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This paper provides an approach to capture state-based behavior of elements, that is, the 
specification of their state evolution in time, and the interactions amongst them. Elements 
can be components (e.g., sensors, actuators) or environments, and are characterized by state 
variables that vary with time. The behaviors of these elements, as well as interactions among 
them are represented through constraints on state variables. This paper discusses the 
concepts and relationships introduced in this behavior ontology, and the modeling patterns 
associated with it. Two example cases are provided to illustrate their usage, as well as to 
demonstrate the flexibility and scalability of the behavior ontology: a simple flashlight 
electrical model and a more complex spacecraft model involving instruments, power and 
data behaviors. Finally, an implementation in a SysML profile is provided. 

I. Introduction 
VER the past few years, the Jet Propulsion Laboratory (JPL) has been developing and implementing a model-
driven systems engineering process, known generally in industry and academia as Model-Based Systems 

Engineering (MBSE). To support this process, a number of tools and infrastructure elements are currently in 
development under the JPL’s Integrated Model-Centric Engineering (IMCE) initiative1. One of these infrastructure 
elements is a series of ontologies2 that support standard modeling for JPL space missions and other projects. As a 
subset of these ontologies, we present in this paper a novel ontology that enables a consistent means to formally 
describe and specify state-based behavior of systems, as well as associated modeling patterns that capture its usage. 
In our ontological representation, system state is captured through the use of state variables, i.e. key time-varying 
properties that represent features of the system necessary to describe its behavior and perform various engineering 
analyses. For example, component position and velocity are state variables usually found in the mechanical domain, 
and component voltage and current are state variables usually found in the electrical domain. State-based behavior 
of a system is then asserted to be the set of constraints on these state variables, constraints that define how the 
dynamic state of the system can evolve in time (the term “behavior” refers to “state-based behavior” in the 
remainder of this paper). 

The development of the behavior ontology was motivated by the difficulty of maintaining a consistent behavior 
specification within the existing systems engineering process. This made it problematic for engineers to 
systematically evaluate interactions between behaviors in various elements of the system, and how behaviors of 
individual elements affect the system as a whole. In addition, it was possible to introduce discrepancies between 
specified behavior (in the design phase) and its implementation due to a lack of common vocabulary between the 
engineers involved in each phase. These discrepancies could result in unexpected or even hazardous situations 
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occurring during operation of the system. Using a common behavioral semantic allows for improving 
communication in a collaborative environment – hence reducing the associated risks mentioned above –, for 
performing efficient design trades and optimization, and for performing formal querying, verification and validation 
of the behavioral model using powerful reasoning engines (e.g., SPARQL3). In addition, it increases productivity by 
allowing for re-use of model elements and behavior patterns from project to project. Finally, a common vocabulary 
allows for the exchange of behavior information between different tools or languages.  

As a basis for this work, technical literature related to behavior modeling was investigated. This included 
reviews of function modeling4, other work on behavioral descriptions of systems5,6, existing modeling language 
paradigms7, and previous work conducted at JPL, such as behavior engineering8 approaches, the State-Analysis 
methodology9,10 and the Timeline representation (with focus on operations and scenario modeling)11. While this 
body of work has strongly influenced the scope, definition, and elaboration of this behavior ontology, it did not 
provide us with modeling languages that have either the breadth or the depth to capture the semantics of behavior to 
a desired level of specification.  

