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Interest in studying small bodies has grown significantly in the last two decades, and
there are a number of past, present, and future missions. These small body missions chal-
lenge navigators with significantly different kinds of problems than the planets and moons
do. The small bodies’ shape is often irregular and their gravitational field significantly
weak, which make the designing of a stable orbit a complex dynamical problem. In the
initial phase of spacecraft rendezvous with a small body, the determination of the gravita-
tional parameter and lower-degree spherical harmonics are of crucial importance for safe
navigation purposes. This motivates studying how well one can determine the total mass
and lower-degree spherical harmonics in a relatively short time in the initial phase of the
spacecraft rendezvous via flybys. A quick turnaround for the gravity data is of high value
since it will facilitate the subsequent mission design of the main scientific observation cam-
paign. We will present how one can approach the problem to determine a desirable flyby
geometry for a general small body. We will work in the non-dimensional formulation since
it will generalize our results across different size/mass bodies and the rotation rate for a
specific combination of gravitational coefficients.

Nomenclature

G Gravitational constant
M∗ Reference mass
GM Gravitational parameter (i.e., GM∗)
R∗ Reference mass
P Associated Legendre function
C, S Spherical harmonic coefficients
U , Ū Dimensional and non-dimensional gravitational potentials
t, τ Dimensional and non-dimensional times
r, r Dimensional and non-dimensional positions
V , V Dimensional and non-dimensional velocities
~a Acceleration
b̄∗ Non-dimensional basis function
Z Measurement
~X State vector

H̃, H Measurement partials at the observation time and epoch
Φ State transition matrix
Λ Information matrix
P Covariance matrix
Γ Doppler-only approximation of the information matrix
W Weight matrix
σ Uncertainty
% Asteroid - Earth vector
[BA] Rotation matrix from the inertial (A) frame to the body frame (B) of the asteroid
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[RA] Rotation matrix from the inertial (A) frame to the RTN (R) frame
Super/subscript
n Degree
m Order
p Periapsis
Dop Doppler
Opnav Optical navigation
sat Spacecraft
ast Asteroid
earth Earth
Ben Bennu
Ito Itokawa
RTN Radial - transverse - normal
0 Epoch (i.e., t = t0)
k Time stamp

I. Introduction

Interest in studying small bodies has grown significantly in the last two decades, and there are a number of
past, present, and future missions. These small body missions pose different types of challenges to navigators
than conventional large bodies such as planets and moons. The small bodies’ shape is often irregular and
their gravitational field significantly weak. Thus, the perturbations from the non-spherical gravitational
coefficients and solar radiation pressure (SRP) are more significant around small bodies and can result in
unstable orbit that will result in an impact to or escape from the body in the matter of days.1 Often
times the SRP would drives the orbit eccentricity up and gravity perturbs the orbit significantly near the
periapsis, resulting in a chaotic development of the spacecraft orbit. However, contrary to the challenges, the
weak perturbing forces allow the spacecraft to fly more freely. Hovering and multiple flybys (e.g., ping-pong
maneuvers) are the two demonstrative cases that are not easily attainable with large bodies.

In the initial phase of spacecraft rendezvous with a small body, the determination of the gravitational
parameter and lower-degree spherical harmonics are of crucial importance. An accurate estimation of these
parameters is important for safe navigation of a spacecraft in a strongly perturbed environment typical of
small bodies. Added benefits can be gained by quick and robust estimation procedure because such a mission
design can enable earlier commencement of the science/observation campaigns. The usual procedure is to
perform some number of hyperbolic flybys prior to orbit insertion because such mission design does not require
rigorous stability analysis of the trajectory (i.e., robust to gravitational uncertainties).2–4 This motivates
studying how well one can determine the total mass and lower-degree spherical harmonics in a relatively
short time in the initial phase of the spacecraft rendezvous. We will focus on this initial characterization
phase where the gravity field is largely unknown, and investigate the accuracy with which we can determine
some crucial parameters of the gravity field via slow, hyperbolic flybys.

The past research mainly investigated the effectiveness of Doppler for the GM (i.e., gravitational param-
eter) estimation. A number of resources are available for this task, where their focus is on high-speed flybys
of asteroids during the cruise period to the main planetary/small body target5–10 or flybys of moons during
the planetary tour.11,12 Both Anderson13 and Sybert et al.14 analytically looked at the covariance of the
gravitational parameter (GM) assuming a linear trajectory under the two-body dynamics. This assumption
is easily validated since their combination of the target radius and target speed yields the trajectory with
high (� 1) eccentricity. Similar analytical approach is explored to estimate the gravitational parameter by
Pätzold et al.,6–8 where the total Doppler shift is related to GM . This formulation yields a point solution for
GM when the real tracking data is available. On the other hand, Takahashi and Scheeres2 discussed a nu-
merical approach to determining the feasibility of the estimation of the lower-degree gravitational coefficients
for different bodies.

In addition, the perturbations to the spacecraft trajectory due to the second-degree harmonics have been
analytically solved before. For example, Anderson and Giampieri15 and Rappaport et al.16 investigated the
perturbations to the hyperbolic trajectory due to C20 and C22 by variation of parameters. However, their
formulation is such that the spacecraft trajectory is related to its dynamics through non-singular orbital
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elements and perturbations to the local coordinate frame, which is not very useful for covariance analysis.
Ultimately, we wish to compute the Doppler from the spacecraft state (i.e., position and velocity).

