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A procedure for deriving analytic partial derivatives of the Lambert problem
is presented. Using the universal, cosine based Lambert formulation; first order
partial derivatives of the velocities with respect to the positions and times are
developed. Taking advantage of inherent symmetries and intermediate variables,
the derivatives are expressed in a computationally efficient form. The added cost
of computing these partials is found to be ∼10% to ∼60% of the Lambert compute
cost. The availability of analytic partial derivatives increases optimization speed,
efficiency and allows for trajectory optimization formulations that implicitly enforce
continuity constraints via embedded Lambert problems.

Nomenclature

q = Scalar function
k = Universal variable
θ = Transfer angle
d = Transfer angle parameter (+1 for 0 < θ < π, -1 for π < θ < 2π)
f, g = Lagrange f and g functions
τ = First Lambert geometry parameter
S = Second Lambert geometry parameter
µ = Gravitational parameter of the primary(GM)
T ∗ = Target time of flight
Tp = Parabolic time of flight
k∗ = Value of k corresponding to T ∗

Nrev = Number of current the Lambert revolution (short period)
TOF = Time of flight

TOF
′

= First derivative of TOF function with respect to k
~r1 = Initial position vector (column vector)
~r2 = Final position vector (column vector)
~v1 = Initial velocity vector (column vector)
~v2 = Final velocity vector (column vector)
r1 = Magnitude of the initial position vector
r2 = Magnitude of the final position vector

~p= [~r1, ~r2, T
∗]
T

~x = Fundamental Lambert parameters; [r1, r2, θ, T
∗]
T

W = Auxiliary function
wrt = With Respect To
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I. Introduction

Lambert’s problem is one of the most extensively studied problems in space-flight mechanics
and enjoys a large volume of research, spanning over several decades. The solution to the Lambert
problem and its derivatives acts as a building-block algorithm for various problems like trajectory
design and optimization,1,2, 3 tour design,4,2, 5, 6, 7, 8, 9 and orbit determination.10,11

The Lambert solution results from a one dimensional root-solve, and therefore the sensitivities
of the outputs to the inputs are not as straight forward as computing the partials of an explicit
function. There is a rich literature on the Lambert problem in general but a notable absence
exists on the topic of the Lambert problem partial derivatives. The partials can be formed from
partitions of the Kepler state transition matrix,14 and they also can be formed with traditional
numerical differencing or complex step differentiation, or automatic differentiation. In this paper,
the partials are given using the Lambert problem directly and efficiently computed without extra
iterations assuming the user already must solve the Lambert problem itself. The technique can
enable new optimization strategies that automatically enforce continuity in position without re-
sorting to constrained non-linear programming and numerical solutions to the lambert boundary
value problem.

In this study, a procedure is presented for deriving partial derivatives of the Lambert problem.
These partials are expressed as derivatives of the two velocity vectors with respect to the two posi-
tion vectors and the times. The partial derivatives are developed based upon the recently proposed
cosine based Lambert formulation.12 The formulation takes advantage of a geometry-based param-
eters (S, τ) to simplify the universal formulation of the Lambert equation. This equation, defined
as a function of the universal variable k, is shown to have simplified derivative expressions and
requires only a single transcendental function (W ) evaluation. Apart from enjoying 40% to 60%
reduction in runtime over the current state-of-the art Gooding’s method, the formulation also leads
to an efficient representation of the partial derivatives. Note that the partial derivatives can also
be computed by computing the Keplerian state transition matrix (STM’s) and its adjoint, provided
we already know the complete state vector (position and velocity) at one of the end points.13,14

The general procedure of computing the partials involves taking derivatives of the f and g
functions (see pgs. 218-219 in Bate et al.15) and applying the chain rule, taking into account
various implicit dependencies. The decoupling of the geometric (S, τ) and iterative terms (k) in
the Lambert formulations simplifies the derivatives of the universal variable k with respect to the
fundamental Lambert parameters (r1, r2, θ, T

∗).
In this study all first order partial derivatives of the Lambert problem are derived and docu-

mented. Taking advantage of inherent symmetries and intermediate variables, the derivatives are
be developed and expressed in a computationally efficient form. A large scale simulation is per-
formed to quantify the cost of computing these partials partial derivatives. The next section gives
a brief summary of the adopted Lambert formulation.