For example, modeling languages such as the Object Management Group (OMG) UML12/SysML13 provide 
semantics for capturing only a subset of behaviors, and do not integrate them in their base form without further 
extension5. Another standard modeling language, Modelica14 (with large offering of open-source and commercial 
solvers), captures flow-based multi-domain physics models, and supports differential algebraic equations (i.e. 
ordinary differential equations with algebraic constraints) with both continuous and discrete variables. One of the 
strengths of Modelica is that the models can be defined using composable and reusable building blocks. On the other 
hand, there are a number of domains that Modelica is not designed to model, for example logical existential or 
universal assertions. Also, the composability in Modelica is focused on creating binary connections between pre-
defined interfaces using Kirchhoff semantics15. Although this is well suited for many physical systems, it can also 
lead to complex models. The same effect applies to the behavioral approach proposed by Willems6. This is 
illustrated in section III.B, and the behavior pattern proposed in this work aims to offer flexible behavioral 
representations to the modeler. Previous efforts have attempted to integrate SysML and Modelica16; SysML would 
contain systems engineering knowledge such as requirements and test plans and Modelica would contain behavioral 
equations. These previous approaches have developed a Modelica concrete syntax for SysML, hence restricting the 
behavior equations to those captured by Modelica. In the approach in this paper, a goal is to provide a flexible 
representation that can then be transformed into any number of languages for analysis (for example Mathematica17, 
Maple18, Modelica, or JPL tools such as APGEN19), and save users from learning multiple analysis languages. 

Finally, State Analysis9,10 provides a methodology for modeling behavior of a system and using these models to 
specify the control design and operations for this system, but does not impose any particular modeling formalism. 
As such, our work developing the behavior ontology is complementary to the State Analysis methodology, and can 
be used to capture the results of applying this methodology. 

This paper describes several features of the behavior ontology, such as a carefully designed relationship between 
behavior specification and structural definition, allowing for flexible (and potentially multiple) characterizations to 
be applied to the same structural elements based on varying degrees of fidelity (analysis usage or customer 
presentation). 

A note regarding the scope of this paper and its implementation: while there is a difference between the actual 
behavior of a system and modeled behavior (which is an engineering approximation of the actual behavior), only 
modeled behavior will be discussed for the purpose of this paper. 

The remainder of this paper is organized as follows: Section II describes the key concepts and relationships of 
the proposed behavior ontology. Section III presents two example applications to illustrate the behavioral concepts 
and demonstrate the flexibility and scalability of the ontology. Finally, Section IV discusses a SysML 
implementation of the behavior ontology. 

II. Behavior ontology 

A. Conventions 
Before describing the ontology, a brief discussion about the conventions used in the figures of this paper to 

present concepts and relationships is provided. Figure 1 is a notional figure in the style of subsequent figures of the 
paper and is used to introduce conventions.  
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The representation shown in Figure 13 is less compact than the representation in Figure 12, but it is important to 
note that it still conforms to the behavior ontology introduced in this paper. Here, the Interactions are captured in a 
nodal analysis point-of-view, focusing on the physical electrical connections between components. Three Interaction 
blocks are now necessary to capture the series circuit: they represent the conservation of the current across the nodes 
and the equality of the electrical potentials at the nodes (this is similar to the “connect” function in Modelica14). As a 
consequence, the number of StateVariables necessary close to double in this model; the advantage is that this 
provides for modularity, such that the components and behaviors can be stored in and drawn from a library, without 
having to know in what circuits they will be used. ElementBehaviors were written to handle the new StateVariables, 
and this model can of course be reduced to the model presented in the previous section. 

As demonstrated with the flashlight models, the behavior ontology introduced in this paper was designed to 
allow flexibility in how modelers capture behavior specification. 

 

C. Spacecraft Instruments, Power and Data Subsystems 
The example presented in this section demonstrates the capability of the behavior ontology to handle more 

complex behaviors and interactions. It presents the behavior model of two spacecraft instruments (a camera and a 
magnetometer) and two related spacecraft subsystems: the power subsystem and the data subsystem (command and 
data handling, and telecommunications). The model is presented in Figure 14 and described below. 

In this model, seven components are considered, and shown in green in Figure 14: 
• a magnetometer instrument, 
• a camera instrument, 
• a Multi-Mission Radioisotope Thermal Generator (MMRTG), acting as the primary electric power 

source, 
• a battery, used when power demand exceeds the capability of the MMRTG, 
• a power manager that acts as the medium between the MMRTG power source, the battery, and the power 

loads (instruments, C&DH and Telecom subsystems), 
• a Command and Data Handling (C&DH) subsystem that manages the storage of the data generated by the 

two instruments, 
• a Telecom subsystem that transmits the data stored by the C&DH. 