In this paper, we will perform the covariance analysis of the gravitational coefficients from a single flyby
of Doppler and optical navigation (OpNav), for which we resort to numerical analysis. To this end, a
least-squares filter is developed and its performance is numerically evaluated to provide an eye chart of the
covariance performance with respect to the flyby radius and flyby speed. With this tool we will identify
optimal flyby geometries to estimate GM , C20, and C22. The rest of the paper is organized as follows:
we will first introduce the equations of motion of the spacecraft, the measurement models, and present
the performance of the Doppler/OpNav covariance. For the rest of the paper, we would only consider the
gravitational forces and do not deal with the SRP or other perturbation forces.

II. Non-dimensional Dynamics

There are over 10,000 near-Earth asteroids discovered and catalogued, and their shape as well as their
gravity fields vary substantially from one body to another. Thus, it is sensible to derive the equations of
motion in the non-dimensional space to generalize the problem. In the dimensional system, the spherical
harmonic gravity field is expressed as

U =
GM∗

R∗

∞∑
n=0

n∑
m=0

(
R∗

r

)n+1

Pnm(sinφ)

[
cos(mλ)

sin(mλ)

]
·

[
Cnm

Snm

]
(1)

where U is the potential, G is the gravitational constant, M∗ is the reference mass (nominally the total
mass of the body), R∗ is the reference radius (arbitrary, but convenient if set to the circumscribing radius
of the body17), r is the spacecraft position, Pnm is the associated Legendre function of degree n and order
m, Cnm and Snm are spherical harmonic coefficients, λ is longitude, and φ is latitude in the body-fixed
frame. The degree zero and order zero term is commonly referred to as the point-mass or two-body gravity
field. The acceleration of the spacecraft is given by the partial of the potential with respect to the spacecraft
coordinates.

A. Two-body Dynamics

We first derive the two-body dynamics in the non-dimensional form. The equation of motion of the two-body
dynamics, in the dimensional form, is

~̈r = −GM
r3

~r (2)

Now we choose the normalizing distance as R∗ and the normalizing speed (V ∗) as the orbital speed on
a circular orbit at the normalizing radius. Then, the the normalizing time (τ) is obtained by dividing the
normalizing distance by the normalizing speed.

~r =
~r

R∗
(3)

~V =
~V

V ∗
(4)

V ∗ =

√
GM

R∗
(5)

τ =
R∗

V ∗
=

√
R∗3

GM
(6)
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We will denote the non-dimensional spacecraft position and velocity as ~r and ~V . Then, the partial
derivative of time t with respect to the normalized time τ is

∂τ

∂t
=

√
GM

R∗3
(7)

This means that every second in the real time (t) should be scaled by
√
GM/R∗3 in the non-dimensional

space. Thus, the partial derivative of time is now transformed to

∂

∂t
=

∂

∂τ

∂τ

∂t
=

∂

∂τ

√
GM

R∗3
(8)

∂2

∂t2
=

GM

R∗3
∂2

∂τ2
(9)

Thus, we can rewrite Equation 2 as

∂2~r

∂t2
= R∗

∂2~r
∂t2

= R∗
GM

R∗3
∂2~r
∂τ2

=
GM

R∗2
∂2~r
∂τ2

= −GM
r3

~r = −GM
R∗2

1

r3~r
(10)

which yields

∂2~r
∂τ2

= − 1

r3~r (11)

Therefore, the non-dimensional equations of motion has the unity GM irrespective of the body. It is
convenient to set the normalizing distance as the reference radius of the spherical harmonics in order to
simplify the expression for the higher-degree and higher-order terms, as shown below.

B. General Potential and Acceleration Expressions in Non-dimensional Forms

The gravitational potential in Equation 1 has the units of [km2/s2]. Thus, to non-dimensionalize it, we
multiply it by τ2/R∗2 = R∗/GM to get

Ū =

∞∑
n=0

n∑
m=0

(
1

r

)n+1

Pnm(sinφ)

[
cos(mλ)

sin(mλ)

]
·

[
Cnm

Snm

]
(12)

∂2x̄

∂τ2
=

∂Ū

∂x̄
=

∞∑
n=0

n∑
m=0

[
Cnm

Snm

]
·
[
−1

2
(1 + δ0,m)b∗n+1,m+1 +

1

2

(n−m+ 2)!

(n−m)!
b∗n+1,m−1

]
(13)

∂2ȳ

∂τ2
=

∂Ū

∂ȳ
=

∞∑
n=0

n∑
m=0

[
Snm

−Cnm

]
·
[

1

2
(1 + δ0,m)b∗n+1,m+1 +

1

2

(n−m+ 2)!

