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In this study, the characteristics of petal rotation trajectories are explored in both the
two-body and circular restricted three-body problem (CRTBP) models. Petal rotation
trajectories alternate long and short resonances of different kinds to rotate the line of
apsides. They are typically computed using the patched conic model, and they are used in
a number of different missions and mission concepts including Cassini, JUICE, and Europa
mission concepts. Petal rotation trajectories are first analyzed here using the patched conic
model to quantify their characteristics and search for cases with fast rotation of the line
of apsides. When they are computed in the CRTBP, they are unstable periodic orbits
with corresponding stable and unstable manifolds. The characteristics of these orbits are
explored from a dynamical systems perspective in the second phase of the study.

I. Introduction

Petal rotation trajectories alternate long and short resonances of different kinds to rotate the line of
apsides via flybys of a moon or planet. In designing a tour, various techniques such as pumping an orbit to
change its size or cranking it to alter inclination are used. Petal rotation trajectories are used when a change
in the orientation of the line of apsides of the spacecraft’s orbit is desired. They are typically computed using
the patched-conic model assuming a circular orbit for the moon or planet. They have been used for a number
of applications including trajectory design with Cassini,® Europa Missions,® 7 JUpiter Icy moon Explorer
(JUICE),%? and cycler trajectory concepts.!? Petal trajectories may also be studied in the circular restricted
three-body problem (CRTBP), where they are in fact periodic orbits. In comparison to resonant orbits, the
period of these orbits no longer forms an integer ratio with the moon or planet’s period of interest, and the
difference in the period also affects the rotation of the line of apsides in the inertial frame. The orbits are
designated by using the notation m:n* (m,n € N) where m refers to the number of spacecraft revolutions,
and n refers to the number of revolutions of the gravity assist body. (Note that the m:n notation!!14 is used
here, but the reverse n:m notation!® may also be found in the literature for flyby design applications.) The
+ or — is used to indicate whether the spacecraft revolves more or less than m times around the primary
in the inertial frame. The special case of alternating n:n™ and m:m™ orbits is particularly interesting and
requires the CRTBP model to analyze fully. Each case is designated as a family of k:k periodic orbits where
k=m+n.

In the first portion of the study, a parametric analysis is performed using different systems and across
multiple resonances with a particular emphasis on missions at Europa, Ganymede, Callisto, and Titan.
Specifically, patched conic technique are used to compute families of “petals” for different resonances, V
values, and flyby bodies, and a search is made for the cases that give the maximum rotation of the line of
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apsides per unit time. The ability to rotate the lines of apsides as a function of time is also quantified for
each scenario, and particular cases are examined in more detail. Specific n:nt/m:m~ periodic orbits are
computed and analyzed using this model as well.

The patched-conic model gives a good approximation to the actual conditions in the CRTBP for many
cases, although limitations do exist for cases where the flybys are distant. They have previously been used
to generate initial conditions to study trajectories transitioning between resonances in Anderson and Lo.'*
In the second part of the study, petal rotation trajectories are computed in the CRTBP to examine their
characteristics compared to the patched-conic predictions and explore the limitations of the approximation.
Given the initial conditions, a multiple shooting method is used to converge these orbits to periodic orbits
in the CRTBP.16 The techniques used to examine these orbits are related to those developed in Anderson,
Campagnola, and Lantoinel” exploring resonant orbits. They also possess some interesting characteristics
that are similar to these resonant orbits which have been shown to be useful in understanding tour design
in the CRTBP.18-23 Particular two-body cases are evaluated in the CRTBP for the study, and equivalent
periodic orbits are computed using the patched conic initial conditions. The rate of change of the line of
apsides in the CRTBP is compared to the patched-conic predictions for various cases. The characteristics of
these trajectories, such as stability, are also examined and summarized.

II. Methodology

A. Resonant Transfers

The focus in this study is on non-resonant transfers, but it is useful to briefly review resonant transfers as
a basis for comparison. Resonant transfers have been designed using patched-conic methods for some time,
and with these types of resonant transfers in the two-body system, the period of the spacecraft P, ;. may be
related to the secondary’s period P, by n
Py/e = —Ps. (1)
The spacecraft in the patched-conic model encounters the gravity assist body at the same longitude in each
case. A change in the two-body orbit of the spacecraft relative to the central body is effected by rotating the
V. vector via a flyby of the spacecraft by the gravity assist body on a hyperbolic trajectory. This technique
can also be used to rotate the longitude of the argument of periapse in addition to altering other orbital
elements. See Uphoff, Roberts, and Friedman?* or Strange and Sims?® for more information on resonant
transfers using patched-conic methods, and see Anderson and Lo'®?2! for a description of these transitions
from a dynamical systems perspective.

