Empirical and Face Validity of Software Maintenance
Defect Models Used at the Jet Propulsion Laboratory

William Taber

California Institute of Technology
Jet Propulsion Laboratory
Mission Design and Navigation
Software Group

William.L.Taber@jpl.nasa.gov

ABSTRACT

Context: At the Mission Design and Navigation Software Group
at the Jet Propulsion Laboratory we make use of finite exponential
based defect models to aid in maintenance planning and
management for our widely used critical systems. However a
number of pragmatic issues arise when applying defect models for
a post-release system in continuous use. These include: how to
utilize information from problem reports rather than testing to
drive defect discovery and removal effort, practical model
calibration, and alignment of model assumptions with our
environment.

Goal: To show how we can develop confidence in the practical
applicability of our models for obtaining stable maintenance
funding.

Method: We describe the strong empirical and face validity we
have investigated for our maintenance defect discovery and
introduction models. We discuss the practical details of
calibration and application within a functioning maintenance
environment.

Results: We find that our models, despite their simplicity, appear
quite valid.

Conclusions: The models are useful in justifying and obtaining
stable maintenance funding.

Categories and Subject Descriptors
D.2.4 Software/Program Verification: Reliability

General Terms
Management, Measurement, Performance, Design, Economics,
Reliability, Experimentation.

Keywords

software defect model, software maintenance, software reliability

1. INTRODUCTION

The software used for NASA’s deep space missions is critical to
the success of those missions. For many of these missions, defects
encountered and not repaired in a timely manner not only inhibit
operations, but may also lead to the loss of a billion dollar

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

ESEM’14, September 18-19, 2014, Torino, Italy.
Copyright 2014 ACM 978-1-4503-2774-9/14/09...$15.00

Dan Port
University of Hawaii
Shidler College of Business
Information Technology Management
Telephone number, incl. country code

dport@hawaii.edu

mission. Despite our many years of experience focusing on
quality development and control, achieving zero defects in a
delivered system has evaded us. We accept that defects in
software are not just a possibility — they are a certainty. As a
result, for every system in operation we must plan for
maintenance effort to find and repair these inevitable defects.
Given our limited budgets and staffing resources, and often a time
critical need for repair, maintenance effort cannot be planned ad
hoc. It is simply too risky to have a critical system non-
operational for an arbitrary or unknown period of time. Many
tough experiences have shown us that poor planning for
maintenance increases risk of mission failure.

Good maintenance planning must address questions of how many
defects we may encounter, the likelihood of their surfacing at a
critical moment, and how long it will take to discover and correct
them. These questions require having credible and pragmatic
maintenance defect models. While there are many potentially
useful models suggested in the literature, none are widely
accepted or standard for use in industry [6]. This in part may be
due to pragmatic demands rather than theoretic concerns such as:

e Do the models provide useable and useful information for
maintenance planning?

e Are the models practical to calibrate and use on our projects?

e Are the assumptions of the models reasonably valid and
validatable relative to our environment?

The general question is, “Can we have reasonable confidence in
using the models for maintenance planning for our systems?” So
while there is a great deal of theoretic study on the derivation and
effectiveness of defect models, this work aims to explore the
pragmatic concerns indicated above. For example our model
needs differ as described in [7] - the systems are widely-used, and
under multi-release post-development where we must make use of
user-reported defects (i.e. problem reports) rather than test data.
For this we have selected based on principles suggested in the
maintenance literature ([2][5][6]) models that follow exponential
decay (i.e. finite exponential). We explore the face validity of
applying these models to two kinds of critical systems in
maintenance at NASAs Jet Propulsion Laboratory (JPL). We
discuss how these models provide a useful and practical
mechanism for understanding the accumulation and removal of
defects in final-release systems as well as how defect
accumulation and removal evolves for systems with planned
continuous releases. We show empirically for our two kinds of
systems that these models are practical to calibrate and fit
remarkably well. Moreover, the models are not merely empirically
good fits, but have high face wvalidity and are based on
assumptions about how defects are distributed and are discovered

that are in good alignment with our intuition and experience with
maintenance defects occurrence and removal.