 
In this example, the behaviors of some components capture more complex dynamics than in the flashlight 

example (such as for the battery model). The ElementBehaviors of the two instruments are briefly described below: 
 

• Magnetometer: the magnetometer behavior captures four states of the magnetometer: OFF, SURVIVAL 
or ON at a low sampling rate, and ON at a high sampling rate (the survival state indicates that the 
survival heaters of the magnetometer are turned on). For each state, an estimated power load has been 
captured as a characterization of the magnetometer component (i.e., the magnetometer consumes 0 W 
when turned off, and 5 W when turned on). A similar approach for data generation has been taken: for 
each state, an associated generated data rate has been determined. For example, when on, the 
magnetometer data output rate is a function of the number of sensors, the sampling rate associated with 
the current sampling rate mode (low or high) and the sampling size. The transitions between states have 
been captured as commands, but have not been elaborated further. 

• Camera: the camera behavior captures three states of the camera: OFF, SURVIVAL or TAKING 
PICTURES (the survival state indicates that the survival heaters of the camera are turned on; the taking 
pictures state indicates that data is being captured and/or transmitted out of the camera). For each state, 
an estimated power load has been captured (i.e., the camera consumes 0 W when turned off, and 15 W 
when actively taking pictures). A similar approach was taken for the data generation capture: for each 
state, a data output rate has been determined. In particular, a choice was made to model the behavior of 
the camera using a data rate based on a data volume determined by the number of pictures taken. This is 
particularly of interest for transitioning out of the taking pictures state: this transition is based on the 
time necessary to transmit the generated data volume based on the given data rate output. Other models 
for the camera can be envisioned. 
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The power aspect of this system is described as follows: 
• The C&DH is assumed to be always on and consuming 20 W of power. More detailed power load 

behavior could be supported by the behavior pattern. 
• The Telecom has two power states: transmitting or not transmitting with associated power loads. 
• The MMRTG power behavior is modeled using an exponentially decaying model. It produces 125 W of 

power at the beginning of life and 100 W after 14 years. This model is based on published work by 
Misra23. 

• The power manager behavior captures the power margin and the internal losses on top of the total power 
load of the spacecraft. The net power is then captured by subtracting the total load to the available 
power. 

• The battery behavior model is more complex than the one presented in the flashlight, as it takes into 
consideration the state of charge of the battery, and its influence on the voltage and current of the 
battery. The battery itself is idealized with zero internal resistance, resulting in the linear variation of 
voltage with state of charge24. The battery can be charging or discharging based on the battery bus 
power sign. 

The information above captured the ElementBehavior of each of the components. The following describes how 
these components interact with one another from a power perspective. Three interactions are modeled: 

• The interaction between the MMRTG and the power manager: this interaction indicates that the power 
produced by the MMRTG is equal to the source power available to the power manager. 

• The interaction between the power manager and the four power loads (Telecom, C&DH, camera and 
magnetometer): the total power load is the sum of each of the power load of the four components. 

• The interaction between the power manager and the battery: the net power (available power minus total 
load) is equal to the power that the battery experiences: if the net power is negative (the MMRTG is not 
providing enough power for the load current demand), then the battery provides that extra power 
(within the limits of its capacity) and is thus discharging; if the net power is positive, then the battery 
uses this extra power to recharge if necessary. 

 
Finally, the data aspect of this system is described as follows: 

• The C&DH commits to memory the data it receives and removes from memory the data it outputs for 
transmission. This model does not capture the practice of keeping data in storage until the ground has 
acknowledged reception. 

• As described above, the Telecom has two states: a non-transmitting state, and a transmitting one with a 
fixed data output rate. 

