Maneuver Design for the Juno Mission: Inner Cruise

Thomas A. Pavlak, Raymond B. Frauenholz, John J. Bordi, Julie A. Kangas, and Clifford E. Helfrich

Jet Propulsion Laboratory, California Institute of Technology
Pasadena, California
Mission Overview

- First solar-powered spacecraft to travel to the outer solar system
 - Built by Lockheed Martin
 - Mission design, navigation, and operations at JPL

- Second mission in NASA New Frontiers Program
 - PI: Dr. Scott Bolton, SwRI

- Will nominally operate at Jupiter for one year in 11-day eccentric polar orbit
 - Study Jupiter’s origin and evolution through atmospheric and magnetospheric observations
 - Make detailed gravity measurements

- Mission phases:
 - “Inner Cruise”
 - Launch through Earth flyby cleanup
 - “Outer Cruise”
 - Earth flyby cleanup through Jupiter arrival
Juno Spacecraft

- Powered by three large solar panels (20+ m spin diameter)
- Spin-stabilized about +Z axis
 - High gain antenna (HGA) parallel to +Z axis
 - Main engine parallel to –Z axis
 - Thrust = 662 N
 - Isp = 318.6 seconds
- Reaction control system (RCS) consists of four rocket engine modules (REMs)
 - Forward and aft decks each house two REMs
 - Each REM consists of three, 4.5 N thrusters
 - 1 axial thruster
 - 2 lateral thrusters
Juno Reference Trajectory

- Launched into heliocentric trajectory in August 2011
- Two large Deep Space Maneuvers (DSMs) near aphelion
- Earth Gravity Assist slightly more than 2 years after launch, hence “2+ ΔV-EGA”
- Jupiter Orbit Insertion (JOI) on July 5, 2016 to capture into 107-day polar orbit
- Period Reduction Maneuver (PRM) delivers Juno to 11-day science orbit
 - 30 orbit nominal mission
 - Generates mesh along Jovian equator with 12° longitudinal spacing
- Mission ends with Jupiter impact in 2017
Maneuver Operations Strategy

• Nine TCMs (plus two contingency TCMs) planned during Juno Inner Cruise phase
 – Three deterministic, six statistical
 – One maintenance main engine flush (MEF-1)

• Spacecraft spin rate varies depending on mission phase
 – 1 rpm during interplanetary cruise
 – 2 rpm during Jupiter orbit phase, post-DSM cleanup maneuver, select pre- and post-Earth flyby (EFB) TCMs, and instrument checkout and calibration
 – 5 rpm during main engine burns

• Two Maneuver Implementation Modes:
 – Vector mode
 • Spacecraft burns at cruise attitude
 • Burn decomposed into separate – but coordinated – axial and lateral components
 • Makes use of RCS thrusters and used for all maneuvers except DSM-1 & 2, JOI, & PRM
 – Turn-burn-turn
 • Spacecraft turns to burn attitude, fires engine, and turns back to cruise attitude
 • Used for main engine burns
 – DSM-1, DSM-2, JOI, and PRM
Launch and Post-Launch TCMs

- Launched August 5, 2011 from Cape Canaveral, Florida aboard an Atlas V 551
 - First day of 21-day launch period
 - Launch $C_3 = 31.10 \text{ km}^2/\text{s}^2$

- TCM-1 scheduled 20 days after launch
 - Canceled due to accurate launch injection

- TCM-2 scheduled 180 days after launch
 - Target: DSM-1 Cartesian initial state
 - Vector mode RCS burn:
 - 864 mm/s axial
 - Designed: 867 mm/s
 - $\sigma = 5.29$ mm/s
 - 843.66 mm/s lateral
 - Designed: 844 mm/s
 - $\sigma = 15.04$ mm/s
Deep Space Maneuvers
Earth Flyby Altitude Biasing Strategy

- August 5, 2011 launch date required Earth gravity assist altitude of only 560 km
 - $B \cdot R = 7,075 \text{ km}$
 - $B \cdot T = 6,930 \text{ km}$

- DSM-2 cleanup, TCM-5, executes 10 days after DSM-2

- Pre-launch analysis showed that, due to execution errors, Juno had post-TCM-5 impact probability of $P_{\text{traj}} = 0.46$

- P_{traj} was deemed unacceptably high by the project as it would remain unchanged for ~ 1 year

- “Universal” biased aimpoint selected to reduce P_{traj} below 0.01% across 21-day period
 - $B \cdot R = 14,000 \text{ km}$
 - $B \cdot T = 7,000 \text{ km}$
Deep Space Maneuvers
DSM-1 and DSM-2

- Two deep space maneuvers executed near aphelion in late Summer 2012 to setup the Earth Flyby required to reach Jupiter
 - Divided into two burns because main engine not qualified for required single burn duration
 - Both DSMs designed several months in advance and implemented as turn-burn-turn maneuvers
 - Designed utilizing aforementioned Earth flyby altitude biasing strategy

