Cloud Computing Techniques for Space Mission Design

Juan Arrieta* Juan Senent!
Jet Propulsion Laboratory, California Institute of Technology
4800 Oak Grove Drive, Pasadena, California 91109 USA

I. Introduction

The overarching objective of space mission design is to tackle complex problems producing better results,
and faster. In developing the methods and tools to fulfill this objective, the user interacts with the different
layers of a computing system as illustrated in Figure 1.

Algorithms Data Structures

Software / Applications

Development / Programming Languages

Operating Systems / Environments

Hardws

Figure 1: Layers of interaction in a typical computer system.

The upper levels in the illustration are closer to the end user and the specific problem, e.g., a given
algorithm applied to a dataset using some software. Lower levels with darker shading denote implementation
details that should be separated from the upper levels and developed independently. The cloud computing
model can serve as the basis to a powerful framework attaining this separation.

The design of space missions is an intrinsically complex task where the multiple teams involved strive to
balance tradeoffs and naturally competing interests (cf. Figure 2). For example: a Science Team may desire
a flexible trajectory which can be modified at a moment’s notice (thus responding to scientific discoveries
impossible to anticipate). On the other hand, a Trajectory Design Team may lean towards minimizing the
overall Av required to accomplish a mission, which may result in a more rigid reference trajectory.

In previous work! we explored some generalities of the cloud computing model for mission design and
operations; we contended that the complexity intrinsic to space mission design can lead to undesirable
fragmentation of the systems, formats, protocols, and datasets used for mission design, and we proposed to
leverage the cloud computing model to reduce such fragmentation.

We now aim to build on specific aspects of that work. In particular, we aim to explain three important
elements of the cloud computing model and how these elements can be used to build high-performance
computing solutions:

Abstraction Enables the separation between a concept and its underlying implementation. For example:
storage is a concept; solid-state hard drive is a particular implementation of the storage concept.
Cloud computing is based on the abstraction of computational infrastructure in a manner such that
the conceptual need can be fulfilled by means of a high-level interface providing minimum performance
guarantees.

*QOuter Planet Mission Analysis Group; M/S 301-121; Juan.Arrieta@jpl.nasa.gov; AIAA Member
tMission Design and Navigation Software Group; M /S 301-121; Juan.Senent@jpl.nasa.gov; AIAA Member

1 of 19

American Institute of Aeronautics and Astronautics

Organizational sources of complexity are natural

— More accuracy entails more fuel
— More flexibility entails more uncertainty

— Less fuel consumption can require less accuracy G Fuel Consu mptlon
— Less uncertainty reduces flexibility

— Operational — Flexibility entails

rigidity can lengthy sub-system

lead to checklist labor

missing cnoe-

in-a-lifetime — Background

‘opportunities. sequence design and
wvalidation are arduous,
difficult tasks.

This complexity demands timely and correct avallability of data and analytical power

Figure 2: Organizational sources of complexity are natural and intrinsic to space mission design and oper-
ations because different groups strive to satisfy often competing goals.

Virtualization Enables the creation of computer environments (i.e., operating system, software, and datasets)
as electronic assets that can be later deployed as computing nodes. Each node consists of a fresh install
of the exact computing environment running on a physical machine of the desired performance charac-
teristics. Virtualization can enable the prototyping of large-scale applications in simple development
environments, and pace the growth of the underlying hardware before an actual full-scale deployment.

Elasticity Provides the ability to expand or contract the deployed infrastructure instantaneously; it tends to
relinquish third-party involvement, and has one important consequence: it lowers the barrier to entry
to the high-performance computing arena because it transforms capital expenditures into operational

costs. Teams can bypass the expensive, risky, or cumbersome procurement of computing infrastructure,
and instead deploy and distribute solutions.

In addition we discuss data serialization mechanisms (binary and plain-text), the use of message brokers
for worker coordination.

Finally, we report a case study under current development—the design and optimization of spacecraft
trajectories powered by gravity assists.

