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A Simple Analytic Model for Estimating Mars Ascent Vehicle 
Mass and Performance 

Ryan C. Woolley* 
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109 

The Mars Ascent Vehicle (MAV) is a crucial component in any sample return campaign.  
In this paper we present a universal model for a two-stage MAV along with the analytic 
equations and simple parametric relationships necessary to quickly estimate MAV mass and 
performance.  Ascent trajectories can be modeled as two-burn transfers from the surface with 
appropriate loss estimations for finite burns, steering, and drag.  Minimizing lift-off mass is 
achieved by balancing optimized staging and an optimized path-to-orbit.  This model allows 
designers to quickly find optimized solutions and to see the effects of design choices. 

Nomenclature 
Azi = inertial azimuth of launch asymptote 
g = gravitational acceleration of Earth 
GLOM = gross lift-off mass 
h = orbit altitude 
Isp = specific impulse 
M0 = total mass at stage ignition 
M1,2 = total mass of stage 1 or 2 
MAV = Mars ascent vehicle 
Mdry = stage dry mass 
Mfixed = stage dry mass that does not vary with propellant 
MPL = payload mass 
Mprop = stage propellant mass 
OS = orbiting sample 
rm = radius of Mars 
SMF = structural mass fraction 
T = engine thrust 
tb = stage burn duration 
V0 = circular velocity at the surface 
Vc = circular velocity on orbit 
VMars = rotational velocity of the surface 
VS,E,Z = south, east, and zenith components of the launch velocity 
ΔV = change in velocity 
ΔVDL = drag losses  
ΔVGL = gravity losses  
ΔVSL = steering losses  
μ = gravitational parameter of Mars 
φ = flight path angle 
φbo = flight path angle at stage 1 burnout 

I. Introduction 
here have been dozens of designs for Mars ascent vehicles (MAVs) to return samples over the past four decades. 

1,2  One of the most popular designs is that of a two-stage solid rocket, which is often favored because it tends to 
reduce both mass and complexity.3 Arriving upon a converged, optimized MAV design complete with all relevant 
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which are the circular velocities at altitude (h) and at the surface, respectively.  rm is the radius of Mars.   

This inertial velocity must then take into account the rotation of Mars.  The ΔV required is adjusted by vectorially 
removing the eastward contribution of Mars’ rotation from the first stage ΔV.  
 

 )cos(*7.240 latVMars   m/s  (2) 

where lat is the latitude of the launch site.  The addition (or removal) of Mars’ contribution is performed in the south-
east-zenith (SEZ) reference frame.  In this frame VMars is always due east. To take the most advantage of the rotation 
it is best to launch from the equator eastward into an equatorial orbit. 

The inertial velocity vector is represented in the SEZ frame by eqs. (3)-(5).  Note that VMars is removed from VE.   
 )cos()cos(,1 iboi AzVVs    (3) 

 MarsiboiE VAzVV  )sin()cos(,1    (4) 

 )sin(,1 boiZ VV    (5) 

Azi is the launch azimuth (in the inertial frame) necessary to achieve the desired orbital inclination, i, from the launch 
latitude. It is calculated by 

 )]cos()[cos(sin 1 latiAzi
   (6) 

The magnitude of the impulsive ΔV required on the surface is then given by 
 

 222*
1 ZES VVVV    (7) 

The asterisk * here represents the idealistic, impulsive ΔV. 
The ΔV required to circularize once the MAV has coasted to its apex is simply the difference between the 

horizontal component of its velocity and the circular velocity at the given altitude, Vc.   
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For simplicity the equations shown here assume a circular final orbit.  In practice any orbit may be targeted by 
replacing Vc with the velocity required at that point in the orbit.  ΔV1

* + ΔV2 is the minimum total ΔV required to 
achieve a desired orbit for a given φbo. 

C. Estimating ΔV Losses 
Losses were estimated by comparing idealistic ΔV calculations with those from real numerical simulations.  