II. Multiple Revolution Lambert Formulation

This section summarizes, the Lambert formulation based on the new universal variable,12 “k”.
Figure 1 depicts a general diagram of the Lambert problem. Vectors ~r1 and ~r2 are the bounding
position vectors; TOF stands for the time of flight for the transfer and θ is the transfer angle
between the two position vectors. All possible arcs connecting the two points A and B with
the required TOF and which satisfy Keplerian motion are possible Lambert solutions. There are
2ND

ub + 1 direct solutions and 2NR
ub + 1 retrograde solutions where ND

ub and NR
ub is the maximum

number of revolutions possible for direct and retrograde transfers, respectively, given a set of input
parameters.
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Figure 1. General problem geometry

As Keplerian motion is confined in a plane, the vectors ~r2 and ~v2 can be expressed as a function
of ~r1 and ~v1 , given by Eqs. 1 and 2.

~r2 = f ~r1 + g ~v1 (1)

~v2 = ḟ ~r1 + ġ ~v1 (2)

where f , g, are the Lagrange f and g functions, respectively. The f and g functions assume vectors
~r1 and ~v1 form the basis of the resulting solution space. The formulation as defines two geometry
based parameters, S and τ . The parameter τ is a non-dimensional function of r1, r2 (magnitude

of positions, see nomenclature) and θ and varies between
[
−1√
2
, 1√

2

]
. It is given as follows:

τ = d

√
r1r2[1 + cos(θ)]

r1 + r2
, d =

{
+1 0 ≤ θ ≤ π
−1 π ≤ θ ≤ 2π

(3)

The parameter S has a unit of time and is defined as

S =

√
(r1 + r2)3

µ
(4)

Next, the Lambert TOF equation is defined as a function of S, τ and the universal variable k,
summarized as follows:

TOF (k, S, τ) = S
√

1− kτ [τ + (1− kτ)W ] (5)

where W is given by the following expression:

W (k) =


(1−sgn(k))π+sgn(k) cos−1(1−m)+2πN√

m3
− k

m −
√

2 ≤ k <
√

2− ε (elliptical orbits)
− cosh−1(1−m)√

−m3
− k

m k >
√

2 + ε (hyperbolic orbits)

Ws

√
2− ε ≤ k ≤

√
2 + ε (N = 0)

(6)

The expression for Ws is given in ref.12 For a given value of k, f and g functions are used to
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calculate the final ~v1 and ~v2 velocity vectors as follows:

f = 1− (1− kτ)(r1 + r2)

r1
(7)

g = Sτ
√

(1− kτ)µ (8)

ġ = 1− (1− kτ)(r1 + r2)

r2
(9)

~v1 =
~r2 − f~r1

g
(10)

~v2 =
ġ~r2 − ~r1

g
(11)

Note that the above equations as given in ref.12 have a typographical error, which has been corrected
here.

III. Partials of the Lambert Problem

The partials of the Lambert problem are defined as partials of ~y wrt ~p, where ~y and ~p are given
as follows:

~y = [~v1, ~v2]
T (12)

~p = [~r1, ~r2, T
∗]T (13)

To obtain ∂~y
∂~p we need to compute ∂q

∂~p , where q can be either f, g or ġ (see Eq. 10 and 11).

q ∈ {f, g, ġ} (14)

The scalar q itself is a function of a vector ~p and the Lambert iteration variable k. Using the chain
rule, ∂q

∂~p can be computed as follows:

∂q

∂~p
= q~p|k=const. + qkk~p (15)

where k~p is given as follows:

∂k

∂~p
= k~x~x~p (16)

~x = [r1, r2, θ, T
∗]T (17)

Next, the partials required to compute Eq. 16 are derived in the next section.

A. Fundamental Lambert problem partials: k~x

The partials given by k~x represent the fundamental partials of the Lambert problem and are also
the most difficult to obtain. A systematic procedure based on the Lambert TOF equations (Eq. 5)
is followed. Given ~x; the solution to the Lambert problem is found via a one-dimensional root-solve
of the function L, given below:

L(~x) = TOF (k(~x), S(~x), τ(~x))− T ∗(~x) (18)

Next, taking the partial of the above wrt to the vector ~x, we get the following:

∂TOF

∂~x
− ∂T ∗

∂~x
(19)
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At the solution ∂L = 0, where k∗ is the root-solved value of k. The first term on RHS of Eq. 19
can be written as:

∂TOF

∂~x
=
∂k

∂~x

∂TOF

∂k

∣∣∣∣
τ,S=const.

+
∂S

∂~x

∂TOF

∂S

∣∣∣∣
τ,k=const.

+
∂τ

∂~x

∂TOF

∂τ

∣∣∣∣
S,k=const.

(20)

∂TOF

∂S

∣∣∣∣
τ,k=const.

=
TOF |k=k∗

S

∂TOF

∂τ

∣∣∣∣
τ,k=const.

=
TOF |k=k∗

τγ
, γ =

1 + cW

1− k∗

2c [3cW + 1]
, c =

1− k∗τ
τ

∂TOF

∂k

∣∣∣∣
τ,k=const.