- DSM-1: August 30, 2012
 - Target: DSM-2 Cartesian initial state
 - Main engine burn:
 - 344.284 m/s
 - Designed: 344.151 m/s
 - $\sigma = 401.86$ mm/s

- DSM-2: September 14, 2012
 - Delayed 10 days to investigate high oxidizer line temperatures/pressure observed during DSM-1
 - Target: biased Earth flyby B-plane aimpoint
 - Main engine burn:
 - 387.941 m/s
 - Designed: 387.722 m/s
 - $\sigma = 452.65$ mm/s
Deep Space Maneuvers
DSM Cleanup Maneuver: TCM-5

- **TCM-5**: October 10, 2012 (DSM-2 + 19 days)
- **Target**: biased Earth flyby aimpoint
 - **Vector mode RCS burn**:
 - 428 mm/s axial
 - Designed: 424 mm/s
 - $\sigma = 3.12$ mm/s
 - 1.714 m/s lateral
 - Designed: 1.720 m/s
 - $\sigma = 15.17$ mm/s
Pre-Earth Flyby Maneuvers
Targeting Earth Flyby: TCM-6

- First main engine flush (MEF-1) executed May 1, 2013
 - 5 second duration
 - 1.1 m/s

- TCM-6: August 7, 2013 (EFB - 63 days)
- Target: Earth flyby aimpoint
 - Vector mode RCS burn:
 - 1.462 m/s axial
 - Designed: 1.457 m/s
 - $\sigma = 8.50$ mm/s
 - 3.096 m/s lateral
 - Designed: 3.093 m/s
 - $\sigma = 15.56$ mm/s

- Deterministic maneuver
- Largest RCS burn to date
Pre-Earth Flyby Maneuvers
Targeting Earth Flyby: TCM-7

- TCM-7: September 9, 2013 (EFB - 30 days)
- Target: Earth flyby aimpoint (same as TCM-6)
 - Vector mode RCS burn:
 - 124 mm/s axial
 - Designed: 119 mm/s
 - $\sigma = 2.11$ mm/s
 - 52.2 mm/s lateral
 - Designed: 49.6 mm/s
 - $\sigma = 15.0$ mm/s
Pre-Earth Flyby Maneuvers
TCM-8 Cancellation Criteria

- TCM-8 planned 10 days prior to Earth closest approach
 - Not desirable to execute maneuver unless necessary

- Impact of cancelling TCM-8 analyzed by mapping TCM-9 propellant costs to the Earth B-plane
 - 43 kg contour represents propellant budgeted for TCM-9 ΔV99 of 23.2 m/s

- TCM-8 would be canceled if post-TCM-7 3-σ orbit determination (OD) solution was within 43-kg contour
Pre-Earth Flyby Maneuvers
TCM-8 Cancellation Criteria

- TCM-8 planned 10 days prior to Earth closest approach
 - Not desirable to execute maneuver unless necessary

- Impact of cancelling TCM-8 analyzed by mapping TCM-9 propellant costs to the Earth B-plane
 - 43 kg contour represents propellant budgeted for TCM-9 ΔV99 of 23.2 m/s

- TCM-8 would be canceled if post-TCM-7 3-σ orbit determination (OD) solution was within 43-kg contour

- September 22, 2013 OD solution (green) was generated 17 days prior to Earth flyby
 - Error ellipse well within 43-kg propellant cost contour so **TCM-8 canceled**
 - TCM-8a contingency maneuver canceled by default
• Juno had designed EFB altitude of ~560 km
Earth Flyby
Conjunction Assessment

- Juno had designed EFB altitude of ~560 km
- Small, but nonzero chance of impacting object in JSpOC catalog (larger than 10 cm)
- Daily ephemerides/covariances delivered to CARA at GSFC for 10 days prior to EFB
- Two collision avoidance maneuvers (CAMs) pre-designed to shift time of closet approach (TCA) by approximately +/- 1 second
- Executed only if both of following satisfied:
 - Probability of impact > 0.01%
 - One of CAMs reduced probability of impact by factor of more than 100
- In the end, Juno came no closer than 26 km to any catalog object and the CAM was canceled
Earth Flyby
Earth Flyby Delivery

- Juno completed successful Earth flyby on October 9, 2013 19:21:24 UTC
 - EFB characteristics, relative to Earth:
 - Altitude = 561 km
 - Velocity = 14.9 km/s
 - Closest approach off South African coast
 - 20 minute eclipse (only post-launch eclipse of entire mission)

- Deviation from EFB target:
 - 6 km in B-plane
 - TCA differed by 0.17 seconds

- Deviation from pre-TCM-8 OD solution:
 - 1 km in B-plane
 - TCA differed by 0.05 seconds