Finally we discuss how the JPL Mission Design and Navigation
Software Group uses these models to determine our defect rate
and to inform our users about the reliability of a release and how
that reliability will improve through a cooperative process of
testing, reporting problems and releasing repairs quickly. In
addition, we use these models to ensure that senior managers are
informed both on principle and empirically about the inherent
risks in software maintenance and that schedules and budgets
must accommodate the defect decay process to reach a desired
level of reliability in operation of these systems.

2. DEFECT ACCUMULATION MODEL:
POST-FINAL RELEASE

Software maintenance is the ongoing activity performed on a
system post-delivery and ostensibly in operation. It differs from
pre-delivery development in a number of ways in so far as how
defects are discovered and removed. One fundamental difference
is in the stability of requirements and a deliberate resistance to
introducing continuous changes to the system. There are two
primary maintenance profiles — (A) static requirements where new
development is neither expected nor planned, and (B) continuous
improvement and releases where new development is planned and
expected according to managed releases. We begin by considering
the assumptions we might make for modeling defects under
maintenance profile (A):

Assumption 1: The rate of change in the expected number of
defects in the system, N(t), is proportional to the number of
defects in the system.

Assumption 2: The software is changed only by repairing
defects as they are discovered.

Assumption 3: The software is executed approximately the
same number of times each day by a fixed population of users.

Assumption 4: Defects are uncorrelated and are distributed
randomly through the code at a rate proportional to the code size.

If we let 7 be some reference time, then the assumptions above
leads to a simple defect decay model for N(2):

N(t)=N(T)e " " (1)

The parameter o represents the proportionality suggested in
Assumption 1 and is commonly referred to as the defect decay
constant.

Although simple in form, the number of expected defects at time
T is not observable from the history of defects reported and
repaired in a software system. In particular, we cannot know the
number of defects present in the system at delivery (i.e. when
maintenance begins). This makes the simple model suggested in
(1) unusable in practice. However we can observe the number of
defects that have accumulated through defect reports (or user
generated problem failure reports) at any moment in time. This is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Conference’l10, Month 1-2, 2010, City, State, Country.

Copyright 2010 ACM 1-58113-000-0/00/0010 ...$15.00.

the number of defects at time 7 minus the number of defects
remaining at time 7 or A(2)=N(T)-N(t). That is,

A(=N(T)(1le ™) @)

This is a finite exponential model that has been suggested
frequently in the defect modeling literature [2][4][5][6][7]. The
defect accumulation model has the useful property that it is not
sensitive to the reference time 7. Past knowledge of defects
accumulation is not required to model the maintenance defect
behavior of a system. It does not matter whether a software
maintenance effort has a good or poor record of the discovery of
defects in the past. The project can start accurately recording
defect discoveries at any point and use the model to estimate the
defect decay rate and number of defects remaining in the system.
Hence this model is practical to use and provides useable
information.

2.1 Estimating « and N(T)

To make use of the decay and accumulation models we must be
able to obtain an estimate of the defect decay constant « and for
the initial number of defects N(7) when we begin careful
observation of the defect history. Details on practical means for
obtaining such estimates are not specified in the literature so we
will discuss this here. For the sake of simplicity in computation,
we set the initial reference time 7=0, and our initial number of
remaining defects at this time N=N(0). Suppose that we have
observed n distinct defects at times {71, 72, ...t} where the £’th
defect is observed at time # According to our model (2) the
expected number of defects accumulated at time A(z) = N(e ™)
. We can view defect discovery as a statistical control process
where over time we expect that the variation of the actual count
from the predicted count & will have Normal variation associated
with sampling. If this assumption is correct we should be able to
estimate both N and « by minimizing the variation in the squares
between the number of predicted defect observations and the
actual number of observations. That is, we can apply the method
of least squares and find those values of N and o that minimizes
the sum

n

C(kON@ e ™))

k=1
One approach we might take is to apply ordinary least squares
regression, possibly transforming the data so that (4) is a linear.
The complication with this is that N is an integer and this is
difficult to constrain using ordinary regression methods. We note
that maximum likelihood estimation is potentially another
approach to estimating the parameters but this too suffers this
same issues and has a less straightforward to interpret
optimization criteria. Fortunately it’s not too difficult to use
integer programming to estimate N.