(n−m)!
b∗n+1,m−1

]
(14)

∂2z̄

∂τ2
=

∂Ū

∂z̄
=

∞∑
n=0

n∑
m=0

[
Cnm

Snm

]
·
[
−(n−m+ 1)b∗n+1,m

]
(15)

where the overbar denotes the non-dimensional quantities and the basis function b∗nm is defined as

b∗nm =

(
1

r

)n+1

Pnm(sinφ)

[
cos(mλ)

sin(mλ)

]
(16)

Thus, the potential is still a linear combination of the original spherical harmonics, which are already non-
dimensional and body specific parameters. If one wishes to work in the normalized spherical harmonics,18

the normalized, non-dimensional equations of motion can be obtained effortlessly by using the normalized pa-
rameters for the spherical harmonics and by replacing the basis function b∗nm with its normalized counterpart
in Equations 13 through 15.
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III. Acceleration due to C20 and C22

In this section, we look at some properties of the acceleration due to the second-degree spherical harmon-
ics. Because C21, S21, and S22 can be zeroed out when the coordinate frame is aligned with the principal
axes of the body,19 we only deal with C20 and C22 coefficients.

A. C20 Acceleration

The acceleration and its magnitude due to C20 (which is the negative of the J2 coefficient widely used in
many applications) are given as

~̈rC20
=

∂ŪC20

∂~r =
3

2

1

r7C20


x̄
(
r2 − 5z̄2

)
ȳ
(
r2 − 5z̄2

)
z̄
(
3r2 − 5z̄2

)

 (17)

∣∣∣~̈rC20

∣∣∣ =
3

2

1

r4 |C20|
√

5 sin4 φ− 2 sin2 φ+ 1 (18)

which is only the function of the latitude. The argument inside the square root is zero when sin2 φ= (1± 2i) /5.

Thus,
∣∣∣~̈rC20

∣∣∣ is never zero for real-valued φ. This ensures that no matter where the flyby occurs, the space-

craft is perturbed by the C20 acceleration. That is, the Doppler measurement is constantly influenced by the

C20 acceleration unless its change is orthogonal to the line-of-sight. Now we study the sensitivity of
∣∣∣~̈rC20

∣∣∣
to the latitude. The zero-crossings of ∂

∣∣∣~̈rC20

∣∣∣ /∂φ occurs when

sinφ = 0 → φ = 0◦

cosφ = 0 → φ = ±90◦

5 sin2 φ− 1 = 0 → φ = ±26.565◦
(19)

These conditions show that φ = 0◦ is the local maximum, φ = ±26.565 are global minima, and φ = ±90◦

are global maxima (Figure 1(a)). Figure 1(b) shows the angle between the plane perpendicular to nadir (i.e.,
TN-plane in the RTN coordinate frame) and the C20 acceleration. Thus, when the C20 acceleration is the
strongest, it acts in the direction along the radial direction (i.e., the maximum C20 accelerations are aligned
with the GM acceleration). As C20 is negative for an oblate body, this counters the two-body acceleration.
In other words, the oblateness translates to missing mass at the poles.
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(b) Angular offset (deg.) of ~̈rC20 from the TN-plane

Figure 1. Normalized magnitude of the C20 acceleration (i.e., scaled to the maximum value of unity) and its
angle from the plane perpendicular to nadir. In the radial, transverse, normal (RTN) frame (also known as
radial, in-track, and cross-rack frame), this plane is the TN-plane. That is, the value of 0◦ indicates that the
C20 acceleration is perpendicular to the radial vector, and the value of 90◦ is parallel.

B. C22 Acceleration

The C22 acceleration is given as follows:

~̈rC22
=

∂ŪC22

∂~r = −3
1

r7C22


x̄
(
5x̄2 − 5ȳ2 − 2r2

)
ȳ
(
5x̄2 − 5ȳ2 + 2r2

)
5z̄(x̄2 − ȳ2)

 (20)

∣∣∣~̈rC22

∣∣∣ = 3
1

r4C22 cosφ
√

5 cos2 φ cos2 2λ+ 4 (21)

By inspection, cosφ ≥ 0 and the quantity within the square root is larger than zero. The maximum and
minimum values of the C22 acceleration are given as

∣∣∣~̈rC22

∣∣∣
max

=
9C22

r4 for

{
φ = 0◦

λ = 90◦q where q = 0, 1, 2, . . .

∣∣∣~̈rC22

∣∣∣
min

= 0 for

{
φ = ±90◦

λ = N.A.

Thus, unlike the C20 acceleration, the maximum C22 does not occur at the poles, but does along the
equator (Figure 2(a)). It is also when the acceleration is aligned with the two-body acceleration (Figure 2(b)).
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Figure 2. Normalized magnitude of the C22 acceleration and its angle from the TN-plane.

IV. Coordinate frames

The covariance of the spacecraft state and other parameters are prescribed in the inertial frame. An-
derson13 defines his coordinate frame such that the origin is at the center of mass of the asteroid, and the
inertial z-axis is directed from the asteroid to Earth. The directions of x and y-axes are arbitrary. Thus, for
convenience, we orient the inertial xy-plane such that the pole of the body lies in the inertial xz-plane. The
flyby orientation is uniquely determined from the 3-1-3 Euler angles: right ascension ΩA, inclination iA, and
argument of perigee ωA, where the subscript A is for Anderson. This frame is considered our inertial frame.
Then, together with the target radius (bp, where p is for periapsis) and the target flyby speed (Vp), we can
specify the flyby geometry. This coordinate frame has an advantage that the first rotation about the z-axis
does not play a role when computing Doppler due to GM (Section VII).