Differences are typically less than 5% and somewhat predictable, thus eliminating the need for high-fidelity models.  
What is important is to correctly model the trends as functions of the relevant parameters.   

Losses can be categorized into three types:  
1) Gravity losses 
2) Drag losses 
3) Steering losses 

The second stage burn typically has a zero flight path angle (i.e. horizontal) throughout its duration in addition to 
occurring above the atmosphere, thus avoiding any appreciable losses listed above.  For this model the second stage 
ΔV is given by eq. (8) without further modification. 
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Gravity loss is due to the finite nature of the burn.  It is a function of the burn time, tb, and is equivalent to the 
magnitude of the thrust required to counteract gravity throughout the burn.  The burn duration is calculated by 
 

 
T

M
gIt prop

spb    (9) 

where Isp is the specific impulse, g is Earth’s gravitational acceleration, Mprop is the mass of the propellant expelled 
during the burn (see eq. (15)), and T is the magnitude of the thrust.  The gravity loss is then given by 
 

 )sin( bobGL gtV    (10) 

where tb is the duration of the 1st burn and φbo is the flight path angle (φ)  at stage 1 burnout.†  Gravity losses are 
largest for long burns (low thrust) and near-vertical ascents. 

Calculating the actual drag loss would entail having detailed knowledge of MAV geometry, drag coefficients vs. 
Mach number, atmospheric models, etc. to feed into an optimizer.  The good news is that the atmosphere on Mars is 
quite thin and the drag only represents a small fraction (1-3%) of the total ΔV to get to orbit.  Drag loss increases with 
increasing velocity and lower burn-out angles.  Higher thrust to weight ratios cause the MAV to reach higher speeds 
at lower altitudes where the atmosphere is thicker.  Lower burn out angles not only carry larger 1st stage velocities 
(left-hand side of Figure 2), they also mean traveling at a shallower angle, thus staying in the appreciable atmosphere 
longer.  The drag loss can be approximated by: 
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where M0 is the initial mass, T/M0 gives the initial acceleration, and A and B are constants from curve fits. Using A = 
2-3 (depends on aerodynamics) and B = 1.1 give good estimates for drag.  The cosecant function assures a high penalty 
for very low elevation launch angles (goes to infinity at φbo=0). 

Steering losses are due to the need to command the vehicle using thrust-vector control in 6 degree-of-freedom 
simulations.  Thrust-velocity misalignment causes the vehicle to pitch and turn throughout the burn – whether it be 
intentional or unintentional.  The loss is proportional to the cosine of the thrust-velocity vector and is numerically 
integrated throughout the commanding sequence.  The integration is quite complex and highly dependent on the MAV 
design itself.  However, steering loss is typically the smallest of the losses (a few 10’s of m/s at most) and can be 
effectively modeled using a linear model: 

 
 AzDCVSL  **    (12) 

where Δφ = | φbo – φlaunch| and ΔAz  = |Azdesired – Azlaunch|  during the 1st burn. C and D are constants from curve fits.  
Using C = D = 0.2 typically gives reasonable results. ΔAz = 0 is nominal.  Steering losses are zero with gravity turn 
and launch towards the true azimuth.   
 The total ΔV for stage 1 complete with losses is now given by 
 

 SLDLGL VVVVV 
*

11   (13) 

where ΔV1
* is the idealistic velocity given in eq. (7). 

                                                           
†The flight path angle is not necessarily constant throughout the 1st stage burn (e.g. vertical launch).  However, the 
pitch-over to the optimal φ is typically complete in a few seconds and does not significantly affect gravity losses. 
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 propdrystage MMM    (16) 

The gross lift-off mass is then the sum of the stages and payload mass: 
 

 PLMMMGLOM  21   (17) 

GLOM is usually the primary figure-of-merit in preliminary MAV designs.  Numerical optimizers choose amongst 
variable parameters so as to minimize this mass.  As long as the other constraints (e.g. peak heating, total length, g-
loads, orbital accuracy, etc.) are achieved, GLOM can be seen as a surrogate for cost and complexity. 