2

€)

We start by finding an initial estimate for o by looking at what the
accumulation model predicts for the time of the discovery of the
k’th defect. Using (2) we can solve for this time 1« (i.e when the
k’th defect is expected to be observed):

k=N{-e"")

1 N)
7, =—In

a \N-k

We treat the values 1« as the predicted times at which the defect
accumulation is incremented. We can then vary N and a to

minimize the square of the deviations between predicted T and
observed times when defect accumulation is incremented tx. That

is, minimize
(1 (N
St ML
S\ \NDKT

For a given N this expression is minimum when

an{l“(N]i k}T ©
Zr | r{ N

NOkS

Since N is the number of defects in the system at time 0 and an
integer, we know that N > n. It is a simple programming exercise
to iterate over values of N (starting with N = n), computing and
evaluating (5) until an optimal value of N and associated value of
o is obtained. This value of o is good enough to estimate the
optimal N but likely not optimal with respect to (3). Having
obtained N we can apply the transformation Yi=In(1-A(#%)/N) to
linearize (2) and apply simple linear regression forced though the
origin on (f, Yi) to determine an optimal value for o in the defect
decay model.

®)

=

From the discussion above we see that estimating the parameters
for (2) from observed defect accumulations is both
straightforward and practical. This will be illustrated with two
case studies in the next section.

2.2 Empirical Validation: JPL Legacy System
The model developed above has been compared against defect
data accumulated by the Mission Design and Navigation Software
Group at the Jet Propulsion Laboratory in Pasadena, California.
This system is composed of over one million logical lines of
heritage FORTRAN code. The initial development of this system
began in the late 1960s and continued until approximately 2006.
During the period from 1999 until the present, an effort was
undertaken to replace the legacy navigation system with a new
system, Monte, to be developed in modern languages using
modern software development methodologies. As a result, in
carly 2006, the legacy system became a static (final release)
system. Defects in the system have been repaired, but aside from
this no new code has been introduced into the system. In addition,
the software has been in regular daily use by a nearly constant
population of users during this time. The legacy navigation
software system is a large system that fits the assumptions for the
defect decay and accumulation models as described previously.

Beginning in 2002, the software group has used the open source
defect tracking tool bugzilla to capture all anomalies in the
operation of navigation software. One of the important features of
bugzilla from the point of view of modeling defect discovery is
that all defect reports as well as updates to those reports are time-
stamped using the host system’s clock. Moreover, all users of the
software are trained in the use of bugzilla and use it to report any
suspected problems in the software. This provides reliable time of
defect occurrence data as needed for calibrating our models.

Given that the model (2) is derived from basic assumptions that
appear plausible for our system, it in principle has high face
validity. That is, we have some rational basis for selecting this
model. While this provides a degree of comfort, the concern here

is about how reasonable or valid these assumptions are in practice
for our system. We will look at some empirical data and our
experience on our maintenance projects to explore the validity of
these assumptions.

Assumption 2 is straightforward. For our legacy system, by
mandate, the system is only changed in response to problems
reported. New requirements or requests for additional capabilities
are prohibited.

Assumption 3 is a little more difficult to justify. We note that the
adoption of Monte by the flight projects was a slow process and
required continuous management pressure. Flight projects are
reluctant to accept new software. They readily accept bug fixes
and small additions, but entirely new systems are a major
challenge. During the period in question the navigation staff was
very stable and nearly all were employed full time on flight
projects: Cassini, Dawn, Deep Impact, Genesis, Hayabusa, MER,
MRO, Odyssey, Spitzer, Stardust. The user base for Monte was
until relatively recently a different population of users. These
were the early adopters and for the most part the new people who
"grew up" with Monte and never learned the legacy tools. Monte
has now successfully replaced the legacy product on all flight
projects but the transition was not complete until Cassini adopted
it in 2012. As a result of these observations, the assumption that
the population of user is fixed is reasonable. During that period,
the legacy software suite of tools (over 300 applications) was
exercised an average of 10,000 times/day for study purposes by
the legacy users.