Earth

Asteroid

ΩA

iA

ωA Periapsis

ẑA

ŷA

x̂A
(a) Inertial frame

ẑA

ŷA = ŷB

x̂A

x̂B

ẑB

θ

θ

Earth

Asteroid

(b) Pole offset from the inertial frame

Figure 3. Coordinate frames.

Note that while the covariance output is needed in the inertial frame, the higher-degree and higher-order
gravitational terms must be computed in the asteroid body frame (B subscript). For a principal axis rotator,
the body frame is uniquely defined by specifying the pole orientation, the rotation rate, and the reference
time. We assume that the nominal pole orientation (ẑB axis) is along x̂A, the body is uniformly rotating
at ω̇Rot = 2π/T where T is the rotation period, and the reference time is the passage of periapsis. The
rotation period in the non-dimensional space is denoted as T̄ . In order to model a body with a different
pole orientation, we define the angular offset of the pole (θ) in the inertial xz-plane. That is, the pole offset
is angle between x̂A and ẑB , measured positive in the clockwise direction around the y-axis. Due to the
symmetry around ẑA, only θ is necessary to specify the orientation of the pole. The time of passage can also
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be altered by defining another reference time, but we do not study its effect in this paper.

V. Doppler Measurement

Doppler is the primary radiometric data used in all spacecraft missions. In this section, we investigate
what information content Doppler contains for GM , C20, and C22 harmonic coefficients. For convenience,
we derive the equations in the dimensional space.

Doppler measurement is the velocity change along the line-of-sight from the Earth to the spacecraft (%̂).
Equations 22 through 24 show the Doppler due to GM, C20, and C22:

∆V Dop
GM (tk) =

∫ tk

t0

(~aGM · %̂) dt (22)

∆V Dop
C20

(tk) =

∫ tk

t0

(~aC20 · %̂) dt (23)

∆V Dop
C22

(tk) =

∫ tk

t0

(~aC22 · %̂) dt (24)

where ~a is the acceleration and the subscript indicates the acceleration due only to that coefficient. In a
least-squares filter, the information about the parameters are accumulated via observations and dynamics
(i.e., state transition matrix). Therefore, in order to perform covariance analysis, we need to construct a
measurement model and the equations of motion. Equation 25 defines our observable model for Doppler:

ZDop = %̂ · ~Vsat =

(
~rsat − ~rearth
|~rsat − ~rearth|

)
· ~Vsat (25)

where Z denotes the observable. For simplicity, the Earth ground station coordinates are equated to the
Earth’s ephemeris in the inertial frame, and we ignore the atmospheric calibrations. The measurement model
in Equation 25 is the aggregate sum of GM, C20, and C22 contributions. If the filter used to estimate these
parameters can separate their contributions, we would then be able to obtain a clean estimate that is free
of corruption from the correlation terms.

The computation of the sensitivity matrix (i.e., observation partial) demonstrates the strength of the
observables with respect to the estimated parameters. For example, the sensitivity value of zero means that
there is no direct information about the state parameter that can be extracted from the measurement, and
the state parameter must be related to the measurement via the state transition matrix (STM, Φ). Let us
assume that we want to estimate the position, velocity, GM, and the lower-degree harmonics in the filter.
Then, the state vector is defined as

~X =
[
~rsat ~Vsat GM C20 C22

]
(26)

The observable equation (Equation 25) is used to compute the sensitivity matrix (H̃) for the position
and velocity of the spacecraft, GM, C20, and C22 as follows:

H̃Dop =
∂ZDop

∂ ~X
=

[ (
1[3×3] − %̂%̂

)
·
~Vsat
%

[1×3], %̂[1×3],01×3

]
(27)

Equation 27 is used to accumulate the information matrix (Λ) after being mapped to epoch by the STM.
Now, remember that we chose our ẑA to be directed from the asteroid to the Earth (Section IV). Thus, %̂ is

approximated as %̂ ≈ −ẑA = [0, 0,−1]. Also, % � |~Vsat|. Consequently, Equation 27 becomes

H̃Dop ≈
[

1

%
[Vx, Vy, 0] , [0, 0,−1] , 01×3

]
≈

[
01×3, [0, 0,−1] , 01×3

]
(28)
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Then, by direct computation, the sensitivity matrix mapped to epoch (i.e., H = H̃Φ) is expressed as

H(tk, t0) ≈ −
[
∂żk
∂x0

∂żk
∂y0

∂żk
∂z0

∂żk
∂ẋ0

∂żk
∂ẏ0

∂żk
∂ż0

∂żk
∂GM

∂żk
∂C20

∂żk
∂C22

]
(29)

where the STM is defined as

Φ(tk, t0) =



∂~rk
∂~r0

∂~rk

∂~V0

∂~rk
∂GM

∂~rk
∂C20

∂~rk
∂C22

∂~Vk
∂~r0

∂~Vk

∂~V0

∂~Vk
∂GM

∂~Vk
∂C20

∂~Vk
∂C22

03×6 13×3


(30)

As expected, the information of Doppler resides in the velocity change along the Earth - asteroid direction.
Equation 29 is used to construct the information matrix Λ as