B. Non-Resonant Transfers

Non-resonant transfers may also be called generic or non-nm returns, and in these transfers the spacecraft
goes through slightly more or less than m revolutions. They have several characteristics that are different
from the resonant transfers. In particular, non-resonant transfers must occur in the orbit plane of the gravity
assist body or secondary. Again, they are designated using the notation m:n* where a + indicates a long
transfer and a — indicates a short transfer. In the following, an inbound flyby is said to be one that occurs
before periapse of the spacecraft orbit, and an outbound flyby is one that occurs before apoapse. See Figure
1(a) for an illustration of a long and short transfer. The equations for computing the two-body orbits
required for the non-resonant transfers may be found in Campagnola, Strange, and Russell?6 or Strange and
Sims,? but a short overview will be given here. In this formulation, the notation

-1 long transfer

o — { +1 short transfer

B — +1 ifn>m
-1 ifn<m

is used. An ezterior resonance is designated by EI = 1, and an interior non-resonance by EI = —1.
For planar problems with rotation symmetries, an orbit is defined by two parameters. Non-resonant orbits
must also satisfy a phasing constraint, so that the boundary positions of the spacecraft match those of the
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m:n-
case

(a) Non-resonant transfer (b) Pump angle o

Figure 1. Illustration of possible non-resonant transfers including possible m:nt and m:n~ cases and the pump
angle.

secondary. Then for a choice of m, n and o, non-resonant orbits belong to a one-dimensional manifold,
which is implicitly defined by the phasing constraint. It will be shown that for a given m and n one
inbound-outbound and one outbound-inbound transfer exist for each V,,.2°

In this paper, the dimensionless periapse and apoapse radii (rp and 7,) are chosen as independent
variables, following the formulation in Campagnola, Strange, and Russell.?6 Using this formulation the
length scale factor is the semimajor axis of the secondary’s orbit around the primary a, the time scale factor
is y/a3/GM,, and the velocity scale factor is the speed of the secondary. In this case, GM), is the gravitational
parameter of the primary, and these factors may be used to convert between dimensional and dimensionless
quantities in the patched-conic equations. Using these conversions with the two-body equations, it can be
shown that the dimensionless speed of the secondary V; = 1. In the patched-conic model, circular motion
is assumed for the secondary which is assumed to be massless, and flybys are modeled as impulsive changes
of velocity. Again, patched-conic formulas in this paper are normalized with the semimajor axis and speed
of the secondary, so that the period of the secondary is 27, and the mass parameter of the primary is one.
This is distinct from the normalization used in the CRTBP where the combined mass of the primary and
secondary are one.

The phasing constraint becomes

3/2
2 fo(ra,p) + [27m — 2Mo(ra, ) + 7o (1 — EI)] (%) —%m+4o(1—EI)=0 2)
where fj is the initial true anomaly

fol(ra,mp) = —oET arccos (M) 3)

Ta —Tp

- — 1) (1—
arctan (1',‘ ! Tp) A )( Tp)l (4)
Ta — 1 Tg +Tp
Equation 2 can be solved for a fixed rp (if n > m) or rq (if n < m). Although other choices of independent

variables are possible,26 the pericenter-apocenter formulation is convenient because only one solution exists
if 74 is fixed (for n < m) or if rp is fixed (for n > m). Given the velocity of the spacecraft (V,,.) and

and Mj is the initial mean anomaly

My(ra,mp) = —20FEI
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the secondary (V) in the inertial frame, the relative velocity in the patched-conic model at the gravity
assist encounter is Voo = V. - V.. Using this notation, a number of quantities may be computed using
dimensionless variables including dimensionless V, given by vo, = [Vso|, the pump angle a, and the time of

flight (TOF). They are defined according to

2
voo:\/3— —2h (5)
Tqg +7Tp

—EE o

o0

Tg +T 3/2
TOF = [2rm — 2My(rq,p) + wo(1 — EI)] (%) (7)

where h = 21,7 /(rq +7p). The pump angle is the angle between the secondary’s velocity vector and the Vi,
vector as illustrated in Figure 1(b).2%27:28 Figure 2 shows the pump angles for dimensionless V,, values for
a variety of resonant, short non-resonant, and long non-resonant cases. The dimensionless V, is simply the
dimensional V, normalized by the magnitude of the circular velocity of the secondary. For a given V., the

resonant(-), short non-resonant (-.), long nonresonant(--)
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Figure 2. Pump angle across V,, for selected resonant and non-resonant orbits.