Users of Legacy Navigation Software

) 6000
Daily Users

——cumulative Users

=0.4100 - 19467
= 098104

=3 per. Mov. Avg. (Bally
1 users) 5000
a0ce
3000

2000

1000

o
s00 &0 w0 a0 ono 1000 1100 1200
Work Days Since March 14, 2006

Figure 1a. Per Day Usage of Legacy Navigation System.

Cumulative Runs of Legacy Navigation Software
12000000

y = 13281x - 6E+06
10000000 R?=0.93559

8000000

6000000

4000000

2000000 /_/

500 600 700 800 900 1000 1100 1200
Work Days Past March 14, 2006

Figure 1b. Runs of Legacy Navigation System.

We note that that the system use rate is not exactly constant over
the period in question and there are spikes when people are doing
parallel jobs. The main issue in satisfying Assumption 3 is a
uniformity of usage and low variance, which is supported by the
usage data in Figure la showing the per day number of users and
cumulative users of the legacy system. In terms of relatively
constant system use, for non-operations work, we have accounting
logs since 2008 on our computing cluster. Figure 1b shows the
that from these logs the cumulative runs of the legacy system is
approximately linear (with obvious “seasonality”) indicating that
the system general has a more or less constant use rate.

For assumption 1, consider the operational bugs graph in Figure 2.
Visually is it apparent that the rate of defect discovery is
proportional to the number of operational bugs. Comparing this
graph with the code size growth we see that defect rate is also
proportional to code size. The linear increase in operational bug
discovery over time is consistent (but does not prove) with
randomly distributed, uncorrelated defects. This also is consistent
with the human nature of software development. To contrast this,
we observe in Figure 2 a non-linear growth in bugs discovered in
developing Monte (the replacement for the legacy system), which
are generally regarded as non-random and highly correlated.

Code Size and Defects through Monte v092

y=18157x o4

—w=Code size (1SLOC)
~#=0ps Bugs

~B-peveloper Bugs
y=0.5185x

=4=0ps Bugs After v5.0.0

Logiical Source Lines of Code

10729799 p2ss0 arofos 115708 e 1 s

Figure 2. Defect Rates and Code Size in Monte.

To test the defect decay/accumulation model, the creation time-
tags of the last 101 defect reports were obtained from the bugzilla
defect history database. Using the defect from the first of these
reports as a reference time, a set of time offsets for defect
discovery has been constructed. These offsets are from a
normalized timeline that removes all non-work hours—evenings,
holidays and weekends are all removed from the time-line. A
Microsoft Excel Workbook has been developed for computing the
best model fit to the bugzilla defect report history. The
spreadsheet follows the parameter estimation method outlined in
Section 2.1 earlier. Figures 3 and 4 below show the results of this
fitting process for two different systems in post-delivery
maintenance.

Legacy Navigation Defect A

Defects Reported

00 600 800 1000 1200

Work Days Since March 14, 2006

Figure 3. Fit of the accumulated defect history for
legacy navigation software.

Legacy Mission Design Defect Accumulation

200 +

T

.

100

Defects Reported

0 100 200 00 400 500 600 00

Work Days Since April 21, 2008

Figure 4. Fit of the accumulated defect history for
Mission Design software.

In addition to constructing an accumulation model, a decay model
is constructed for the observed defect history. Plots for these
models are shown in Figures 5 and 6 below.

Decay of Legacy Navigation Defects

Undiscovered Defects

o 200 400 00 800 1000 1200

Work Days Since March 14, 2006

Figure 5. Model for the decay of defects in Legacy
Navigation software.

Decay of Legacy Mission Design Defects

200

—— Magel for
Defect
Remaining

* Hypotherical
o W Defects
Remaining

Undiscovered Defects

50 ‘X XX]

Work Days Since April 21, 2008

Figure 6. Model for the decay of defects in Legacy Mission
Design software.

As is apparent from the above figures, the models fit the observed
defect discovery history remarkably well. The R-square values are
all over 0.95 and while other models may indeed also fit quite
well, we note that our models are the simplest of these in terms of
form and number of variables that match the assumptions
indicated. Again form a pragmatic perspective it is difficult to
justify utilizing more complex models when the current models
appear to be sufficient.