ΛDop =
N∑

k=0

Λk + P̄−10 =
N∑

k=0

HT
k WDopHk + P̄−10 =

1

σ2
Dop

N∑
k=0

HT
k Hk + P̄−10 (31)

where N is the total number of observations, WDop is the weight matrix, σDop is the measurement uncertainty
for Doppler at 0.1 [mm/s], and P is the covariance. P̄0 denotes the a priori covariance at epoch. The
frequency of the Doppler measurement is every 60 [s] and last ±4 [hours] around the closest approach. Now,
by direct expansion of the equation of motion of STM, we get

∂~Vk
∂GM

=

∫ tk

t0

(
∂~a

∂~r

∂~r

∂GM
+

∂~a

∂GM

)
dt (32)

∂~Vk
∂C20

=

∫ tk

t0

(
∂~a

∂~r

∂~r

∂C20
+

∂~a

∂C20

)
dt (33)

∂~Vk
∂C22

=

∫ tk

t0

(
∂~a

∂~r

∂~r

∂C22
+

∂~a

∂C22

)
dt (34)

For a relatively fast (but slow in the absolute sense) flyby around a small body, the magnitudes of the
first terms are low compared to the second terms. In other words, the sensitivity of the spacecraft position
to the gravitational coefficients are far lower than the spacecraft velocity. Thus, we can ignore the first terms
in the integrand in Equation 32 through 34 to approximate Equation 29 as

%̂ · ∂
~Vk

∂GM
≈ %̂ ·

∫ tk

t0

∂~a

∂GM
dt =

∆V Dop
GM (tk)

GM
(35)

%̂ · ∂
~Vk

∂C20
≈ %̂ ·

∫ tk

t0

∂~a

∂C20
dt =

∆V Dop
C20

(tk)

C20

(36)

%̂ · ∂
~Vk

∂C22
≈ %̂ ·

∫ tk

t0

∂~a

∂C22
dt =

∆V Dop
C22

(tk)

C22

(37)
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Thus, the information matrix in Equation 31 can be approximated by

Λk =


Γ(GM,GM) Γ(GM,C20) Γ(GM,C22)

Γ(C20, GM) Γ(C20, C20) Γ(C20, C22)

Γ(C22, GM) Γ(C22, C20) Γ(C22, C22)

 (38)

where Γ, for parameters c1 and c2, is a scalar quantity defined as

Γ(c1, c2) = Γ(c2, c1) =
1

σ2
Dop

N∑
k=0

∆V Dop
c1 (tk)∆V Dop

c2 (tk)

c1c2
+ P̄−10 (c1, c2) (39)

Γ can be used as the proxy for the information matrix and the full numerical filter is not necessary
to obtain the rough performance of the covariance analysis (Figure 4). This cuts down the computation
time immensely since running the full filter for a large number of different conditions is expensive. Zero
correlation occurs when ∆V Dop

c1 (tk) is along %̂ and ∆V Dop
c2 (tk) is perpendicular to %̂, and vice versa. However,

it is extremely hard to de-correlate the gravitational coefficients, much more so when there are correlations
with position and velocity of the spacecraft. One way to address this problem is to work in the ideal
situation where we only estimate one gravitational coefficient at a time. Such scenario would assume that
the spacecraft position/velocity are well known, and each flyby attempt to reduce the uncertainty for only
one gravitational coefficient such that all information content is directly applied to solve for that particular
parameter.
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Figure 4. ΓC22,C22
and ΛC22,C22

. The gravity field is that of Bennu. b̄p = 2.03 and V̄p = 3.874 (i.e., non-dimensional
target radius and target flyby speed). The pole offset (θ) is varied from 0◦, 45◦, to 90◦. The rotation period in
the non-dimensional space is 5, 10, and 20. That is, T = 5τ , 10τ , and 20τ . The inclination and the argument of
perigee are fixed at iA = 90◦ and ωA = 90◦. The right ascension is varied from 0◦ to 360◦. It is shown that the
Doppler proxy (Γ) approximates the behavior of the full information (Λ) well, except for the magnitude. The
magnitude of the information is of lesser importance since the information of GM and C20 scales similarly.

VI. Optical Navigation

The observation model for optical navigation (OpNav) is simply the line-of-sight vector from the space-
craft to the landmarks on the asteroid surface in the asteroid body frame.

ZOpn = −r̂B = −[BA]

(
~rsat − ~rast
|~rsat − ~rast|

)
= −[BA]r̂N (40)

where the rotation matrix [BA] maps a vector in the inertial frame (A) into the body frame (B). Then, the
partial of Equation 40 with respect to the spacecraft position/velocity is given as
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H̃Opn =
∂ZOpn

∂
(
~rsat, ~Vsat

) =

[
−1

r
[BA]

(
1[3×3] − r̂Ar̂A

)
, 0[3×3]

]
=

[
H̃1,Opn, 0[3×3]

]
(41)

HOpn(tk, t0) =

[
H̃1,Opn

∂~rk
∂~r0

H̃1,Opn
∂~rk

∂~V0
H̃1,Opn

∂~rk
∂GM

H̃1,Opn
∂~rk
∂C20

H̃1,Opn
∂~rk
∂C22

]
(42)

Thus, OpNav’s information content is in the sensitivity of the spacecraft position with respect to the
estimated parameters, where as Doppler’s information content is in that of the spacecraft velocity with
respect to the estimated parameters.