chart may generally be used in combination with the maximum bending angle achievable for the system of
interest to determine whether transferring between two desired resonances is possible. The position vector
at closest approach or the periapse relative to the secondary may be computed as

Vo -V§
Ips = Tpsm (8)
where oM )
7= V2 (sin5/2 B 1) ' ©)
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Here, GM, is the gravitational parameter of the secondary or gravity assist body, and é is the bending angle
obtained from the rotation of the V., vector. The velocity at closest approach is defined by

Vi +Vy
Vo — 10
ps Ups |V;;, T VD_O | ( )
where vp, is computed using the energy of the hyperbolic flyby trajectory around the secondary as
vps = \/V2 +2GM,/(rpa). (11)

These equations may be used to compute dimensional or dimensionless quantities by using the appropriate
values within the equations. The dimensionless mass parameter for the secondary in this case should be the
secondary’s dimensional mass parameter normalized by G M.

C. Circular Restricted Three-Body Problem

The CRTBP is used to analyze petal rotation trajectories from a dynamical systems perspective in this
study. An overview of the model is given here, and Szebehely?? may be referred to for more details. In
this model, two massive bodies rotate about their barycenter in circular orbits. The larger body is often
referred to as the primary and the smaller body is referred to as the secondary. Note that in this paper
the secondary will also always be the gravity assist body. The objective is to model the motion of a third
infinitesimal mass under the influence of the primary and secondary. The equations of motion are typically
made dimensionless so that the mass of the primary is 1 — g and the mass of the secondary is . In the
rotating frame, the primary is located on the z axis at 1 = —p, and the secondary is located at zo =1 — p.
Given this information, the equations of motion of the infinitesimal mass are written in the rotating frame

* 80
i -2 =5
o0
§+2:.E:8—y (12)
,_ o0
z_az
where
2., .2 _
o=ty (d-m p (13)
2 1 T2
and
n=VE+p?+y?+z%r =V(@-1+p)?+y2+2% (14)

The mass ratios and orbital velocities of the moons are listed for selected CRTBP systems in Table 1. An

Table 1. Mass ratios and orbital velocities for selected CRTBP systems

System I
Jupiter-To 4.705093
Jupiter-Europa 2.526645
Jupiter-Ganymede 7.803691
Jupiter-Callisto 5.667999
Saturn-Titan 2.365805
Neptune-Triton 2.087757

integral of motion called the Jacobi constant is found in this problem, and it is defined according to

201 — 2
Con?t 2+ 202H 2 _ 2 2 o (15)
T1 T2
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II1. Patched-Conic Exploration
Petal rotation trajectories as they are referred to here are computed using the non-resonant techniques

discussed earlier with the specific objective of rotating the line of apsides. A schematic of one such scenario
for the 1:4~/1:2% case is shown in Figure 3. In this schematic, the change in the line of apsides as a result of

O Departure % Arrival

P Radial V=1 = We—=0.2/

Y direction M -

3 i
v—1 Voo —0.2%

1
i Radial
direction

Figure 3. Petal strategy schematic for a 1:4~ /1:2% sequence with the rotation of the line of apsides.

the gravity flybys may be found by examining the orbital elements after the flybys. This change and the rate
of change of the argument of periapse may be computed analytically using patched-conic equations as will
be described next. Practically speaking there are also several other considerations in the design process. To
avoid very low altitudes, we assume the flyby will maintain the radial component of the V,,. So we alternate
short orbits to long orbits. More generally, if the first orbit is m; : nfl and the second orbit is ms : ngi,
then
{ —oy if sign(ng :m; — 1) =sign(ng : mg — 1)
09 =
oy if sign(ny : my — 1) # sign(ng : mg — 1)
If «vy is the pump angle of the first non-resonant orbit, and as is the pump angle of the second non-resonant
orbit, the required flyby bending angle is |az — 1], while the bending or turn angle that can be provided
by the flyby is
. . 1
:5—2arc51n(1+vo2o/ﬂ2). (16)
Here V. is the velocity of a circular orbit at the same radius as the flyby closest approach r,, given by

Ve =/GM,/rps. (17)

It may also be computed as dimensional or dimensionless by using the appropriate values for the mass
parameter and radius. The minimum-altitude flyby constraint results in V., < V_pr4x, where

GM,

_. 18
Tbody + hmt’n ( )

Vemax =

The radius of the secondary is rpoqy With a minimum acceptable flyby altitude of A,in. The values of V. for
different secondaries are shown in Table 2 along with several other parameters of interest. For any (feasible)
petal strategy, the rotation of the line of nodes after two flybys may be computed from Equation 7 using the
total time of flight of the two non-resonant orbits