A. Model Implementation in Excel 
It was noted that the calculation of dry mass and propellant mass of each stage is iterative.  What’s more is that 

the ΔV in eq. (15) for stage one is dependent on the mass calculations because of the drag, steering, and gravity loss 
models, creating another iteration loop.  As we seek to minimize GLOM by varying φbo all of these parameters change 
and restart the iteration process.  Implementing an algorithm for this MAV model would require many nested  

 

 

 

Figure 5.  Screen shot of MAV model implementation in Excel.  The yellow cells are user inputs, the 
green cells are defaults or calculated values, and the blue cells are the values used in the model.   

 

Input Override Suggested Used Units % Quantity Calculated Units

Orbit  Type Circular Circular Circular GLOM 194.4 kg

Target Altitude 500 500 500 km Stage 1

--------- 22% Burn Out Mass 41.9 kg

Burn 2 Alt 500 500 59% Propellant 114.9 kg

S1 Burn Out Angle 35 46.5 35 deg 81% Total 156.8 kg

Inclination 0 0 0 deg Stage 2

Latitude 0 0 0 deg 11% Burn Out Mass 22.2 kg

Launch Elevation 90 90 90 deg 8% Propellant 15.4 kg

Launch Azimuth 90 90 90 deg 19% Total 37.6 kg

Stage 1 3% OS

Fixed Mass - 1 29.3 22 29.3 kg 63% V1 2506 m/s

PSMF - 1 0.0% 9% 0.0% 37% V2 1481 m/s

Contingency 43% 43% 43% % Vtot 3987 m/s

Propulsion Time 723.5 sec

Thrust - 1 10000 7600 10000 N

Isp - 1 285.7 285 285.7 s Rmav 3896 km

Stage 2 Vmav 3315 m/s

Fixed Mass - 2 12 6 12 kg Vmars 240.7 m/s

OS Mass 5 5 5 kg AZi 90.0 deg

PSMF - 2 0.0% 12.0% 0.0% V1i 2570 m/s

Contingency 43% 43% 43% % VS 0 m/s

Propulsion VE 1864 m/s

Thrust - 2 4320 4200 4320 N VZ 1474 m/s Nominal

Isp - 2 285.7 285 285.7 s Gravity Losses 73 m/s 1 74.92602 105.9614 removed *SQRT(2)/2 multiplier 4/10/14

Model Fidelity Steering Losses 12 m/s 8-Apr 20-May

Mars Rotation? Yes Yes Yes Drag Losses 44 m/s 3 1.1 66.51049 44.34033 58.60211 old

Drag Loss? Yes Yes Yes Burn Time 1 32.2 sec

Grav. Loss? Yes Yes Yes Burn Time 2 10.0 sec

Steering Loss? Yes Yes Yes T/W 1 51 m/s2

T/W 2 115 m/s2

Min S1 prop 100.0 61.5 Mass Flow Rate 1 3.6 kg/s

Fixed S2 Total Mass 32.2 14.0 Mass Flow Rate 2 1.5 kg/s

Fixed fuel mass 102 BOA: 51.3 Masses

SSTO No 51.5 101.9046205 102.10714 S1 Variable Mass 0.0 kg 41.9

S2 Variable Mass 0.0 kg 17.2

SENSITIVITIES Δ GLOM S1 Impulse 322 kN s

+1 kg S1 BO Mass 2.5 kg/kg S2 Impulse 43 kN s

+1 kg S2 BO Mass 4.2 kg/kg

+ 10 km altitude 0.75 kg/10 km Accel S1 12.8 g

+1 S1 Isp 0.60 kg/sec

+1 S2 Isp 0.17 kg/sec
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programming loops to satisfy all of the equations simultaneously.  Since the goal of this endeavor was to create a 
transparent, easy to use estimator of MAV mass and ΔV, we implemented the model using the ubiquitous Microsoft 
Excel®.  Interlinking cells using iterative calculations is easy and straightforward.‡ 