= TOF
′

TOF |k=k∗ = T ∗

TOF
′

=
−T ∗

2c
+ Sτ

√
cτ(W

′
c−W )

where W
′

is the partial of the auxiliary Lambert variable wrt k, expressed as follows:

W
′

=

{
−2+3Wk

m k <
√

2− ε, k >
√

2 + ε
∂Ws
∂k

√
2− ε < k <

√
2 + ε

(21)

Note that TOF
′

and W
′

are computed and saved during the root solve of L. For all subsequent sec-
tions we drop the superscript ∗ over k for presentation purposes. Substituting the above expressions
(Eq. 20) in Eq. 19 and equating it to zero, the following expression for k~x is obtained:

k~x =
∂k

∂~x
=
−T ∗

TOF ′

[
−
T ∗~x
T ∗

+
S~x
S

+
τ~x
τγ

]
(22)

T ∗~x =
∂T ∗

∂~x
, S~x =

∂S

∂~x
, τ~x =

∂τ

∂~x

The expressions for the partials T ∗~x , S~x and τ~x are given as follows:

T ∗~x = [0, 0, 0, 1] (23)

S~x = [Sr1, Sr2, 0, 0]

τ~x = [τr1, τr2, τθ, 0]

Sr1 = Sr2 =
3S

2(r1 + r2)

τr1 = τ

[
1

2r1
− 1

r1 + r2

]
, τr2 = τ

[
1

2r2
− 1

r1 + r2

]
τθ =

−τ sin (θ)

2 (1 + cos (θ))

B. Self partials: ~x~p, S~p and τ~p

The self partials, ~x~p, aid to map the scalar partial derivatives of k to their corresponding vector
versions. They are simply defined as follows:

~x~p =

[
∂r1
∂~p

,
∂r2
∂~p

,
∂θ

∂~p
,
∂T ∗

∂~p

]T
(24)
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The resulting expression is matrix of size 4 × 7. The individual “row” partials in the above
expression can be a calculated as:

∂r1
∂~p

=
[
r̂1
T , 0, 0, 0, 0

]
(25)

∂r2
∂~p

=
[
0, 0, 0, r̂2

T , 0
]

∂θ

∂~p
=

[
r̂1
T cos(θ)− r̂2T

r1 sin(θ)
,
r̂2
T cos(θ)− r̂1T

r2 sin(θ)
, 0

]
∂T ∗

∂~p
= [0, 0, 0, 0, 0, 0, 1]

where r̂1
T and r̂2

T are unit vectors corresponding to ~r1 and ~r2,respectively. The self partials, ∂S
∂~p

and ∂τ
∂~p are required for computing ∂q

∂~p and are given as:

S~p =
∂S

∂~p
= S~x~x~p (26)

τ~p =
∂τ

∂~p
= τ~x~x~p

where the partials S~x and τ~x are given in Eq. 23. The next section summarizes the partials required
to compute the chain rule.

C. Chain rule partials: q~p and qk

The partials to complete the chain rule in Eq. 15, are given as follows:

q~p|k=const. ∈
{
f~p, g~p, ġ~p

}
|k=const. (27)

qk ∈ {fk, gk, ġk}

Obtaining the partials in Eq. 27 require the partials of the f and g functions wrt ~p, given by:

f~p|k=const. =

(
fr1

∂r1
∂~p

+ fr2
∂r1
∂~p

+ fτ
∂τ

∂~p

)T
(28)

g~p|k=const. =

(
gS
∂S

∂~p
+ gτ

∂τ

∂~p

)T
ġ~p|k=const. =

(
ġr1r1~p + ġr2r2~p + ġττ~p

)T
fr1 =

(1− f)(r1 − r2)
r1

, fr2 =
(1− f)r2
r1 + r2

, ġr1 =
(1− ġ)r1
r1 + r2

, ġr2 =
(1− ġ)(r2 − r1)

r2

fτ =
k(r1 + r2)

r1
, ġτ =

k(r1 + r2)

r2

gτ = g

[
1

τ
− k

2cτ

]
, gS =

g

S

f~p =
∂f

∂~p
, g~p =

∂g

∂~p
, ġ~p =

∂ġ

∂~p

where c has been computed before in Eq. 22. Computing qk require the partials of the f and g
functions wrt k, which are given as:

fk =
τ(r1 + r2)

r1
, ġk =

τ(r1 + r2)

r2
(29)

gk =
g

2c
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Finally, the derivatives defined in Eq. 15 are given as follows:

q~p = q~p|k=const. + qkk~p (30)

q~p ∈
{
f~p, g~p, ġ~p

}
k~p = k~x~x~p

Equation 30 can be used to generate complete partials of f ,g and ġ wrt the vector ~p. We are now
in a position to compute the partials of the velocity vectors.