Aw(ra1,7p1) = TOF (r41,7p1) + TOF (Ta1,7p1) — 27(n1 + ng) (19)
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Table 2. v.prax for different systems

Body GM Mean velocity Radius Flyby altitude | veprax
(km3/s?) (km/s) (km) (km) (adim)

Earth 398659 29.78 6378 300 0.259

Moon 4843.94 1.018 1737 50 1.62
Io 5960.98 17.33 1829 100 0.101
Europa 3200.99 13.74 1564 100 0.101
Ganymede 9887 10.88 2632 100 0.175
Callisto 7180.97 8.203 2409 100 0.206
Enceladus | 7.96556 12.62 256.6 50 0.0128
Titan 8978.17 5.572 2575 800 0.293
Triton 1427.92 4.389 1353 300 0.212

Refer again to Figure 4 to see the rotation of the argument of periapse per revolution of the secondary body
m for an example case.

Values of Aw and the rate of change of w over time (w) may be computed for any particular system
and m:n* /m:n¥ combination. The results may be plotted compactly using w in terms of the degrees per
secondary revolution, and the dimensionless V,,. The results for some selected orbits useful in various

systems are plotted in Figure 4. In each case the system where the stated w is possible is indicated by the

60 T T T T T T T - - . . 5
45- L1+ 1:2-
— 307
u
g 10~ 124/ 1:3-
‘g 15
E 0! g
3 - :
= ~ +:2-/ 1:3 g
@« -{5/m = - - 2 . :
277 2./ 2:04 ——Only the Earth's Moon | 2
2 - - 1:1+/ 5:24 — Earth's Moon and Titan| &
5% ' / ~—— .. and the Earth :
3 = ... and Triton I
s === and Callisto .
60 1:1+/ 211 === and Ganymede —
we= ... and Europa, lo % 01020304050607 0809 1 1112131415
mmm  and Enceladus. Uae BOD-dim.

50 010203040506070809 1 1112131415

Voo, NoN-dim.

(a) Overview (b) Close View

Figure 4. w across a range of dimensionless V, values for a set of nonresonant orbit combinations.

color of the line as indicated in the legend. The feasibility of each solution is limited by the allowable bending
angle given the minimum flyby altitude constraint. In each case, for a given V., a range of orbits and w
rates are possible. For many scenarios it is often desirable to maximize w, and in this case the appropriate
orbit may be selected from Figure 4 for a given V..

While the dimensionless parameters are convenient to visualize a wide range of possibilities in different
systems, it is also useful to plot the results for particular systems to more easily find the appropriate orbits.
Plotting in this manner allows the possible w values to be compared for various sequences for a given V,
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in each system. Ideally a mission designer can use this information during the tour to select the desired
rotation at the current V,, being used in the design. It may also allow for the targeting of a particular V
where a desired rate of w may be achieved. Some of the selected sequences that have been found to be useful
or have the potential to be useful in various system are plotted in Figures 5 and 6. The sequences for the
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| 26/ 12 ] "\
ol 4 AN
F——— A T 1:44 1 2:7-
2:5-/ 1:3+ 1:3-/ 2.7+ + al \\\ |
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6 1 3 114/ 2:2- B
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7! 1 1 1 1 1 1 1 -4 L L L L |
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12
Vo (km/s) oo (kin/s)
(a) Jupiter-Europa (b) Jupiter-Ganymede
Figure 5. w over V for the Jupiter-Europa and Jupiter-Ganymede dimensional cases.
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Figure 6. w over V4 for the Jupiter-Europa and Saturn-Titan dimensional cases.

Jupiter-Europa system in Figure 5(a) have generally been tailored to minimize the effects of radiation on the
spacecraft while the other cases are focused more on finding the maximum rotation of the line of apsides. As
expected, the 1:17/2:2™ case often gives one of the higher rates of w, but it is interesting that the 1:2%/2:2~
case appears to be quite effective for the Saturn-Titan system. A range of other factors beyond maximizing
the rotation of the line of apsides may come into play in the mission design, and these figures allow the
proper trades to be made. Note that the n:n*/m:m™ orbits will be dealt with more fully in the remainder
of the paper, and the validity of the patched-conic predictions at low values of V,, will be evaluated.
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IV. Transition to the CRTBP

A. Generating the Initial Conditions

A detailed example transitioning from the patched-conic model to the CRTBP using a 1:17-2:27 case in
the Jupiter-Europa system is first presented here to describe the process used to compute these orbits. For
this case, the initial conditions at the flyby required to travel along the 1:17 trajectory with V., /V, = 0.232
are computed. After one flyby, the spacecraft travels along the 1:17 orbit, and after the next it travels along
the 2:2~ orbit. The subsequent flyby transfers the spacecraft back to the 1:17 orbit, and the cycle repeats.
During this time the line of apsides rotates as a result of each flyby.