DEFECT ACCUMULATION — CONTINUOUS RELEASE

Most software systems are not final releases and hence are under
development during maintenance. In addition to staged capability
development, user needs evolve and the systems are augmented
with new features to meet those needs. This is particularly true in
iterative release life cycle strategies. Here an initial version of the
software is released to the user community that meets enough of
user needs to make the system usable. Development continues
with releases being made as soon as the development team feels
new features are ready for use or in planned stages. Hence we
must relax Assumption 2 and understand its defect model
implications. By considering the limiting state we can model such
a system as having continuous rather than discreet releases of the
software.

If the software is released to a fixed user population that uses the
software at a uniform rate, and defects are repaired as they are
discovered, we can model the rate of change in the number of
defects in the system as the rate of change we would see if
development stopped plus the rate at which defects are added to
the system. In addition if the development team has a fixed size,
the rate of code production is nearly constant. We can also
assume that over time the number of defects introduced per new
line of code is nearly constant as well. Thus for a fixed
development team working at a constant rate, the expected
number of defects produced per unit time D is a constant. Under
these conditions our maintenance defect decay model becomes:

- (7

As before, we can’t observe N(f), but we can observe the
accumulation of defects A(7):

A()=D(11T)+ EN(:)DD\ 10t \T))

’ ®)

We now consider some empirical validation of these models.

2.3 Empirical Validation: Next Generation
Navigation System (MONTE)

Given that our system is not literally under continuous release,
and that we could not collect continuous release data anyway, we
must look for defect behaviors our system exhibits and see if they
are what are predicted by our models. Models (7) and (8) imply
the following defect behaviors for a system under continuous
release and the system is used at a uniform rate:

A. The number of defects in the system will stabilize to the rate
of production of defects D divided by the discovery rate o.

B. The defect accumulation will become linear over time with a
rate of discovery equal to the rate of production.

The first behavior (A) is not directly observable. We never really
know the number of defects in the system. However, since we
can observe the accumulation of defects from a system under
continuous development, we can see if the accumulation appears
to be linear and perform a reasonableness test on the rate of
accumulation to see if it gives us a plausible estimate for the rate
of defect production.

As was discussed earlier, the development of software to replace
the legacy system used for mission navigation was begun in 1999.
This new system has had frequent releases since it began so that
developers could ascertain usability and gather feedback from
users on needed features. The system was first placed into a
mission environment in May of 2006. By this date, a stable base
of users had been established. Moreover, since the software was
used in a mission environment; its use was similar to the usage of
the legacy navigation system. At the same time, new features
continued to be added to the system to support the wide range of
needs for the various trajectory design and navigation demands of
NASA’s deep space missions.

Since May of 2006, there have been over 70 software releases of
the software (on average a new release about every 4 weeks) and
the system has experienced uniform usage by the user community.
Hence, the development and usage of the system since 2006 is
approximately a continuous release system.

Next Generation Navigation Code And Defects

200000

200000

y=205.7% 4
R = 0.98884
700000

600000

500000

y = 0.5587x o ¢

i
400000 R’ = 0.99819

Logical Lines of Code

300000

= 5100

200000 ~B=Defects Since 5/1/2006

~— Linear [L5LOC)

100000 — Linear (Defects Since 5/1/2006}

o
3/24/06 8/ef07 12/18/08 5/2/10 9/14/11

Figure 7. Code size and defect discovery history for next
generation mission design and navigation software.

Figure 7 shows both the accumulation of deliverable lines of code
in the system as well as the accumulation of defects for the

released system. As can be seen, the rate of accumulation of
defects is highly linear. Moreover, the ratio of the defect slope to
the code size slope yields a defect density of 2.7 defects per
thousand logical lines of code—a very plausible defect density for
this project.

3. A PRIORI DEFECT DISTRIBUTION
FOR THE NUMBER OF DEFECTS IN A
SOFTWARE RELEASE

As observed earlier, the number of defects in software can be
approximated as a linear function of the number lines of code—if
the size of the source base doubles the number of defects
approximately doubles. If defects are tracked consistently over
time, we can soon learn the number of defects typically produced
for a given size software application. This rate is usually
measured in defects per thousand lines of code (KSLOC). If the
software development environment is stable, and the developing
organization has a reasonably long track record of development,
we can multiply the size of a release by the rate of defect
production to obtain the expected value for the number of defects
in the code.

