
Empirical and Face Validity of Software Maintenance
Defect Models Used at the Jet Propulsion Laboratory

William Taber
California Institute of Technology

Jet Propulsion Laboratory
Mission Design and Navigation

Software Group
William.L.Taber@jpl.nasa.gov

 Dan Port
University of Hawaii

Shidler College of Business
Information Technology Management
Telephone number, incl. country code

dport@hawaii.edu

ABSTRACT
Context: At the Mission Design and Navigation Software Group
at the Jet Propulsion Laboratory we make use of finite exponential
based defect models to aid in maintenance planning and
management for our widely used critical systems. However a
number of pragmatic issues arise when applying defect models for
a post-release system in continuous use. These include: how to
utilize information from problem reports rather than testing to
drive defect discovery and removal effort, practical model
calibration, and alignment of model assumptions with our
environment.
Goal: To show how we can develop confidence in the practical
applicability of our models for obtaining stable maintenance
funding.
Method: We describe the strong empirical and face validity we
have investigated for our maintenance defect discovery and
introduction models. We discuss the practical details of
calibration and application within a functioning maintenance
environment.
Results: We find that our models, despite their simplicity, appear
quite valid.
Conclusions: The models are useful in justifying and obtaining
stable maintenance funding.

Categories and Subject Descriptors
D.2.4 Software/Program Verification: Reliability

General Terms
Management, Measurement, Performance, Design, Economics,
Reliability, Experimentation.

Keywords
software defect model, software maintenance, software reliability

1. INTRODUCTION
The software used for NASA’s deep space missions is critical to
the success of those missions. For many of these missions, defects
encountered and not repaired in a timely manner not only inhibit
operations, but may also lead to the loss of a billion dollar

mission. Despite our many years of experience focusing on
quality development and control, achieving zero defects in a
delivered system has evaded us. We accept that defects in
software are not just a possibility – they are a certainty. As a
result, for every system in operation we must plan for
maintenance effort to find and repair these inevitable defects.
Given our limited budgets and staffing resources, and often a time
critical need for repair, maintenance effort cannot be planned ad
hoc. It is simply too risky to have a critical system non-
operational for an arbitrary or unknown period of time. Many
tough experiences have shown us that poor planning for
maintenance increases risk of mission failure.
Good maintenance planning must address questions of how many
defects we may encounter, the likelihood of their surfacing at a
critical moment, and how long it will take to discover and correct
them. These questions require having credible and pragmatic
maintenance defect models. While there are many potentially
useful models suggested in the literature, none are widely
accepted or standard for use in industry [6]. This in part may be
due to pragmatic demands rather than theoretic concerns such as:

 Do the models provide useable and useful information for
maintenance planning?

 Are the models practical to calibrate and use on our projects?
 Are the assumptions of the models reasonably valid and

validatable relative to our environment?
The general question is, “Can we have reasonable confidence in
using the models for maintenance planning for our systems?” So
while there is a great deal of theoretic study on the derivation and
effectiveness of defect models, this work aims to explore the
pragmatic concerns indicated above. For example our model
needs differ as described in [7] - the systems are widely-used, and
under multi-release post-development where we must make use of
user-reported defects (i.e. problem reports) rather than test data.
For this we have selected based on principles suggested in the
maintenance literature ([2][5][6]) models that follow exponential
decay (i.e. finite exponential). We explore the face validity of
applying these models to two kinds of critical systems in
maintenance at NASAs Jet Propulsion Laboratory (JPL). We
discuss how these models provide a useful and practical
mechanism for understanding the accumulation and removal of
defects in final-release systems as well as how defect
accumulation and removal evolves for systems with planned
continuous releases. We show empirically for our two kinds of
systems that these models are practical to calibrate and fit
remarkably well. Moreover, the models are not merely empirically
good fits, but have high face validity and are based on
assumptions about how defects are distributed and are discovered

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ESEM’14, September 18–19, 2014, Torino, Italy.
Copyright 2014 ACM 978-1-4503-2774-9/14/09...$15.00

N t N T e-- t-T

A t N T -e-- t-T

N -e- tk

k -N -e-- tk
k

n

-

tk --
N
N - kk

n

-

N
N - kk

n

tk
N
N - kk

n

We note that that the system use rate is not exactly constant over
the period in question and there are spikes when people are doing
parallel jobs. The main issue in satisfying Assumption 3 is a
uniformity of usage and low variance, which is supported by the
usage data in Figure 1a showing the per day number of users and
cumulative users of the legacy system. In terms of relatively
constant system use, for non-operations work, we have accounting
logs since 2008 on our computing cluster. Figure 1b shows the
that from these logs the cumulative runs of the legacy system is
approximately linear (with obvious “seasonality”) indicating that
the system general has a more or less constant use rate.
For assumption 1, consider the operational bugs graph in Figure 2.
Visually is it apparent that the rate of defect discovery is
proportional to the number of operational bugs. Comparing this
graph with the code size growth we see that defect rate is also
proportional to code size. The linear increase in operational bug
discovery over time is consistent (but does not prove) with
randomly distributed, uncorrelated defects. This also is consistent
with the human nature of software development. To contrast this,
we observe in Figure 2 a non-linear growth in bugs discovered in
developing Monte (the replacement for the legacy system), which
are generally regarded as non-random and highly correlated.

To test the defect decay/accumulation model, the creation time-
tags of the last 101 defect reports were obtained from the bugzilla
defect history database. Using the defect from the first of these
reports as a reference time, a set of time offsets for defect
discovery has been constructed. These offsets are from a
normalized timeline that removes all non-work hours—evenings,
holidays and weekends are all removed from the time-line. A
Microsoft Excel Workbook has been developed for computing the
best model fit to the bugzilla defect report history. The
spreadsheet follows the parameter estimation method outlined in
Section 2.1 earlier. Figures 3 and 4 below show the results of this
fitting process for two different systems in post-delivery
maintenance.

In addition to constructing an accumulation model, a decay model
is constructed for the observed defect history. Plots for these
models are shown in Figures 5 and 6 below.

Figure 2. Defect Rates and Code Size in Monte.

.

Figure 3. Fit of the accumulated defect history for

legacy navigation software.

.

Figure 4. Fit of the accumulated defect history for

Mission Design software.

.

Figure 5. Model for the decay of defects in Legacy

Navigation software.

.

N t D
-

-N T -D
-

e-- t-T

A t D t -T -N T -D
-

-e-- t-T

n -n

n
e-- P- n

t T n e-n-T

n t T
e--T-

n

n
e- e

--T- P
e--T-

n

B D -
-

-

S--A

D

B - -

- D B

- -

- -