The information above is captured in the ElementBehavior of each of the components. The following describes how 
these components interact with one another from a data perspective. Two interactions are modeled: 

• The interaction between the C&DH and the two instruments: the data the C&DH receives is the sum of 
the data generated by the two instruments. 

• The interaction between the C&DH and the Telecom: the data the Telecom transmits is the data the 
C&DH outputs. 

 
One of the benefits of constructing such models is the ability to generate Trajectories for StateVariables given 

some Scenario. This also allows modelers to conduct trade studies and optimizations (for example sizing the battery 
or on-board memory storage) by modifying the model or Scenario and observing the resulting effect in the 
Trajectories. An example Scenario is shown in Figure 15: the camera and the magnetometer are turned on and back 
to survival mode according to a specified schedule, and the Telecom transmitting all of the data generated. The 
scenario is captured using a goal network representation form State Analysis: the green rectangles represent 
constraints on the StateVariables of the relevant components, the grey circles are timepoints (dotted lines indicates 
timepoints that occur at the same time), and the arcs between timepoints indicate duration intervals or conditions. 
The reader is referred to Ingham et al.9 for more details on this representation. 

Assuming some values for all Parameters of the model, the Trajectories of several StateVariables can be 
determined by solving the constraint equations of the ElementBehavior and InteractionBehavior blocks. The 
StateVariables of interest in this analysis are the power of the MMRTG, the total load with margin, the individual 
power loads, the battery state of charge, and the total memory used by the C&DH. The results of the analysis are 
shown in Figure 16. 
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Table 1. SysML embedding of behavior ontology concepts and relationships. 

Concept SysML embedding 
BehavingElement Abstract concept, concrete classes embedded instead 
Codomain Value Property 
ElementBehavior Component ConstraintBlock or StateMachine 
InteractionBehavior Component ConstraintBlock 
Interaction Component Block 
Parameter Value property 
State State 
StateVariable Value property 
TimeDomain Value property 
Relationship SysML embedding 
analysis:characterizes Dependency 
constrains No direct embedding – see examples 
hasCodomain No direct embedding, using Value Type (see Figure 17) 
hasTimeDomain No direct embedding, using Value Type (see Figure 17) 
isDescribedBy Composite association 
isElementOf No direct embedding – see examples 
joins Shared association 
uses No direct embedding – see examples 

 
BehavingElement is an abstract concept that is realized using concrete classes, such as mission:Component or 

mission:Environment from the IMCE mission ontology. Both of these classes are embedded in SysML as 
Components. 

In addition to the concepts listed in Table 1, value types have been used to handle the definition of TimeDomain 
and Codomain of StateVariables: specifically, two value type stereotypes have been created: 

• StateVariableValueType: this value type is used to type StateVariables and possesses two value 
properties: one for the TimeDomain and one for the Codomain; 

• ParameterValueType: this value type is used to type Parameters. 
Both these specialized value types takes advantage of the ISO 80000 Model Library from OMG13, and examples of 
StateVariables from the flashlight example are shown in Figure 17. Using the flashlight example, the StateVariable 
CurrentThroughBattery is typed by the StateVariableValueType “currentSV” shown in Figure 17: this value type 
has two properties: (i) a domain (representing the TimeDomain of the StateVariable) typed by the value type “time” 
from the ISO library (associated with the time quantity kind); and (ii) a codomain (representing the Codomain of the 
StateVariable) typed by the value type “electric current” from the ISO library (associated with the electric current 
quantity kind). More specialized and customized value types and quantity kinds can also be created as necessary. 
Also, the handling of discrete StateVariables is described later in this paper. 

Finally, a word on the SysML implementation of the optional InteractionTerminal: an InteractionTerminal is 
embedded as InterfaceBlock, and the “presents” relationship is embedded as a full port, owned by components 
grouping properties and typed by the InterfaceBlock. The properties are then exposed by binding them (using 
binding connectors) to associated UML ports nested in the full port. InteractionTerminals are not used in the 
examples presented in the remainder of this paper. 
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Figure 17. Value type example for three StateVariables from the flashlight example: current, voltage, and 
luminous flux. 
 