From long work with the navigation software, our intuition is that
most defects found in maintenance are unrelated. This is
significantly different than defects found during development so
to check whether or not our intuition is reasonable, we examined
our change records for the software in response to defect reports.
Whenever a defect is repaired, the submission of new files to the
configuration management system is tagged with the identifier for
that defect. As a result, it is possible to measure the overlap
between defects statistically. We do this in the following manner.
Two defects are regarded as being related if their repair affects a
common source file within some prescribed specified time
interval. Since repaired software is made available to users within
a week of being repaired, we picked a time threshold of 30 days.
Of course, it is quite possible that unrelated defects will touch the
same source file within 30 days, so we may very well generate
some false positives by this technique. However, even with the
possibility of these fall positives, we find that most defects are
indeed isolated. When we use this method of characterizing
defects as non-isolated, we find that for all software (both the
legacy and new software), fewer than 12% of defects are not
isolated.

Hence it seems reasonable to assume that defects in one part of
the code are typically independent from defects in other parts of
the code. We can use this observation together with the linear
relationship between code size and defects to select an a priori
distribution for the number of defects in a software release.

Suppose that we know the defect density that a given development
achieves, and that for some release of the software we have
computed the number of expected defects from this density to be
f. Under the basic assumptions discussed previously we can
stipulate selecting a Poisson density function to represent the
likelihood of having n defects:

Pr(n defects)= i' e =P (n) ©)
n!

Given the exponential defect discovery model (1) and the
assumption of independence of defect discovery, we see that the

probability of discovering a defect after time 7 given that n
defects have already been observed is:

Pr(t>T|n)=e"" (10)

We can combine (9) and (10) by applying Bayesian inversion on
(10) giving:

Pr(n|t>T)= ﬂeL(e 9 P, (n) (an

n!

The above is the a-priori distribution of observing » defects after a
release at time 7.

3.1 Empirical Validation: Can We Predict

Maintenance Need?

Here again since we can never know how many defects are
present in the system we cannot collect data to directly
empirically validate models (9) and (11). So while the theory
behind the models presented here is relatively simple and lends
itself to simple calculations, the question remains “Are the models
good enough to aid in guiding the management of a software
development effort?” We again look to what defect behaviors
these models would predict as our means to validate them. Using
the Poisson model (9) for the initial a priori distribution of defects
in a new software release and the decay model for their discovery,
we should be able to fit the observed history of defect discoveries.
We do this for the next generation navigation software system,
Monte.

Recall that under the exponential decay model that the total
number of undiscovered defects in the system under a continuous

release model will stabilized to the value B given by B=D/[J
where D is the defect production rate and /7 is the decay constant.
Under the Poisson distribution model for the number of defects in
a release, we can predict what the distribution is for undiscovered
defects. Given the defect density, // for the system we expect the

number of distributions for the steady state number of defects to
be Poisson with mean §// 14 where S is the size of the software

and A4 is the number of defects that have been discovered. For
the system in question we approximate p from the ratio of the
slope of code production divided by slope of defect discovery.
This yields a value of 2.692 defects per 1000 logical lines of code.

To date 2036 defects have been discovered in the code base of
860,889 logical lines of code. Thus the model distribution for the
number of defects remaining in the system is Poisson with mean
equal to p_g861112.7112036 —288- The historical discovery rate
for defects is 0.742 defects/workday. From these values we can
produce an initial estimate for
[1=D/B=0.742/288=0.00257/workday -

With an initial guesses in hand for/7 and /7 we can simulate the

history of defect discovery for the new system and adjust these
initial values to find a best fit between theory and the observed
accumulation. When this this is done, we find the “best” values
for our theory parameters are: //=(.002494, //=2.868. The

simulated history and theoretical history are shown in Figure 8
below.