Using Equations 5 through 10, the initial V, vectors are computed in the RTN frame. For this case,
the R direction is the radial direction positive traveling out from the barycenter to the gravity assist body.
The N direction is the orbit normal, and T completes the right hand frame. This example is computed in
the planar problem, so the N direction is ignored. Given this coordinate system, the Vs for one flyby are

V4~ ~[023191 0.00644 |7 (20)
Vit ~[ 022338 —0.06264 |7 (21)

where the A in the superscript denotes the flyby. The “” indicates the incoming V., and the “+” indicates
the outgoing V.. The other flyby’s Vs are

VE- =~ -022338 —0.06264 |" (22)
VEr~[ —0.23191 0.00644 ]". (23)

After flyby A, the spacecraft enters the 2:2~ orbit, and after flyby B, it enters the 1:17 orbit.

Note that V4 and VB~ do not match because the spacecraft is encountering the gravity assist body at a
different location along the gravity assist body’s orbit in each case. This feature distinguishes this technique
from a resonant encounter where the outgoing and subsequent incoming Vs would be the same.?! If the
outgoing/incoming V 4, pairs are examined using the diagram in Figure 7, it can be seen that the velocities are
consistent with the expected characteristics for the 1:11 and 2:2~ orbits. Examining flyby A, the outgoing

Vi avA+

VE-

B+
Ve
Figure 7. Diagram showing V., vectors relative to the gravity assist body’s velocity.

V4+ has a positive velocity in the R direction and a negative velocity in the T direction indicating an
outbound trajectory traveling to apoapse on the orbit. The incoming VZ~ has a negative velocity in the R
and T' directions which is consistent with an incoming Vio. The VA+ and VB~ pair is also consistent with
the 1:17 orbit.

B. Convergence Process in the CRTBP

Once each V., has been computed using the patched-conic equations, the flyby conditions at closest
approach to the gravity assist body may be computed. These initial conditions have been found to be the
easiest to use in the CRTBP to converge on the truly periodic orbits approximated by the patched-conic
equations. In this process, the closest approach conditions for both flybys are transferred to the CRTBP,
and initial guess trajectories are integrated forward and backward from each flyby for half of the expected
periods. Examples of two particular cases computed in the Jupiter-Europa system using this process are given
in Figure 8 The resulting trajectories appear nearly periodic, but they can have significant discontinuities
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Figure 8. Two orbit cases with two-body initial conditions integrated forward in the CRTBP.

at the endpoints, especially for lower energies or V,, values.

The next step in the process is to use the integrated initial guess trajectories in a differential corrector
to compute a periodic trajectory with the same topological characteristics. A two-level differential corrector
with periodic constraints is generally used for this purpose,3%32 although a single-shooting method?? is
sometimes used for the simplest cases. A sample of the orbits corresponding to the initial conditions in
Figure 8 are given in Figure 9. As can be seen from the plot, the patched-conic initial conditions provide a

08 08
06 06
04t 04
02t 02
V' ole— V' oole—o
02r 0.2
04r 04
061 06
_0'%_2 l]l.d 0.I6 OIB 1 1_I2 1_I4 116 18 _0'%2 04 06 08 1 12 14 16 18
X X
(a) 1:1F-2:2— (b) 2:2F-2:2—

Figure 9. Converged three-body orbits plotted in the rotating Jupiter-Europa frame.

sufficient approximation to the final converged three-body orbits for these cases. The convergence process
does introduce some differences however that make the introduction of other techniques, such as continuation
methods, desirable, even for high energy cases. For example, the predicted closest approach at Europa for
the example discussed in the previous section was at an altitude of approximately 224 km, but the converged
distance was approximately 64 km. These differences are partly the result of the vagaries of the particular
method used for the differential corrections process, but it is useful to produce the entire family of periodic
orbits as will be discussed next. Orbits in the CRTBP with desired characteristics, such as periapse radius,
may then be selected from the family. Examining the orbits that are periodic in the CRTBP in the inertial
frame reveals the differences in the two-body orbits before and after the flybys more clearly as seen for the
2:27-2:27 in Figure 10(a). The difference in the direction of the argument of periapse can also be discerned
and will be explored in more detail later. The difference in the two-body orbits may be clearly seen by
plotting characteristics such as the osculating two-body period of the orbit shown in Figure 10(b).
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Figure 10. The converged three-body case in Figure 9(b) plotted in the inertial frame with its period normalized
by Europa’s period over time.

