behaviors to demonstrate the ability of the behavior ontology to handle real-world engineering problems. Finally, an
implementation in a SysML profile was provided to enable engineers to use the behavior ontology in a compatible
fashion with related models already captured in SysML.

Wider-scale application of the behavior ontology to flight projects is currently under way at JPL, as is further
work on scenario specification. This will allow performance of end-to-end behavioral analyses and identification of
areas for further development of the approach proposed in this paper. Another area of investigation is to extend the
behavior ontology to describe off-nominal behaviors and provide capabilities for fault management activities, such
as automatic generation of reliability artifacts (FMECA, fault trees) or fault coverage analyses.
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