Figure 18 shows a SysML model of the properties defined for the battery from the flashlight example, as well as 
the associated ElementBehavior. This behavior was described conceptually in Figure 12. 
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Figure 18. ElementBehavior model in SysML for the battery in the flashlight example. 

 
As discussed earlier, the use of IMCE characterizations results in the separation of the properties used in this 

behavior model from the battery component itself. As a consequence, the StateVariables and Parameters are grouped 
into Component Blocks that characterize the component. The meaning of the grouping is left to the modeler: in 
Figure 18, all properties of interest are gathered into one characterization, while in Figure 20, the properties are split 
between StateVariables and Parameters. Note that the StateVariables are typed by the value types shown in Figure 
17. 

Regarding the embedding of ElementBehavior, Figure 18 shows the presence of additional elements.  
For example, the Battery ElementBehaviorCharacterization has been added in SysML to act as an grouping 
mechanism of several ConstraintBlocks (stereotyped by «behavior:ElementBehavior»). This mechanism is used for 
different reasons, such as: (i) for example in Figure 19 to indicate that the OPEN constraint and the CLOSE 
constraint are part of the same ElementBehavior specification; (ii) to define in the same model alternative 
characterizations for a given BehavingElement: e.g., one Battery ElementBehaviorCharacterization can be used to 
represent a battery model with constant voltage output, while another ElementBehaviorCharacterization of the 
Battery could be used to define a more realistic model with usage-dependent voltage level; or (iii) to separate 
different types of behavior of the same BehavingElement: e.g., all the constraints related to its power aspect would 
be grouped with one ElementBehaviorCharacterization, and all the constraints related to its data aspect would be 
grouped with another one. 
In addition, constraint parameters are used in the ConstraintBlocks (such as “eb_batteryVoltage”) in an effort to 
make the ConstraintBlocks reusable. One can envision the creation of library of behavior specifications (such as 
Ohm’s law in Figure 20), and the constraint parameters are then bound using binding connectors to the appropriate 
properties of the BehavingElement in the parametric diagram of the ElementBehavior Characterization block, 
referencing the appropriate property characterization. In Figure 18,, the Battery ElementBehavior Characterization 
references the Battery Properties, and the constraint parameters eb_batteryVoltage and eb_batteryNominalVoltage 
are bound respectively to the StateVariable VoltageAcrossBattery and the Parameter NominalVoltage. 
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Finally, the ConstraintBlock “Battery Simple Model” is constrained by a constraint that represents the mathematical 
expression equating the battery voltage to the battery nominal voltage. It is currently embedded in SysML using 
expression trees, operations and Element Values, but the specification of the constraint language is out of the 
purview of the behavior ontology and is part of an agreement amongst modelers. 

 
Figure 19 shows the SysML model of the switch ElementBehavior, and it introduces State Machines and the 

handling of discrete StateVariables. 
 

 
Figure 19. ElementBehavior model in SysML for the switch in the flashlight example. 
 