See EFB video [here](#)
Post-Earth Fly and Outer Cruise
Earth Flyby Cleanup: TCM-9

- TCM-9: November 13, 2013 (EFB + 34 days)
- Target: TCM-12 Cartesian initial state (JOI – 34 days)
 - Vector mode RCS burn:
 - 1.324 m/s axial
 - Designed: 1.320 m/s
 - $\sigma = 7.74$ mm/s
 - 1.543 m/s lateral
 - Designed: 1.539 m/s
 - $\sigma = 15.14$ mm/s
- Delayed 13 days due to EFB safe mode events
 - Did not significantly impact trajectory or planned science activities
Post-Earth Fly and Outer Cruise
Outer Cruise

- TCM 10: April 9, 2014
 - Canceled due to highly accurate Earth flyby and TCM-9 execution

- MEF-2: executed May 1, 2013
 - 5 second duration
 - 1.1 m/s

- Future maneuvers:
 - MEF-3: June 2015
 - TCM-11: February 2016
Summary and Concluding Remarks

- To date, Juno has successfully executed all maneuvers nominally and as designed
 - Six pre-Earth flyby TCMs
 - One post-Earth flyby TCM
 - Two main engine flush maneuvers

- Only one maneuver, TCM-2, was larger than its pre-launch ΔV_{99} value
 - Explained by the cancellation of TCM-1

- From a navigation perspective, the EFB on October 9, 2013 was a complete success

- Currently, Juno continues to operate successfully in its Outer Cruise phase and is on-track for a nominal arrival at Jupiter on July 5, 2016

<table>
<thead>
<tr>
<th>Maneuver</th>
<th>Epoch ET</th>
<th>ΔV (m/s)</th>
<th>ΔV_{99} (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCM-1</td>
<td>8/25/11</td>
<td>-</td>
<td>3.9</td>
</tr>
<tr>
<td>TCM-2</td>
<td>2/1/12</td>
<td>1.2</td>
<td>0.5</td>
</tr>
<tr>
<td>DSM-1</td>
<td>8/30/12</td>
<td>344.3</td>
<td>360.1</td>
</tr>
<tr>
<td>DSM-2</td>
<td>9/14/12</td>
<td>387.9</td>
<td>394.8</td>
</tr>
<tr>
<td>TCM-5</td>
<td>10/3/12</td>
<td>1.8</td>
<td>9.2</td>
</tr>
<tr>
<td>TCM-6</td>
<td>8/7/13</td>
<td>3.4</td>
<td>5.5</td>
</tr>
<tr>
<td>TCM-7</td>
<td>9/9/13</td>
<td>0.1</td>
<td>0.4</td>
</tr>
<tr>
<td>TCM-8</td>
<td>9/29/13</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>EFB</td>
<td>10/9/13</td>
<td>7,300</td>
<td></td>
</tr>
<tr>
<td>TCM-9</td>
<td>11/13/13</td>
<td>2.0</td>
<td>14.9</td>
</tr>
<tr>
<td>TCM-10</td>
<td>4/9/14</td>
<td>-</td>
<td>0.9</td>
</tr>
</tbody>
</table>
Acknowledgments

- Is there an “official” NASA/JPL/Cal Tech acknowledgement we need to make?
B-Plane Description
Maneuver Performance

Estimated and Designed Magnitudes

<table>
<thead>
<tr>
<th>Maneuver</th>
<th>Est. ΔV (m/s)</th>
<th>Designed ΔV (m/s)</th>
<th>AP</th>
<th>σ (mm/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCM-2 Axial</td>
<td>0.864</td>
<td>0.867</td>
<td></td>
<td>5.29</td>
</tr>
<tr>
<td>TCM-2 Lateral</td>
<td>0.844</td>
<td>0.844</td>
<td></td>
<td>15.04</td>
</tr>
<tr>
<td>DSM-1</td>
<td>344.284</td>
<td>344.151</td>
<td></td>
<td>401.86</td>
</tr>
<tr>
<td>DSM-2</td>
<td>387.941</td>
<td>387.722</td>
<td></td>
<td>452.65</td>
</tr>
<tr>
<td>TCM-5 Axial</td>
<td>0.428</td>
<td>0.424</td>
<td></td>
<td>3.12</td>
</tr>
<tr>
<td>TCM-5 Lateral</td>
<td>1.714</td>
<td>1.720</td>
<td></td>
<td>15.17</td>
</tr>
<tr>
<td>TCM-6 Axial</td>
<td>1.462</td>
<td>1.457</td>
<td></td>
<td>8.50</td>
</tr>
<tr>
<td>TCM-6 Lateral</td>
<td>3.096</td>
<td>3.093</td>
<td></td>
<td>15.56</td>
</tr>
<tr>
<td>TCM-7 Axial</td>
<td>0.124</td>
<td>0.119</td>
<td></td>
<td>2.11</td>
</tr>
<tr>
<td>TCM-7 Lateral</td>
<td>0.0522</td>
<td>0.0496</td>
<td></td>
<td>15.00</td>
</tr>
<tr>
<td>TCM-9 Axial</td>
<td>1.324</td>
<td>1.320</td>
<td></td>
<td>7.74</td>
</tr>
<tr>
<td>TCM-9 Lateral</td>
<td>1.543</td>
<td>1.539</td>
<td></td>
<td>15.14</td>
</tr>
</tbody>
</table>
Maneuver Performance