Figure 5 shows a screen shot of how this model is used in Excel.  It has suggested values, input overrides, and 
calculations all shown clearly at a glance.  With all of the equations interconnected, it is possible to immediately see 
the effects of any changes.  It also shows gear ratios (sensitivities, lower left), plots of the trajectory, effects of varying 
burn-out angle, and the mass distribution.  On a second worksheet the same equations are repeated for all possible 
burn-out angles, and the one that minimizes GLOM is suggested on the main page.  This “pseudo-optimization” 
method skirts the need for programming loops and is plenty accurate for this application.  Of course, the user can 
always override the suggested burn-out angle if they wish to constrain ΔV’s, propellant masses, etc. 

Sometimes it is instructive to manually vary one parameter and watch how another parameter(s) changes.  But 
other times a user may wish to vary a parameter in small steps and capture the outputs in other cells for the purposes 
of understanding sensitivities and creating plots.  This can be done by hand in a few minutes with cut-and-paste to 
capture the desired information.  But in order to do this faster, we wrote a short macro-based VBA script that allows 
the user to vary n input parameters over specified ranges and capture m outputs.  Figure 7 below shows an example 
output that was created to visualize the effects varying the 1st stage thrust.  The whole process took only a few seconds 
to set up and execute. 

 

 

Figure 6.  Trade space study: The effects of stage 1 thrust on GLOM.  The trade space explorer tool was used to 
quickly vary the thrust and capture the new GLOM (in kg).  Thrust levels much below 3000 N caused the T/W ratio to 
be so low so as to allow burn time and gravity losses to go to infinity.  High thrust decreases the gravity losses but 
increases drag. 

 

B. Optimized Staging 
If two stages are identical in their Isp and dry mass fraction (Mdry/Mwet) then their total mass will be minimized when 

ΔV is split equally between them. 12  As either of these parameters change, it will become beneficial to shift more of 

                                                           
‡ It is, however, wise to utilize some precautions so as to not let the iterations grow without bounds by inputting 
parameters outside the design constraints.  This will cause many of the cells to “break” and is sometimes difficult to 
correct. Save often. 
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collected from both internal and external sources, both historical and current, and adapted to run through the model.  
Table 1 shows the data of the model inputs and outputs for 10 such designs.  They vary from a ~3 ton liquid MAV 