Theoretical®/sBActualDefectsReportedforiMontel

A

pd

Accumulated®Defects?

pd

o 5007 10007 15007 20007 25007 30007 35007

WorkDaysBinceRugustf9,20012

——tctualt
—Theory

Figure 8. A-priori versus actual accumulated defects in next
generation navigation software.

Moreover, if one creates an empirical distribution for the set of
possible histories via monte carlo simulation we find that the
actual history falls well within the densest set of possible histories
as seen in Figure 9:

oo
UL / oo
oo
- Actuald
Historyts

pdfal

uuuuuu

o 125,408347 250.516680 (376.225028 1 u u u [[254 08348
so1

Figure 9. Distribution of simulated defect histories.

The a-priori defect distribution appears to predict well defect
accumulation and is consistent with the kind of defect density
histories we expect to find based on the project parameters.

4. CONCLUSION

The models discussed here have been used in the Navigation
Software Group at the Jet Propulsion Laboratory to provide
insight into the reliability of our software. Flight projects are risk
averse when adopting new software. Their first question is
always “Does it meet our requirements?” The second question is
“How buggy is it and when will we be confident that we’ve found
and fixed the important ones?” Prior to the development of these
models we could only point to our track record of past deliveries.
However, with these models we have been able to provide flight
projects with a more quantitative assessment of the risk of
accepting new software. Using the decay model together with the
Poisson distribution to characterize the new defects released in
software, the software development team has been able to work
with flight projects to identify the level of resources they need to
devote to maintaining reliable operation the new software.

In addition to providing flight projects with better confidence in
reliability, these models make it much easier to justify the budget
and staffing required to maintain reliable operations of a system.
Prior to the development of these models, the budget for
sustaining a maintenance effort was under constant threat. There
was a natural tendency for the software development team to
request more than was needed. And there was a natural tendency
for the sponsoring programs to provide too little. With the advent
of these models, both the program and the development groups
have been able to reach a comfortable agreement on the resources
needed to sustain the institutional investment in our mission
critical navigation and trajectory design software. This does not
mean that budgetary pressures have been removed, but both sides
of the budget issue can now address the issue from the perspective
of a quantified level of risk and debate can focus more on
acceptable risk tolerance rather than speculation on reliability.

The models presented are selected on principles and backed by a
small sample of defect accumulation histories. Other models may
also fit our observations well. However, the models presented
here are simple requiring only two parameters that are
straightforward to estimate: a defect density and a rate of decay in
the discovery of defects. The defect observations from the projects
we have presented are consistent with these models to within a
few percent so that deviations from the model are easily within
the noise one would expect from a stochastic process.

5. ACKNOWLEDGMENTS

This research was carried out at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the
National Aeronautics and Space Administration.

6. REFERENCES

[1] Casella G, Berger R. Statistical Inference 2" Edition.
Duxbury Press. 511 Forest Lodge Road, Pacific Grove, CA
93950, USA

[2] Garrison Q. Kenny. “Estimating defects in commercial
software during operational use.” IEEE 1993.

[3] J.D.Musa. “Validity of Execution-Time Theory of Software
Reliability.” IEEE Transactions of Reliability, Vol R-28,
1979. pp181-191. J.D. Musa, K. Okumoto

[4] Jelinski, Z., and Moranda, P. “Software Reliability
Research,” Statistical Computer Performance Evaluation,
Freiberger, W. Ed. Academic Press, New York, NY

[5] Kan S. Metrics and Models in Software Quality Engineering
2" Edition. Addison-Wesley, Boston MA, USA

[6] Li, P., Mary Shaw, and Jim Herbsleb. "Selecting a defect
prediction model for maintenance resource planning and
software insurance." EDSER-5 affiliated with ICSE (2003):
p32-37.

[71 Li, Paul Luo, et al. Empirical evaluation of defect projection
models for widely-deployed production software systems.
Vol. 29. No. 6. ACM, 2004.

[8] Neufelder, A M. Ensuring Software Reliability. Marcel
Decker, Inc. 270 Madison Avenue, New York, NY 10016,
USA

[9] Savage, L.J. The Foundations of Statistics. Dover
Publications, Inc. 180 Varick Street, New York, NY 10014,
USA

