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SMAP Mission Objectives

- Direct observations of soil
moisture and freeze/thaw states
from space

- Improved estimates of water,
energy and carbon transfers
between land and atmosphere

- Enhanced weather and climate
forecasts, improved flood prediction
and drought monitoring

http://smap.jpl.nasa.gov/
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SMAP Team Members and
Responsibilities

- Radiometer and ground science data processing (GSFC)

- Radar, instrument integration, test and prelaunch mission
management (JPL)

- Reflector boom assembly (Northrop Grumman)

- Spin mechanism assembly (Boeing)
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SMAP and Aquarius/SAC-D

Both fly a GSFC radiometer and JPL radar but:

SMAP Aquarius/SAC-D

- Measures soil moisture and - Measures sea surface salinity

freeze/thaw states
- 3 feed horns permanently

- Single feed horn exposed to shadowed

the sun o
- Non-spinning platform

- Spinning platform
5 SU - 2.5m fixed antenna

- 6m deployable spinning ) 3
antenna - 0.1°C/week thermal stability

requirement
- 0.7°C/orbit thermal stability
requirement
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Instrument Configuration

rFT = .~ -The L-band radar components are on the
‘ despun side of SMAP

- The L-band radiometer resides on the
spun side of the observatory

- Cylindrical core structure (CS) houses
Spin Mechanism Assembly (SMA)

- 4 major assemblies mounted on CS
- Reflector Boom Assembly (RBA)
- Integrated Feed Assembly (IFA)

- Radiometer Back End Assembly
(RBEA)

- Instrument Control Electronics(ICE)
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Radiometer Configuration

SMA Inside . o

Core Structure  “fpem b3 \

Feedhorn with

| EPS Radome
REEA 4 | Isolator
. i ROE — s RFEA
(Radiometer Digital Electronics)™ B2 LA e (Radiometer Front End AREIRES
RBE

(Radiometer Back End) OMT

(Ortho Module Transducer)

- IFA and RBEA are the primary assemblies that make up the L-band
radiometer

- RFEA contains the most thermally sensitive components
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RFEA Conﬂguratlon

- RFE is the component with the tightest thermal stability requirement

- MLI cocoon is implemented around the RFEA
- Isolates components from the environment
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Derivation of Thermal Stability
Requirements

Soil moisture Antenna Feed to Electronics Brightness
error budget = temperature =2 input and RF loss =2 temperature
calibration and emission

- An acceptable error was allocated to
four time periods

- Instantaneous per minute rate
- Change per orbit, month and mission life

A
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Radar
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Thermal Requirements

Short Term Long Term
Radiometer
Component Zone | dT/dt dT/dt Monthly Mi:s?:::_ife
(°C/min) | (°C/orbit) | (°C/month) 0)

RFE 1 0.05 0.7 4 4
Diplexers, Cal
Noise Source, 2 N/A 2 10 10
Couplers
oMT 3 N/A 3 10 15
Isolator &
Feedhorn 4 N/A 8 20 60
Radome 5 N/A 170 60 170
RBE N/A 0.1 N/A N/A N/A
RDE N/A 0.5 N/A N/A N/A
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Thermal Environments

SMAP orbital parameters
- sun-synchronous 6PM AN orbit

- 685 km altitude

- orbital period is 98.5 minutes

- beta angles range from 58° to 88°
- eclipse when 58° <B< 65°

- max. eclipse time = 18.9 minutes
- no eclipse when 65° <3< 88°

- eclipse event lasts approximately
83 days from May 11 to August 2

Beta 58.5° (View From Sun)
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Environmental Hot Case Cold Case
Parameter

Solar Constant 1420W/m? 1290W/m?
Earth IR 250W/m? 190W/m?*
Albedo Factor 0.35 0.25

* Recommended by Aquarius Thermal Team
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ATC Implementation

- ATC implemented to adjust RFE temperature set point due
to undetected gain glitches

- Short term stabilities are met passively

- Instrument Thermal tasked with delivering the ATC
algorithm to Boeing for implementation into ICE

- Peer Review held to confirm recommended algorithm was
sufficient for delivery to Boeing

- Effects of ATC implementation on stability performance

- All sources of error addressed in modeling and resulting
algorithm selection
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Thermal Models

- ThermXL is an excel-based thermal model

- Used ThermXL to perform quick algorithm trade studies (10 minutes)
compared to the detailed Thermal Desktop model (4 hours)

Thermal Desktop ThermXL
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Algorithm Options

Proportional-Integral-Derivative Control

d(T  —-T
Q Kp x(Tset —T)+Kl. xj(Tset —T)dt+Kd v ( SZ:t )
Proportional Control
Q
Q - KP X (T:s‘et _T) Quud -

Modified Proportional Control

Q — Kp X (T;et o T) + Cij‘:S‘Ql Tset_Tband Tset Tset+Tband
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Algorithm Selection