V. Comparison of Patched-Conic and CRTBP Results

It is expected that the patched-conic and CRTBP results will match well for higher energies, and that
differences between the results from each model will occur in the low-energy regimes. In order to explore
the differences that might occor several example cases relevant to various mission designs are examined.
The first is a 1:47 /1:5~ sequence in the Jupiter-Europa system that is used to minimize radiation exposure.
Then an in-depth examination of the 1:17 /2:2™ case is presented.

A. Jupiter-Europa 1:4%/1:5~ Sequence

The 1:4% /1:5~ sequence is typically used at higher energies to rotate the line of apsides, and it also has
the benefit that it can be used to minimize radiation exposure when performing flybys of Europa. This
lower radiation exposure is achieved by the fact that it has a high apoapse radius with a periapse very close
to Europa’s radius. For this process, the methods just described were used to converge an initial guess
from the patched-conic model in the CRTBP. Once this initial guess was obtained, the orbit family over a
range of Jacobi constants and V, values was obtained using continuation.3%35 A sample of the periodic
orbits obtained during this process is shown in Figure 11. As can be seen from the plot, the orbit can vary

3

shhovroveans

o bbhloaneao

0
x x x x

(a) Voo ~ 3.9 km/s, C ~ 2.92 (b) Voo = 5.0 km/s, C = 2.87 (c) Vo ~ 5.8 km/s, C ~ 2.83 (d) Ve ~ 10.3 km/s, C ~ 2.45

o

Figure 11. Selected trajectories from the Jupiter-Europa 1:47 /1:5~ family.

significantly with energy, but the same general qualities expected for the 1:4%/1:5~ orbit are seen in each
plot.

One of the primary characteristics of interest for this study is the rate at which the argument of periapse
may be rotated over time for different orbits and values of V. A comparison between predictions using
the patched-conic equations and the results from the converged periodic orbit equivalents in the CRTBP are
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Figure 12. Comparison of predicted w using patched-conic equations and computed @ in the CRTBP over a
range of V., values for the 1:47/1:5~ sequence.

shown in Figure 12. It can be seen from the plot that the predicted and computed & values match quite
well for the larger V, values. As the V,, values fall below approximately 6 km/s, some differences start to
become apparent. This difference occurs despite the fact that the majority of the orbit stays away from the
secondary.

B. Jupiter-Europa 1:17/2:2~ Sequence

As the spacecraft’s orbit becomes more similar to the gravity assist body’s orbit it is expected that the
effect of the gravitational perturbations of the gravity assist body will become more important along the
trajectory and more significant differences will be observed when comparing the patched-conic predictions
and the CRTBP periodic orbits. One such case may be seen for the orbit following the 1:17/2:2~ sequence
in the Jupiter-Europa system. This case will be examined in more detail here, and relevant information will
be summarized for various sequences and systems in the following section.

The initial orbit in this family was computed using the patched-conic initial guess, and the family was
then obtained using continuation. A sample of some of the orbits resulting from this process is shown in
Figure 13. It can be seen from this series that the orbits retain the same general characteristics over the
family, but the orbits become significantly smaller with increasing C or decreasing V,,. A number of orbital
characteristics of the orbits across the family may be computed, and some relevant related information that
may be produced is shown in Figure 14. As might be expected, the V., values decrease with increasing C.
As the orbits become smaller with increasing C, the distance from the secondary during the flybys increases,
and the orbits become correspondingly more stable. One interesting feature that corresponds to the small
kink observed in Figures 14(a) and 14(d) can be observed as the orbits become smaller. The minimum
periapse radius is generally increasing with increasing C, but near C = 2.997-2.998, the minimum periapse
shifts from those crossing near =z = 1 to those crossing at the y = 0 line. (In other words, it shifts from those
periapses in the vertical to those in the horizontal direction in Figure 13.) The minimum periapse radius
from this point then decreases. The periods decrease slowly at lower C and then decrease more significantly
as C approaches 3. The portion of the family shown here is stopped as the maximum eigenvalue of the
monodromy matrix approaches 1 and the orbits become more stable.

While these characteristics are generally useful, the characteristic of interest for this study is the rate of
change of the line apsides. This rate computed over one period of the orbits is plotted and compared to the
patched-conic predictions in Figure 15. It can be seen here that for larger Vs near 3 km/s the predicted and
computed values match well. As the V,, decreases, the values diverge significantly however. The smallest
orbits at the lower Vs can have a quite significant change in w, but the orbits at this point begin to lose
the characteristics seen for the majority of the family with close flybys of the secondary.

