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ABSTRACT 
Context: At the Mission Design and Navigation Software Group 
at the Jet Propulsion Laboratory we make use of finite exponential 
based defect models to aid in maintenance planning and 
management for our widely used critical systems. However a 
number of pragmatic issues arise when applying defect models for 
a post-release system in continuous use. These include: how to 
utilize information from problem reports rather than testing to 
drive defect discovery and removal effort, practical model 
calibration, and alignment of model assumptions with our 
environment.  
Goal: To show how we can develop confidence in the practical 
applicability of our models for obtaining stable maintenance 
funding.  
Method: We describe the strong empirical and face validity we 
have investigated for our maintenance defect discovery and 
introduction models. We discuss the practical details of 
calibration and application within a functioning maintenance 
environment.  
Results: We find that our models, despite their simplicity, appear 
quite valid. 
Conclusions: The models are useful in justifying and obtaining 
stable maintenance funding.   

Categories and Subject Descriptors 
D.2.4 Software/Program Verification: Reliability  

General Terms 
Management, Measurement, Performance, Design, Economics, 
Reliability, Experimentation. 
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1. INTRODUCTION 
The software used for NASA’s deep space missions is critical to 
the success of those missions. For many of these missions, defects 
encountered and not repaired in a timely manner not only inhibit 
operations, but may also lead to the loss of a billion dollar 

mission.  Despite our many years of experience focusing on 
quality development and control, achieving zero defects in a 
delivered system has evaded us. We accept that defects in 
software are not just a possibility – they are a certainty. As a 
result, for every system in operation we must plan for 
maintenance effort to find and repair these inevitable defects. 
Given our limited budgets and staffing resources, and often a time 
critical need for repair, maintenance effort cannot be planned ad 
hoc. It is simply too risky to have a critical system non-
operational for an arbitrary or unknown period of time. Many 
tough experiences have shown us that poor planning for 
maintenance increases risk of mission failure.  
Good maintenance planning must address questions of how many 
defects we may encounter, the likelihood of their surfacing at a 
critical moment, and how long it will take to discover and correct 
them. These questions require having credible and pragmatic 
maintenance defect models. While there are many potentially 
useful models suggested in the literature, none are widely 
accepted or standard for use in industry [6]. This in part may be 
due to pragmatic demands rather than theoretic concerns such as: 

 Do the models provide useable and useful information for 
maintenance planning? 

 Are the models practical to calibrate and use on our projects?  
 Are the assumptions of the models reasonably valid and 

validatable relative to our environment? 
The general question is, “Can we have reasonable confidence in 
using the models for maintenance planning for our systems?” So 
while there is a great deal of theoretic study on the derivation and 
effectiveness of defect models, this work aims to explore the 
pragmatic concerns indicated above. For example our model 
needs differ as described in [7] - the systems are widely-used, and 
under multi-release post-development where we must make use of 
user-reported defects (i.e. problem reports) rather than test data. 
For this we have selected based on principles suggested in the 
maintenance literature ([2][5][6]) models that follow exponential 
decay (i.e. finite exponential). We explore the face validity of 
applying these models to two kinds of critical systems in 
maintenance at NASAs Jet Propulsion Laboratory (JPL). We 
discuss how these models provide a useful and practical 
mechanism for understanding the accumulation and removal of 
defects in final-release systems as well as how defect 
accumulation and removal evolves for systems with planned 
continuous releases. We show empirically for our two kinds of 
systems that these models are practical to calibrate and fit 
remarkably well. Moreover, the models are not merely empirically 
good fits, but have high face validity and are based on 
assumptions about how defects are distributed and are discovered 
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We note that that the system use rate is not exactly constant over 
the period in question and there are spikes when people are doing 
parallel jobs. The main issue in satisfying Assumption 3 is a 
uniformity of usage and low variance, which is supported by the 
usage data in Figure 1a showing the per day number of users and 
cumulative users of the legacy system. In terms of relatively 
constant system use, for non-operations work, we have accounting 
logs since 2008 on our computing cluster. Figure 1b shows the 
that from these logs the cumulative runs of the legacy system is 
approximately linear (with obvious “seasonality”) indicating that 
the system general has a more or less constant use rate.  
For assumption 1, consider the operational bugs graph in Figure 2. 
Visually is it apparent that the rate of defect discovery is 
proportional to the number of operational bugs.  Comparing this 
graph with the code size growth we see that defect rate is also 
proportional to code size. The linear increase in operational bug 
discovery over time is consistent (but does not prove) with 
randomly distributed, uncorrelated defects. This also is consistent 
with the human nature of software development. To contrast this, 
we observe in Figure 2 a non-linear growth in bugs discovered in 
developing Monte (the replacement for the legacy system), which 
are generally regarded as non-random and highly correlated. 

 
To test the defect decay/accumulation model, the creation time-
tags of the last 101 defect reports were obtained from the bugzilla 
defect history database. Using the defect from the first of these 
reports as a reference time, a set of time offsets for defect 
discovery has been constructed. These offsets are from a 
normalized timeline that removes all non-work hours—evenings, 
holidays and weekends are all removed from the time-line. A 
Microsoft Excel Workbook has been developed for computing the 
best model fit to the bugzilla defect report history.  The 
spreadsheet follows the parameter estimation method outlined in 
Section 2.1 earlier. Figures 3 and 4 below show the results of this 
fitting process for two different systems in post-delivery 
maintenance. 

 

 
In addition to constructing an accumulation model, a decay model 
is constructed for the observed defect history.  Plots for these 
models are shown in Figures 5 and 6 below. 

 
 

 
Figure 2. Defect Rates and Code Size in Monte. 
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Figure 3. Fit of the accumulated defect history for 

legacy navigation software. 
 
. 

 
 

 
Figure 4. Fit of the accumulated defect history for 

Mission Design software. 
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Figure 5. Model for the decay of defects in Legacy 

Navigation software. 
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