The weight matrix of OpNav is provided in the RTN frame. That is, its uncertainty is with respect to
the viewing geometry of the spacecraft relative to the body. We denote the rotation matrix from the RTN
frame (R) to the inertial frame (A) as [AR], and the reverse direction as [RA]. Then, the weight matrix in

the RTN frame (WOpn
RTN ) is converted into that in the inertial frame (WOpn

A ) as

WOpn
A = [AR]WOpn

RTN [RA] (43)

where

WOpn
RTN =


0 0 0

0
1

σ2
Opnav

0

0 0
1

σ2
Opnav

 (44)

Equation 44 shows that the OpNav measures the direction but not the distance. Thus, there is no
information content along the radial direction from a single OpNav observation. The direction is specified
by two angles (azimuth and elevation), and the OpNav gives two rank of information while each Doppler
adds only one rank of information. For example, suppose that the r̂A points along the x-axis. Then, the first
element of

(
1[3×3] − r̂Ar̂A

)
is zero in Equation 41 and the information in this direction is not existent. The

camera model that we use is field-of-view (FOV) of 10◦ with 1024 pixels, and we assume that we can resolve
the image to 0.5 pixel, which gives σOpnav = 8.52× 10−5 [rad.]. It is assumed that an OpNav data is taken
every 30 minutes for ±4 [hours] around the closest approach, and there are two landmarks in each picture
that are diametrically opposite on the limb. We do not consider the lighting conditions, so the landmarks
are always visible.

VII. GM Estimation

The analysis by Anderson13 shows that GM is best estimated when the inclination is at 90◦ and the
argument of perigee is 30◦. However, Sybert et al.14 formulates the GM uncertainty in terms of the orbit
energy and turn angle and reveals that the GM uncertainty is better obtained when the viewing angle is such
that the spacecraft transits in front of the body. This case yields the uncertainty that is half of when the
viewing angle is parallel to the spacecraft velocity. Comparing the two analyses, Sybert’s result makes more
intuitive sense since maximum Doppler change is recorded when the spacecraft velocity changes along the
Earth - spacecraft line-of-sight direction. This discrepancy is thought to arise from Anderson’s formulation
where the GM estimate is correlated with the flyby geometry. Without this correlation, the maximum
information content is indeed obtained at the argument of perigee of 90◦ (Figure 5).
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Figure 5. Doppler change and GM information/covariance as a function of ωA for a fixed inclination iA = 90◦.
b̄p = 2.03 and V̄p = 3.874. The right ascension does not play a role when only the GM is estimated. The pole angle
offsets of 0◦, 45◦, and 90◦ are tested for the rotation period of T̄ = 5. The information and covariance by Doppler
and OpNav do not change with pole offset/rotation period, because there is only two-body acceleration.

As expected, OpNav (Figures 5(d) and 5(e)) yields the same information/uncertainty irrespective of the
argument of perigee because the relative geometry is the same for this measurement. Thus, this result shows
that when science requires that the periapsis occurs near the xy-plane (i.e., small component along ẑA) in
the inertial frame, OpNav is a more reliable measurement than Doppler.

VIII. C20 and C22 Estimation

In this section, we evaluate the performance of C20 and C22 covariance for numerous flyby geometries.
Section VII showed that GM is best determined when iA = 90◦ and ωA = 90◦, regardless of the right
ascension. However, because the C20 and C22 accelerations are computed in the body frame, it is not
analytically trivial to find a combination of the inclination, argument of perigee, and right ascension that
yields the minimum uncertainties for these coefficients. Thus, we performed the exhaustive search for the
minimum covariance value around Bennu20 and Itokawa.21 Their gravity field parameters are listed in
Table 1. Bennu’s gravity field is constructed from the uniform density, and the actual density value is
irrelevant since we will be using the non-dimensional dynamics presented in Section II. The resolution of
the grid search is 30◦ for inclination and 10◦ for argument of perigee and right ascension. For both bodies,
b̄p = 2.03 and V̄p = 3.874. The pole offsets and the rotation periods are varied. Table 2 shows where the
minimum covariance for GM , C20, and C22 occurred when only Doppler is processed.

Table 1. Reference radius, GM , C20, and C22 for Bennu.

Body R∗ [km] GM [km3/s2] C20 C22

Bennu 0.2465 4.1062× 10−9 −3.4264× 10−2 3.4483× 10−3

Itokawa 0.1619 2.36× 10−9 −0.3247 0.1416
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Table 2. Inclination, argument of perigee, and right ascension for the minimum GM , C20, and C22 uncertainties
with Doppler. Bennu and Itokawa are the target bodies.