Teet = 25°C  Tipnijim = 20.8°C
Modified P-control P-control Pl-control

Thamg = £ 1°C Ky = 10 WIC Ky = 10 WIC
K, =5 WI/C K = 0W/C-s K = 0.001 W/C-s
Cotrser = 5 W
RFE Temperature RFE Temperature RFE Temperature
).f/'rm! =25 6°0 { * 'Fn_; :2:4 _3;;_: —_— i , ._.-"'fT,.m =25.1°C

./ AT = 0.08°Clorbit i ./ AT =0.08°Clorbit ./ BT =0.08°Clorbit

- Modified P-control is good enough to meet all stability requirements

- Q. (26W) not large enough to benefit from K, term for Pl control

- Not dependent on time therefore no memory of previous temperature needed
- No reset problem

- Easy to change the set temperature

- Short term stabilities and temperature variations could be improved by tightening T, _ 4
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Sources of Error

« Temperature Sensor

Description Comments Value
. Tolerance included in specification to vendor. Value will be known at
Thermistor Tolerance . . . . : . N/A
installation since calibration curves provided.
Harmess Interested in relative temperature_readlngs as opposed to absolute. Can N/A
be calibrated out.
mA current source 0.005mAvalue is assumed negligible. N/A
12-bitADC Absorbed in samplingrate. N/A

12-bit coefficients

Temperature sensor quantization error based on thermistor selected.

TS Quantization =
0.0335°C/count

Sample Rate = 30

Delays Absorbed in samplingrate. Not concerned due to large thermal mass. ceconds
Noise Not modeled. N/A
* Heater

Description Comments Value
Heater Tolerance Tolerance includedin specifi_cation tq vendor. Value will be known at N/A

installation.

Harness Can be calibrated out. N/A
« Controller

Description Comments Value

12-bit DAC Voltage

Heater quantization error. Voltage variation of 29.5V £ 6%.

Heater Quantization =
0.007326V/count
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ThermXL Algorithm Trade Studies

- Simple model performs rapid studies to determine Modified P
algorithm effects

- Quantization of temperature reading and applied voltage for
heater power

- Gain margin
- Tpang (€rror band)
- Voltage variation

- Examined by comparing orbital stability of RFE (most sensitive
component) for the worst case variation in environmental
conditions (58° with hot conditions) with a temperature set point
of 20°C (most likely initial set temperature)



- Digitization step value of
operational heater depends on
O~max and Tband

- Heater size = 26 W

- 0.43W per step forT,,4=1.0°C

- No significant impact of RFE
orbital stability due to
digitization of Q

Time [sec)

0 10000 20000 30,000 40000 50,000 60,000

Time (sec)

RFE Temperature Temperature Sensor on RFE Plate
20807  — T g I I I
e e s e o
R ‘ T 1 I U
% ﬂ 1 ;"IA ﬂ.A ‘ﬂ«ﬁﬁﬂ ﬁ LAy b gt g gt Jb g
émfl:‘HHHl I.Flr.‘l.l'!lu[__)d_: §m~ ,AWU‘;H_ || [l
BRIV VIV UV VUV £ w01 AL S g
& 2020 | “ ! o) I S LA N L i
0 10000 20000 30,00 40,000 50,000 60,000 0 10000 0000 30,000 40,000 50,000 0000
Time [sec) Time (sec)
Diplexer Temperature
185 . = i
?m’ |
B 3
182 + .
fm
jar
Z 178 |
0 10000 20000 30000 40,000 50,000 60,000
Time [sec)
Radiator Temperature
_ 10 - ;
% e I L P L P 1 ——k—
% CACH A
1 ! ! ! 'L Ay
E 1 | a5 - B e
2o | 8
0 10000 20000 30,000 40,000 50,000 60,000




@ 44 |nternational Conference on
Environmental Systems

Gain Margin and Error Band Effects

- For the Modified P algorithm,
the gain is proportional to the

heater power. Predicted Stability [*Clorbit P-P]
P Qi [W]

+1°C Tgo g +0.1°C Tgog

- To demonstrate gain margin
and its effects on temperature

-~ : : 10 0.166 0.135
stability, an increase in 26 W
hleater p;]ower v;/]as'mcl)ldeled,-IOI - - O0186 0035 1
although not physically possible 104 0137 0034

- No significant improvement in
thermal stability
(>0.03°C/orbit) until at least at
least 4X 26 W for T4 of 1.0°C
and 2X 26 W for T, 4 of 0.1°C
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Voltage Variation Effects
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Conclusions

- 10-node ThermXL model allows a quick and detailed parametric study
of ATC with Modified P-control

- Over 200 ThermXL model scenarios were evaluated to demonstrate that
the ATC implementation does not violate temperature stability requirements

- ATC implemented to adjust RFE temperature set point due to undetected
gain glitches

- Digitization errors in the temperature sensor reading and applied
heater powers were shown to be insignificant

- Short term stabilities are effected using ATC with T, .4 of 1.0°C but
improved with T, , of 0.1°C

- Voltage variation of 29V +6% effects the short term stability b\{)
aBproximater 0.06°C/orbit with T, __, of 1.0°C, but it can easily be
absorbed since the design includes large margins (0.32°C/orbit vs.
0.7°C/orbit for RFE)
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