As described in Figure 12, the behavior of the switch is captured using a state machine formalism, and is shown 
in Figure 19 using UML State Machines. Note that the value type of the StateVariable “SwitchPosition” is shown in 
the top right corner of Figure 19, and indicates that the Codomain of this particular discrete StateVariable is typed 
by the State Machine “Switch Position STM”, represented as one of the ElementBehaviors of the switch component 
in Figure 19. The flexibility of SysML to use State Machines as classifiers allows us to avoid the duplication of the 
specification of the Codomain of the discrete StateVariable with the specification of the relevant behavior using a 
State Machine. In this example, the State Machine serves both roles: the states of the State Machine enumerate the 
States (OPEN and CLOSED , elements of the Codomain of the StateVariable SwitchPosition), and the State 
Machine is also used to specify the ElementBehavior constraints associated with each state. For example, if the 
switch is open, then the current across the switch is zero. This constraint is captured by the ConstraintBlock named 
“SP_OPEN Constraint”, and is linked to the OPEN state in the state machine by a dependency stereotyped by 
«analysis:characterizes», as indicated by the notes and the relationMap diagram in Figure 19. This is a convention to 
indicate the domain of applicability of the constraint: the constraint is applicable only for the states it characterizes 
(using the dependency). Alternatively, if a constraint does not characterize any state in the presence of a state 
machine, then it is assumed that the constraint applies to all states of the state machine. Note that this convention 
could also be handled by using conditional logic statements instead in the Constraint Blocks: 

IF (SwitchPosition = OPEN) 
      CurrentThroughSwitch = 0 

ELSEIF (SwitchPosition = CLOSED) 
       VoltageAcrossSwitch = 0 

ENDIF 
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Figure 20 shows the ElementBehavior model of the lamp, capturing the Ohmic behavior of the lamp and the 
light generation behavior. These behaviors were described conceptually in Figure 10. 

 

 
Figure 20. ElementBehavior model in SysML for the lamp in the flashlight example. 
 

Finally, the interaction between the three components from a mesh analysis’s perspective is shown in Figure 21, 
and was described conceptually in Figure 11. 
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Figure 21. Interaction model in SysML for the flashlight example using a mesh analysis. 
 

The embedding of the InteractionBehavior is captured similarly as for the ElementBehavior, using 
ConstraintBlocks, constraint parameters, constraints, and binding connectors. Note that in the ontology, the 
Interaction joins BehavingElements; however in our SysML implementation, due to the separation of the 
BehavingElement and the property characterizations, the «behavior:joins» shared associations relate the Interaction 
to the property groupings directly. Also the “isDescribedBy” relationship (inverse of “describes” relationship 
between an InteractionBehavior and Interaction) is captured using a composite association (i.e., a “black diamond” 
arrow). 

V. Conclusion 
The behavior ontology presented in this paper provides a consistent behavior specification within the existing 

systems engineering process, and improves upon current best practices to allow for efficient design trades and 
optimization, re-use of model elements from project to project, more rigorous and formal behavioral analyses, and 
exchange of behavior information between different tools or languages. 

The behavior ontology provides an approach to capture the state-based behavior of elements and the interactions 
amongst them. These elements are characterized by state variables that vary with time, and the dynamic evolution of 
the state of the system is represented using constraints on these state variables. This paper discussed the various 
concepts and relationships introduced to capture behavioral specifications: the properties (StateVariables and 
Parameters) necessary to characterize BehavingElements, ElementBehaviors to capture the internal behavior of 
these elements, and Interactions and InteractionBehaviors to capture the dynamics among them. In addition, 
Scenarios and Trajectories of StateVariables were introduced to capture a driving mechanism for behavioral 
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analyses that consider the resulting evolution in time of StateVariables. Two examples were discussed in this paper: 
(i) a simple flashlight electrical model to illustrate the concepts and relationships introduced by the ontology and 
their flexible usage to the modeler; and (ii) a more complex spacecraft model involving instruments, power and data 
behaviors to demonstrate the ability of the behavior ontology to handle real-world engineering problems. Finally, an 
implementation in a SysML profile was provided to enable engineers to use the behavior ontology in a compatible 
fashion with related models already captured in SysML. 

Wider-scale application of the behavior ontology to flight projects is currently under way at JPL, as is further 
work on scenario specification. This will allow performance of end-to-end behavioral analyses and identification of 
areas for further development of the approach proposed in this paper. Another area of investigation is to extend the 
behavior ontology to describe off-nominal behaviors and provide capabilities for fault management activities, such 
as automatic generation of reliability artifacts (FMECA, fault trees) or fault coverage analyses. 
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