θ, [deg.] T̄ , [n.d.] iBen, [deg] ωBen, [deg] ΩBen, [deg] iIto, [deg] ωIto, [deg] ΩIto, [deg]

GM − − 270 270 130 270 270 40

C20 0 5 210 270 90 30 90 270

0 10 30 90 270 330 270 90

0 20 330 270 90 150 90 270

45 5 180 330 330 180 170 350

45 10 180 160 160 180 90 270

45 20 0 320 40 180 80 260

90 5 150 90 340 30 90 190

90 10 150 90 70 30 90 190

90 20 30 90 290 330 270 0

C22 0 5 90 270 90 90 270 90

0 10 90 90 150 90 90 120

0 20 150 70 160 90 90 20

45 5 60 270 90 60 270 90

45 10 30 270 0 60 90 90

45 20 30 290 350 30 280 350

90 5 30 270 0 330 90 0

90 10 330 270 180 30 90 0

90 20 330 270 180 330 270 0

The result shows that GM is best estimated when the inclination and the argument of perigee are either
90◦ or 270◦ (equivalent in terms of the Doppler shift). Comparing numbers, it is seen that there are a lot
of similarities where the minimum uncertainty occurs for the inclination, argument of perigee, and right
ascension. There are angles that are separated by 180◦ and by the same angle around a reference angle (i.e.,
X ±∆ [deg.]). The following tables show the longitude (λ) and latitude (φ) of the target point in the body

frame, and the angle (β) between the periapsis velocity and the transverse axis T̂ obtained by

T̂ =
ẑB ×~rB
|ẑB ×~rB |

(45)

That is, the angle β can be comprehended as the rise angle of the periapsis velocity.
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Table 3. Longitude (λ) and latitude (φ) of the target point in the body frame and the rise angle (β) for the
minimum GM , C20, and C22 uncertainties with Doppler for Bennu and Itokawa.

θ, [deg.] T̄ , [n.d.] λBen, [deg] φBen, [deg] βBen, [deg] λIto, [deg] φIto, [deg] βIto, [deg]

GM − − −180.00 −0.00 140.00 180.00 −0.00 130.00

C20 0 5 −180.00 −60.00 180.00 −180.00 60.00 180.00

0 10 −180.00 60.00 180.00 −180.00 60.00 180.00

0 20 −180.00 60.00 180.00 180.00 −60.00 180.00

45 5 0.00 45.00 180.00 180.00 −45.00 180.00

45 10 0.00 45.00 180.00 180.00 −45.00 180.00

45 20 −0.00 45.00 0.00 −180.00 −45.00 180.00

90 5 −110.00 30.00 180.00 −80.00 30.00 0.00

90 10 −20.00 30.00 180.00 −80.00 30.00 0.00

90 20 20.00 30.00 0.00 −90.00 30.00 0.00

C22 0 5 −0.00 0.00 0.00 −0.00 0.00 0.00

0 10 −180.00 −0.00 60.00 180.00 −0.00 30.00

0 20 118.05 −2.46 80.14 180.00 0.00 70.00

45 5 −0.00 −15.00 0.00 −0.00 −15.00 0.00

45 10 −67.79 −20.70 49.10 180.00 15.00 0.00

45 20 −61.34 −11.18 55.83 −67.27 −19.38 54.26

90 5 −90.00 −30.00 0.00 90.00 −30.00 0.00

90 10 90.00 30.00 0.00 90.00 30.00 0.00

90 20 90.00 30.00 0.00 −90.00 30.00 0.00

From Table 3, one can extract some important characteristics. First, the rotation rate does not play a role
when estimating C20. This is because the C20 acceleration is only a function of the latitude (Equation 18). As
long as the latitudinal coverage is identical for a given observing geometry, the covariance value is the same.
Also, note that the angle β is parallel to the transverse axis for all cases. This means that the maximum
latitude is attained at the periapsis and almost symmetric coverage of the latitudes is accomplished save for
the rotation of the body. For C22, there does not appear to be a good correlation between the longitude and
latitude. However, β increases as the rotation rate is decreased (i.e., higher T̄ ), except when θ = 90◦. This
is because of the longitudinal dependency in Equation 21. The spacecraft attempts to stay as close to the
same longitude as it can to feel the consistent tug by the C22 acceleration, which makes the spacecraft cut
along the north-south direction when the rotation rate is slower.

Figure 6 shows the contour plot of the GM , C20, and C22 uncertainties in percentage of the value with
respect to the target radius and target velocity for the optimal flyby geometry shown in Table 2. Due to
limited spacing, we only show the contour plots for Bennu.
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Figure 6. Contour of GM , C20, and C22 uncertainties (% of the value) as functions of b̄p and V̄p for Bennu. The
pole offset is 0◦, and the normalized rotation period is 5. iA, ωA, and ΩA are configured so that they yield the
minimum uncertainty for both coefficients when b̄p = 2.03 and V̄p = 3.874 (Table 2).

The above contour plot defines the best possible uncertainty for a given gravity field and observing
geometry. This is because we only estimate one parameter at a time, leveraging all the information available
from the observations. However, the general trend of the uncertainties as a function of b̄p and V̄p is very
similar for other bodies, which is a merit of using the non-dimensional coordinates. One interesting feature
that we can observe in Figure 7 is that the C22 uncertainties have spikes that do not exist in the C20

uncertainties. These are due to the rotation of the body, and we plotted the C22 uncertainties due to
Doppler for various rotation periods in Figure 7.
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Figure 7. Doppler C22 uncertainties (% of the value) as functions of b̄p and V̄p for Bennu for different rotation
periods. Note that the range of V̄p is different from Figure 6. The pole offset is 0◦ for all cases. iA, ωA, and ΩA

are configured so that they yield the minimum uncertainty for both coefficients when b̄p = 2.03 and V̄p = 3.874
(Table 2). This plot shows that the cause of the peaks in the contour are due to the rotation of the body.