The differences between the patched-conic predictions and the CRTBP results can become significant
for low Vs, and they are worth exploring. Some insight can be obtained by computing the patched-conic

12 of 20

American Institute of Aeronautics and Astronautics



06 06 06 06
04 04 0.4 0.4
02 02 02 02
L L L L
02 02 02 02
04 04 04 04
06 06 06 06
04 06 08 1 12 14 16 04 06 08 1 12 14 16 04 06 08 1 12 14 16 04 06 08 1 12 14 16
x x x x

(a) Voo = 3.2 km/s, C = 2.94 (b) Voo = 2.6 km/s, C = 2.96 (c) Voo = 2.1 kmm/s, C = 2.97 (d) Voo = 1.6 km/s, C = 2.98

025 0.25 0.25 0.25
02 0.2 0.2 0.2
015 015 015 015
0.1 01 01 01
005 0.05 0.05 0.05 @
L L L Y o
~005 ~0.05 ~0.05 ~0.05
01 01 01 01
_015 ~015 ~015 ~015
02 02 02 02
025 025
08 09 1 11 12
X

-025 -025
08 09 1 11 12 08 09 1 11 12 08 09 1 11 12
x

X X

() Voo = 0.968 km/s, C = (f) Voo = 0.317 km/s, C = (g) Voo = 0.391 km/s, C = (h) Ve = 0.359 km/s, C =
2.992 2.997 2.9983 2.9986

Figure 13. Selected trajectories from the Jupiter-Europa 1:117/2:2~ family.
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Figure 14. Characteristics of the Jupiter-Europa 1:17/2:2~ family across C and V.

initial conditions at closest approach and comparing the trajectories integrated from these conditions to the
orbits obtained in Figure 13. Orbits at some of these selected energies have been computed for comparison
in Figure 16. In each case, the initial conditions were integrated forward and backward for half of the
appropriate period to meet up with the trajectory from the other flyby. It can be seen that for higher V,,
values, the orbit endpoints match well, and the orbit shape is similar to that obtained by conversion to a
periodic orbit through differential correction. For lower V., values though, the endpoints are far from each
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Figure 16. Selected patched-conic initial guess trajectories integrated from the fiybys for the Jupiter-Europa
1:11/2:2~ sequence.

other, indicating that the three-body effects are dominating, and the patched-conic prediction is no longer
accurate in this region. The predicted orbit shape also diverges significantly from the orbits obtained via
continuation at this point. It is at this point that the larger differences in & between the two models becomes
most noticeable.

While the low-V,, cases may appear more desirable from the perspective of optimizing w, it is useful
to compare some specific cases to understand the characteristics of these orbits more fully. Plots of the
orbits for several specific cases from Figure 13 in the inertial frame are given in Figure 17 along with the
corresponding time histories of w. The higher V, cases behave as expected with large changes in orbital
elements corresponding to the close flybys of the spacecraft with the secondary. This effect is slightly less
apparent as V, is reduced to approximately 1 km/s, and it is nearly gone with the lower V, values. Indeed,
it seems to be approaching something similar to a distant retrograde orbit (DRO) around Europa, and the
stability correspondingly approaches 1.
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Figure 17. Selected trajectories from the 1:11/2:2~ sequence Figure 13 plotted in the inertial frame. The
initial and final osculating two-body orbit is plotted in black and gray, respectively. The direction of the
argument of periapse is indicated with the arrows in each case.

VI. Characteristics of Periodic Petal Rotation Trajectories in the CRTBP

The comparisons of the patched-conic and CRTBP results for the k:k periodic orbits so far show that there
can be significant differences between the & predicted in each case. These types of orbits may potentially
be useful in tour designs and as target orbits themselves for observations of the secondary or other objects.
While an exhaustive list of the characteristics of these orbits is beyond the scope of this study, representative
characteristics are given here that give an indication of the results that would be expected for these types of
orbits in various systems.

A. Jupiter-Europa

A wide range of k:k orbit combinations are possible, and several representative orbits in the Jupiter-
Europa system will be described here along with their characteristics. In each case, the patched-conic
initial guess is used to compute a periodic orbit in the CRTBP, and continuation is used to explore the
characteristics of the family. The set of orbits computed in the CRTBP for this study is shown in Figure
18. Each orbit possesses two flybys with multiple loops around the secondary that correspond to the chosen
resonance. Comparing the 1:11/2:2~ case and the 4:417 /4:4~ case it can be seen that the orbits become
significantly more complicated with corresponding increases in the period of the orbit. The close flybys at
high energies (low C) make them generally unstable.