Estimated and Designed Pointing – Right Ascension

<table>
<thead>
<tr>
<th>Maneuver</th>
<th>Est. RA (deg)</th>
<th>Designed RA (deg)</th>
<th>AP</th>
<th>σ (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCM-2 Axial</td>
<td>51.179</td>
<td>51.179</td>
<td>0.145</td>
<td></td>
</tr>
<tr>
<td>TCM-2 Lateral</td>
<td>144.433</td>
<td>144.778</td>
<td>0.868</td>
<td></td>
</tr>
<tr>
<td>DSM-1</td>
<td>62.173</td>
<td>62.148</td>
<td>0.243</td>
<td></td>
</tr>
<tr>
<td>DSM-2</td>
<td>62.203</td>
<td>62.197</td>
<td>0.243</td>
<td></td>
</tr>
<tr>
<td>TCM-5 Axial</td>
<td>344.157</td>
<td>344.184</td>
<td>0.213</td>
<td></td>
</tr>
<tr>
<td>TCM-5 Lateral</td>
<td>74.412</td>
<td>74.110</td>
<td>1.227</td>
<td></td>
</tr>
<tr>
<td>TCM-6 Axial</td>
<td>118.333</td>
<td>118.338</td>
<td>0.205</td>
<td></td>
</tr>
<tr>
<td>TCM-6 Lateral</td>
<td>6.667</td>
<td>6.620</td>
<td>1.490</td>
<td></td>
</tr>
<tr>
<td>TCM-7 Axial</td>
<td>164.347</td>
<td>164.390</td>
<td>0.392</td>
<td></td>
</tr>
<tr>
<td>TCM-7 Lateral</td>
<td>53.873</td>
<td>61.012</td>
<td>7.794</td>
<td></td>
</tr>
<tr>
<td>TCM-9 Axial</td>
<td>264.837</td>
<td>264.820</td>
<td>0.241</td>
<td></td>
</tr>
<tr>
<td>TCM-9 Lateral</td>
<td>253.906</td>
<td>254.704</td>
<td>1.992</td>
<td></td>
</tr>
</tbody>
</table>
Maneuver Performance

Estimated and Designed Pointing – Declination

<table>
<thead>
<tr>
<th>Maneuver</th>
<th>Est. Dec. (deg)</th>
<th>Designed Dec. (deg)</th>
<th>A_P</th>
<th>σ (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCM-2 Axial</td>
<td>18.593</td>
<td>18.597</td>
<td>0.138</td>
<td></td>
</tr>
<tr>
<td>TCM-2 Lateral</td>
<td>16.330</td>
<td>16.365</td>
<td>0.833</td>
<td></td>
</tr>
<tr>
<td>DSM-1</td>
<td>19.456</td>
<td>19.501</td>
<td>0.229</td>
<td></td>
</tr>
<tr>
<td>DSM-2</td>
<td>19.520</td>
<td>19.500</td>
<td>0.229</td>
<td></td>
</tr>
<tr>
<td>TCM-5 Axial</td>
<td>-6.703</td>
<td>-6.750</td>
<td>0.212</td>
<td></td>
</tr>
<tr>
<td>TCM-5 Lateral</td>
<td>20.507</td>
<td>19.969</td>
<td>1.153</td>
<td></td>
</tr>
<tr>
<td>TCM-6 Axial</td>
<td>20.921</td>
<td>20.901</td>
<td>0.191</td>
<td></td>
</tr>
<tr>
<td>TCM-6 Lateral</td>
<td>39.134</td>
<td>39.362</td>
<td>1.148</td>
<td></td>
</tr>
<tr>
<td>TCM-7 Axial</td>
<td>6.669</td>
<td>6.665</td>
<td>0.389</td>
<td></td>
</tr>
<tr>
<td>TCM-7 Lateral</td>
<td>53.250</td>
<td>54.466</td>
<td>4.530</td>
<td></td>
</tr>
<tr>
<td>TCM-9 Axial</td>
<td>-37.439</td>
<td>-37.453</td>
<td>0.192</td>
<td></td>
</tr>
<tr>
<td>TCM-9 Lateral</td>
<td>54.670</td>
<td>54.542</td>
<td>1.155</td>
<td></td>
</tr>
</tbody>
</table>