Now, we realize that the flyby geometry given in Table 3 is only for the particular set of target radius and
target speed. Therefore, it is important to check if the magnitude of uncertainty in Figure 6 is consistent
for different sets of optimal flyby geometry given by another set of target radius and target speed. For
this purpose Figure 8 is generated for Bennu. First, we choose a pair of b̄p and V̄p in Figure 6(c) for C20

and another in Figure 6(e) for C22. Specifically, we chose b̄p = 3.3 and V̄p = 20 for C20 and b̄p = 4.5 and
V̄p = 2.287 for C22, both of which yield ∼ 50% uncertainty. For both cases, the pole offset is 0◦ and T̄ = 5.
Then, for these target radii and target speeds, we perform the exhaustive search to find the geometry that
yields the global minimum for their uncertainties. We found that such cases exist when iA = 150◦ for C20

and iA = 270◦ for C22. The contour plot of their uncertainties with respect to ωA and ΩA are generated
for those inclinations (Figure 8). Then, as shown, the minimum uncertainty is about the same order of
magnitude around 50%, indicating that the magnitude of the uncertainties given in Figure 6 are consistent.
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Figure 8. Contour of C20 and C22 uncertainties (% of the value) as functions of b̄p and V̄p for Bennu. θ = 0◦,
T̄ = 5. b̄p = 3.3 and V̄p = 20 is used to find the combination of iA, ωA, and ΩA that yields the minimum
uncertainty for C20, and b̄p = 4.5 and V̄p = 2.287 for C22. The exhaustive search shows that iA = 150◦ yields such
a case for C20 and iA = 270◦ for C22.

IX. Conclusion

This paper investigated the covariance analysis of the gravitational parameter and the second-degree
spherical harmonic coefficients around small bodies. The equations of motion are non-dimensionalized so
the GM is unity. The gravitational field is then independent of the gravitational parameter (i.e., mass/size)
and simply a function of the combination of the higher-degree and higher-order coefficients. The force model
only contains the gravitation from the small body and ignores other perturbations such as solar radiation
pressure to isolate the estimation performance of the lower-degree gravitational parameters.

Following the derivation of the non-dimensional dynamics, we studied the properties of the C20 and C22

accelerations to show where the maximum/minimum accelerations occur as well as their angle from the
point-mass acceleration. We showed that the C20 is independent of longitude and is maximum at the poles
and minimum at φ = 26.5◦. C22 acceleration is minimum at the poles (its magnitude is zero) and maximum
along equator separated by 90◦.

We then proceeded to define the coordinate frames, where the inertial z-axis is directed from the asteroid
to Earth and the body pole is in the xz-plane. This coordinate frame has an advantage that Doppler due
to GM is independent of the right ascension. In addition, due to symmetry, the pole orientation is specified
by only one quantity, namely the pole offset θ. This coordinate frame conveniently allows one to specify
the flyby geometry by widely used 3-1-3 Euler angles that are right ascension, inclination, and argument of
perigee.

In order to develop a least-squares filter, the observation models are constructed for Doppler and optical
navigation (OpNav). It is shown that Doppler’s information resides in the line-of-sight velocity perturbation
and OpNav’s information in the position perturbation due to the gravity. A simplification in Doppler
formulation allows one to approximate the Doppler observation matrix by the direct Doppler measurement
for a given set of spherical harmonic coefficients, which facilitate the computation of the least-squares filter.

Utilizing the mathematical development above, the performance of the GM , C20, and C22 are presented
for a single flyby trajectory. Due to the complexity of matrix inversion and undesirable correlation terms in
the information matrix, we process each coefficient one by one. Then, it is shown that GM is best estimated
when the inclination and the argument of perigee are both 90◦ or 270◦, irrespective of the right ascension.
Comparison of Doppler and OpNav covariance also reports that when the periapsis occurs near the xy-
plane, OpNav is a more reliable measurement than Doppler. The C20 and C22 coefficients are modeled after
Bennu and Itokawa, and their covariances are studied for various flyby geometries. It is shown that the C20

uncertainties are independent of the rotation rate, as its acceleration is only a function of the latitude, and
the rise angle β is parallel to the local transverse axis T̂ . The C22 uncertainties are more complicated due
to its dependence on both latitude and longitude. However, correlation between the rotation rate and β are
reported. Generally, the slower the rotation rate corresponds to the higher rise angle.

Finally, the optimal flyby geometries are found by exhaustively searching the three dimensional space
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of right ascension, inclination, and argument of perigee for a given target radius/speed. Then, the contour
plots of the GM , C20, and C22 with respect to the target radius and target flyby speed are presented for
the optimal flyby orientation. One notable feature is that the due to the longitudinal dependence of C22

acceleration, the contour plot of C22 uncertainty has peaks that are functions of the rotation period. In order
to verify the applicability of such plots, a different set of target radius/speed are extracted from the contour
in order to perform another exhaustive search. The result shows that these uncertainties are consistent with
the original contours, validating the consistency between each other.
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S., Sierks, H., Lamy, P., and Weiss, B. P., “Asteroid 21 Lutetia: Low Mass, High Density,” Science, Vol. 334, 2011, pp. 491.
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