1 2 3 4 5 6 7 8 9 10

Type Solid Solid Solid Solid Solid Liquid Solid Solid Solid-Liquid SSTO

2nd Stage Guided Yes Yes Yes No No Yes No Yes Yes n/a

Optimizer POST POST POST SNOPT POST Unknown POST OTIS SNOPT SNOPT

Target Altitude 508 507 500 524 600 514 484 500 390 390 km

S1 Burn Out Angle 39 28.2 35 46.2 37.9 28.8 41 31.4 29 6 deg

Orbit Inclination 45 45 0 0 0 90 45 45 45 45 deg

Launch Latitude 45 45 0 0 0 0 0 45 0 0 deg

Stage 1

Fixed Mass - 1 26.3 24.6 30.5 28.3 22.2 375.5 38.4 30.8 5.7 - kg

PSMF - 1 0.0% 0.0% 0.0% 0.0% 13.0% 0.0% 0.0% 0.0% 23.5% -

Contingency 17% 21% 43% 43% 0% 0% 20% 0% 0% - %

Propulsion

Thrust - 1 21569 23205 17858 7600 10647 35280 17800 21576 15632 - N

Isp - 1 285.7 297.7 285.7 285.7 283 300.6 293 285.7 285 - s

Stage 2

Fixed Mass - 2 33.6 30.8 29 6.8 3.9 335 10.5 38.4 21.3 44.2 kg

OS Mass 5 5 5 3.9 5 20 5 5 5 6 kg

PSMF - 2 0.0% 0.0% 0.0% 0.0% 14.0% 0.0% 0.0% 0.0% 18.1% 5.1%

Contingency 13% 23% 43% 43% 0% 0% 20% 0% 0% 0% %

Propulsion

Thrust - 2 6319 4052 4724 2850 2475 70560 2600 6318 900 3560 N

Isp - 2 285.5 290 285.7 285.5 279 281 293 285.5 236 256 s

Stage 1

Burn Out Mass 30.8 29.8 43.6 41.9 31.9 375.5 46.1 30.8 39.0 0.0 kg

Propellant 158.1 153.3 176.7 76.4 74.9 1730.9 100.9 158.6 141.8 202.2 kg

Total 188.9 183.1 220.3 118.3 106.9 2106.4 147.0 189.4 180.8 202.2 kg

Stage 2

Burn Out Mass 42.9 42.8 46.5 12.4 9.9 355.0 17.6 43.4 30.8 60.7 kg

Propellant 32.6 21.3 32.3 15.9 7.3 188.3 14.9 28.3 25.0 4.5 kg

Total 75.5 64.2 78.8 28.4 17.3 543.3 32.5 71.7 55.8 65.3 kg

V

V1 2555 2826 2504 2063 2569 3123 2376 2620 2558 3542 m/s

V2 1585 1150 1481 2311 1515 1173 1762 1408 1375 181 m/s

Vtot 4139 3976 3985 4374 4084 4296 4137 4028 3933 3723 m/s

Gravity Losses 68 37 63 88 47 281 42 48 58 66 m/s

Steering Losses 12 14 12 8 12 12 11 13 13 19 m/s

Drag Losses 104 104 52 31 73 12 80 78 67 55 m/s

Durations

Ascent Time 713.5 803.5 731.2 631.5 791.8 837.7 670.7 735.6 698.3 1757.0 sec

Burn Time 1 20.5 19.3 27.7 28.2 19.5 144.7 16.3 20.6 25.4 142.6 sec

Burn Time 2 14.5 15.0 19.2 10.3 8.1 7.4 16.5 12.6 64.3 3.2 sec

Calculated GLOM 264.4 247.3 299.1 146.7 124.1 2649.6 179.5 261.1 236.6 267.4 kg

Actual GLOM 263 251 302 150 126 2642 178.7 267.5 237.1 273 kg

Difference 0.5% -1.5% -0.9% -2.2% -1.5% 0.3% 0.4% -2.4% -0.2% -2.0%

MODEL INPUTS

MODEL OUTPUTS

Table 1. Model Comparison with Actual MAV Designs.  GLOM agreement is typically within a few percent of 
actual values across a wide range of designs and optimization schemes. 
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 2,1, 25.435.2 drydry MMGLOM    (18) 

with a standard error of 3.9 kg over the range shown in Figure 9. 

V. Conclusions 
Once the basic design decisions of a MAV have been made, the entire ascent trajectory is essentially optimized by 

one parameter: φbo.  Using the analytical equations of orbit transfer, the rocket equation, and some parametric loss 
models, it is possible to calculate the masses and ΔV’s of an optimized MAV ascent trajectory in a user friendly 
environment such as Excel.  What’s more is that changes to masses or performance values can be made on the fly and 
sensitivities can readily be seen and quantified. 

The results of this model have been compared to actual MAV designs and numerical simulations with surprising 
agreement – often to within a few percent.  We were able to trace the design process of starting from a fully guided, 
two-stage solid MAV weighing approximately 300 kg down to a single-string, unguided 2nd stage “mini-MAV” 
weighing closer to 150 kg.  This exercise allows designers to quickly see the efficacy of design decisions in reducing 
mass.  We have also been able to model various other designs from the past decade and draw conclusions on the 
primary drivers for their mass and performance. 
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