D. Partials of the Velocity Vectors

The partial of the velocities ~v1 and ~v2 wrt to the vector ~p can be computed by differentiating Eqs. 10
and 11 along with the Eq. 30 and are given as follows:

∂ ~v1
∂~p

=

∂ ~r2
∂~p −

[
f~p ~r1 + f ∂ ~r1∂~p

]
− ~v1g~p

g
(31)

∂ ~v2
∂~p

= −
∂ ~r1
∂~p −

[
ġ~p ~r2 + ġ ∂ ~r2∂~p

]
− ~v2g~p

g

Algorithm 1 outlines the steps required for computing the partials, given a solution to the
Lambert problem.

Algorithm 1 Pseudo Algorithm for computing the Lambert partials

1: procedure Partials Klam(µ, k, S, τ, ~y, ~x, ~p,W
′
, TOF ′) . Input parameters from a Lambert solution

2: Compute the fundamental partials ∂k
∂x using Eq. 22.

3: Store the intermediate partials ∂S
∂x and ∂τ

∂x for the next step.

4: Compute the self partials ∂~x
∂~p , ∂S

∂~p and ∂τ
∂~p from Eq. 24 and 26, respectively.

5: Compute the chain partials ∂f
∂~p , ∂g

∂~p and ∂ġ
∂~p from Eq. 30 using Eqs. 28 and the already computed

partials in steps 2 and 4.
6: Compute the required partials ∂~y

∂~p using Eq. 31.
7: end procedure

IV. Performance and Accuracy Benefits

For estimating the cost of computing the partials in Eq. 31, a computationally efficient form
is implemented in Fortran alongside the original code from ref.12 Figure 2 shows the variation of
ratio of runtimes for the Lambert plus partial computation vs. the Lambert only case, as a function
of T ∗

Tp
, where Tp is the parabolic time for the input geometry. Each data point represents 200,000

Lambert cases with randomly varying ~r1 and ~r2. The ratio TOF
Tp

is varied from 0.05 to ∼20, thereby

allowing hyperbolic (T
∗

Tp
< 1), parabolic (T

∗

Tp
=1) and elliptical multi-rev (T

∗

Tp
> 1) solutions. The

target flight time (T ∗) is varied from ∼0.01 TU to ∼1000 TU , when expressed in normalized units
(r1 = 1 and µ = 1) . The variable Nrev denotes the fixed number of Lambert revolutions.

The cost of computing the partials is fixed while the cost of computing the Lambert solution
varies as a function of T ∗

Tp
. This discrepancy is evident from the results in Fig. 2 near the parabolic

and for the multi-rev (Nrev > 0) case. For elleptical zero-rev case and hyperbolic cases, the extra
cost of computing the partials is around 24% and 26%, respectively. For the multi-rev this number
varies between 10% and 60% depending upon the ratio T ∗

Tp
and Nrev (see Fig. 2). The Lambert
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routine itself varies in runtime because the number of iterations necessary to converge varies from
case to case (usually between 2 and 4 iterations).

On the other hand the extra computational cost of computing the partials via the forward and
central difference method is 700% and 1,400%, respectively. Recall that computing ∂~y

∂~p via forward
or central differencing requires 7 and 14 additional lambert calls, respectively. Furthermore, the
finite difference methods are limited in accuracy due to precision and roundoff error, and require
tuning for step sizes, while our analytic approach achieves accuracy near to that of the computed
velocity vectors. Hence, the analytic partials, presented in this paper, provide up to an order of
magnitude in speed benefit while achieving high accuracy.

Figure 2. Runtime ratio vs. T∗

Tp

V. Conclusion

In this paper an approach to derive analytic partial derivatives of the Lambert problem, is
presented. Based on a recently proposed cosine based Lambert formulation, first order partials
of the two velocity vectors with respect to the two position vectors and the times, are derived
and documented. Various other intermediate partials relevant to the Lambert problem are also
derived. The partials, expressed in a computationally efficient form, requires ∼10% to ∼60% more
computation time over the Lambert problem. This results in up to an order of magnitude in speed
benefit over the finite difference approach. Being analytic in nature, the accuracy of the partials is
limited only by the accuracy of the underlying Lambert solution.

Future work will focus on deriving and documenting the second order partial derivatives. De-
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signing trajectory optimization algorithms which exploit these partials will also be investigated.
The availability of analytic partial derivatives allows for novel algorithmic improvements and could
result in increased speed and efficiency of the trajectory design and optimization process.
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