Hybrid Propulsion In-Situ Resource Utilization Test Facility Development

30 July 2014

Ashley Chandler, Corinne Gatto, Barry Nakazono, Kristian Grayson, and David Vaughan
Outline

• Introduction to the Mars Sample Return and the Mars Ascent Vehicle
• Motivation
• Driving Requirements
• System Design and Capabilities
• Future Work
• Conclusions
Introduction

• Hybrid propulsion allows for an incremental approach to *In Situ* Resource Utilization (ISRU)

• A hybrid test facility has been developed at JPL
 – Enables testing of Mars relevant propellant combinations to determine the performance parameters
 • Paraffin fuel with gaseous oxygen and an *in situ* simulating oxidizer (oxygen with varying concentrations of CO and CO₂)
 – Flexibility to test the L/D’s of the combustion chamber for packaging constraints.

• Development of an ISRU process to provide the oxidizer is occurring in tandem to this research.
Motivation

- Hybrid ISRU allows for approximately a 2/3 reduction in propellant mass.
- Desire to determine performance parameters for ISRU oxidizer

<table>
<thead>
<tr>
<th></th>
<th>Paraffin/GO₂ Hybrid</th>
<th>Conventional Propulsion Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Solid</td>
</tr>
<tr>
<td>Isp (performance)</td>
<td>~330 s</td>
<td>285 s</td>
</tr>
<tr>
<td>Restart capability</td>
<td>Yes, multiple</td>
<td>N/A</td>
</tr>
<tr>
<td>Throttling</td>
<td>Simple, 10:1</td>
<td>None</td>
</tr>
<tr>
<td>Low temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage & operation</td>
<td>< -100 C*</td>
<td>- 40 C</td>
</tr>
<tr>
<td>Safety</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toxicty</td>
<td>Nontoxic</td>
<td>Toxic</td>
</tr>
<tr>
<td>System Complexity</td>
<td>Moderate</td>
<td>Low</td>
</tr>
<tr>
<td>Recurring Cost</td>
<td>Low</td>
<td>Low</td>
</tr>
</tbody>
</table>

*Predicted value, requires empirical confirmation.
Driving Requirements

- Geometric constraints
 - L/D

- Thermal cycling
 - Average annual temperature of about -60 C
 - Daily variations of up to 100 C.
System Design (3/3)

- Fuel grain outer diameter: 2 in [5 cm]
- Maximum operating pressure: 1.72 MPa [250 psi]
- Thrust: 222 N [50 lbf]
Capabilities

• First open air rocket test at JPL in more than 15 years
• Oxidizer mass flux can be varied by swapping out the injector or changing the upstream oxidizer pressure.
• Oxidizers include any combination of O₂, CO₂ and CO.
• Combustion chamber tubes may be swapped out to vary L/D
Future Work

• Up to four hot fire tests this fiscal year (through September). Additional tests may be completed next year allowing for
 – Determination of efficiency based on L/D
 – Determination of regression rate law parameters for ISRU simulant oxidizer

\[\dot{r} = a \, G^n \]
Conclusions

- Hybrid propulsion presents many benefits specifically for Mars based propulsion, especially as an incremental step towards ISRU.
- Main challenges include packaging and the Mars environment.
- Flexibility has been built into the system:
 - Multiple geometries
 - Multiple oxidizers to determine optimal performance
- Testing is a necessary step toward the adoption of hybrid propulsion systems to clarify some of the performance parameters.
Acknowledgements

• The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

• The authors would like to thank the Jet Propulsion Laboratory for funding this research through its internal Research and Technology Development program.

• Additional thanks go to:
 – Elizabeth Jens and Jonah Zimmerman of Stanford University for the hard work they put into casting fuel grains for the first set of tests
 – Richard Webster, Alex Luna and William Gavid for assistance developing reliable igniters for this application.
Questions?

• Contact information:
 Ashley Chandler (PI)
 Ashley.A.Chandler@jpl.nasa.gov