The characteristics of the families for each of these orbits may be computed in a manner similar to that
described earlier for the 1:17/2:2~ case, and w in particular may also be found for each family as a function
of various parameters. The values of W as a function of V,, is plotted for each continued family in Figure
19(b) and compared to the patched-conic predictions for each case in Figure 19(a). As was seen for the
initial case computed in the Jupiter-Europa system, the @ values match well for higher V., but the lower
V. cases can diverge from the patched-conic predicted values significantly in each case. The 1:17/2:2™ case
does give the greatest difference over time, but it should be remembered that this difference corresponds to
those orbits essentially orbiting the secondary at a distance.
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Figure 19. Patched-conic predictions and CRTBP results for w in the Jupiter-Europa system for selected k:k
orbits.

B. Saturn-Titan

A similar analysis to that performed for Jupiter-Europa is performed here for the Saturn-Titan system.
Referring back to Table 1 shows that the mass ratio of the Saturn-Titan system is at the other end of
the spectrum for the systems of interest here. These plots show a number of differences, primarily in the
magnitude of the quantities of interest from which the characteristics of the other systems may be generally

inferred.
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In Figure 20 an overview of some of the trajectories computed for the Saturn-Titan system is given.
They generally have similar features as those seen in the Jupiter-Europa system, but of course some of the
characteristics at each energy vary. A sample of some selected orbits from the continuation process for the
1:1%/2:2~ orbit is given in Figure 21. Some of the larger orbits vary from those seen in the Jupiter-Europa
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Figure 20. Sample of Saturn-Titan petal rotation trajectories for various non-resonant orbits in the CRTBP.
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Figure 21. Sample of Saturn-Titan petal rotation trajectories across the continuation process for various
1:17/2:2~ orbits in the CRTBP.

system, but the qualitative nature of the family through the continuation is the same. A comparison of w
for the continued families of orbits with the patched-conic predictions is given in Figure 22. Characteristics
similar to the comparison in the Jupiter-Europa system are seen here. The predicted magnitude of w is
smaller, and the CRTBP results are correspondingly smaller. They again match the predicted results best
at the higher V,, ranges. In this case the deviation in w is greatest below approximately 1.5 km/s.

C. Galilean Moons & Neptune-Triton

Many of the features and expected trends of the systems in Table 1 may be deduced or extrapolated
from the results given so far for the Jupiter-Europa and Saturn-Titan systems. The converged orbits for
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the same sequences in each look similar to those computed so far, although they will of course vary at each
particular energy. A sample of some of the orbits computed in each system is given in Figure 23. Further
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Figure 23. Sample of petal rotation trajectories for various non-resonant orbits and systems in the CRTBP.

insights into the differences seen in each system may be obtained by comparing parameters such as w in
Figure 24. Comparing these plots shows that Jupiter-Io and Jupiter-Europa generally have the greatest rate
of change for this case. The pairs Neptune-Triton/Jupiter-Ganymede and Saturn-Titan/Jupiter-Callisto are
both surprisingly similar at least over a portion of the V, range. The larger negative trends seen in w occur
below approximately 3 km for the Jupiter-lIo system moving up to below approximately 1.5 km/s in the
Saturn-Titan and Jupiter-Callisto systems. Qualitatively similar differences with the patched-conic results

may be found for each system as well.

VII. Conclusions

Patched-conic solutions can be used to provide a quick method of evaluating the tour design space for
available trajectories with desired rates of w. They also provide a sufficiently accurate approximation at
higher energies to allow the convergence of corresponding orbits in the CRTBP and their continuation to
lower energies. For trajectories that generally stay far from the secondary such as the 1:41 /1:5~ sequence,
the patched-conic and CRTBP results matched well over the majority of the V., values, but some differences
were noted even there for the lower range of V,,. These types of differences are worth noting and have the
potential to be significant for particular non-resonant orbit sequences. For trajectories that are closer to the
secondary’s orbit, significant differences in w may be found with lower V. For systems such as Jupiter-
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Europa these differences could be found below approximately 3 km/s Vs, and for Saturn-Titan below
approximately 1.5 km/s V,s. These differences are important at these lower energies, and the provided
rates can provide a guideline for extended mission or endgame design scenarios.

VIII. Future Work

Future work will include the analysis of additional orbit sequences in these systems as well as others.
Preliminary analysis indicates that the invariant manifolds and heteroclinic connections possible with these
orbits can provide useful transfers, and these transfers will be analyzed in the future.
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