2 of 19

American Institute of Aeronautics and Astronautics

II1.
ment

One of the most time consuming and problematic aspects of collaborative mission design is the development

and distribution of highly-specialized software.

Such software is most often one-of-a-kind, written to solve a specific problem of mission design, and it
tends to rely on third-party libraries which, while often widely available, can be configured and deployed in

a multitude of manners.

Virtualization and the Mission Design Computing Environ-

The Navigation and

Ancillary Information Facility
— y -

Toolkit > FORTRAN

Toolkits are available in the FORTRAN language for the platforms listed below.

Mac/Intel, OSX, gfortran, 32bit

| el i
Mac/PowerPC, OSX, Absoft FORTRAN, 32bit
Mac/PowerPC, OSX. g77, 32kt

BC, CYGWIN, g77, 32hit
PC, Linux, Intel FORTRAN (IFORT), 32hit
PoL 77. 22hi

i ran i

B Li i Gbi
PC, Windows, Compan Visual [Digital) FORTRAN, 32hit

PC. Windows, Intel FORTRAN (JFORT), 32bit

1] v, Intel AN T il

Sunfintel. Solads, Sun FORTRAN, 32bix
Sun/SPARC, Solaris, Sun FORTRAN, 32bit

POS Nodes: Atmospheres Geoscisnces
Clearance: CLWIE-2438
’FfRS’TGOV She Managar: Chartes Acion

Disclaimer MNASA Dfficial- Wilkam Knopf
Webmaster: Ron Baske

Last Updatad: 14 Apr 2014

The Navigation and
Ancillary Information Facility

Toolkit > IDL

Toolkits are avallable in the I0L language for the platforms |isted below.

Mac/Intel, 05X, Apple C, IDL 7.x, 32hit
Mac/Intel, OSX, Apple C, 10L 7., 64hit
Mac/Power 4, i
PC, Linux 4 i
e L CCIDL 6.4 640

BC, Windows, M5 Wisual €. IDL 7. 320it
PC, Windows, MS Visual €, 1DL 7.x, E4bit
Sun/SPARC, Solaris, gCC, IDL 7.x, 33bit
Sun/SPARC, Solaris, aCC, TDL 7.x, B4hit

=1 lari n i

P08 Modes: morphaes Guasconcos sy WA 091 Mg SrsiBodes

,ﬁ Clsarance: CLAOS-2434

—ha A @/ sleMalwsl::G\ulsst
‘Webmaster Ron Baslke

Last Updaled: 14 Agr 3094

' The Navigation and

Ancillary Information Facility
— .

Toolkit = C

Toolkits are available in the C language fer the platforms listed below.

M 11 X, s i
" DSx A e

PC, CYGWIN, gCC, 32bit
P NYX il
PC, Linyx, gCC, 64bit

Sun/Intel, Solaris, Sun €, 32hit
Sun/Intel, Solaris, Sun C, G4bit
Sun/SPARC, Solaris, gCC, 33bit
Sun/SPARC, Solaris, aCC, Gdbit

PDS Nodes: Atmospherss Geasslences
Clearance: CLUDS-2435
- R__Sn.'I__G()V e Manager. Charles Acion
tmesd L NASA Privacy Statamant, Disclaimer NASA Official: Wiliam Knopf
Wabmactor: Ron Baalke
Last Updated: 14 Apr 2014
MATIONAL AEROMALITICS
AND SPACE AOMINISTRATION

nformation Facility

Toolkits &re availzble in the MATLAB lznguage for the platforms listed below,

Mac/Inkel, OSK, MATLAB 7.x, 32bit
Mac/Intel, OSK, MATLAB 7.x, 64bit
o & 7 i

BC. Li TLAB 7., 2205
PC, Linux, MATLAB 7.x, B4bit
PC, Windows, MATLAB 7.x, 32bit
MAT] i 4 bi
Sun/SPARC, Solaris, Sun C, MATLAB 7w, Gabit

Clearance: CLNDS-2436

+MASA Privacy Disdaimar

e

‘Webmaster: Ron Baalke
Lesst Updatad: 14 Apr 2014

Figure 3: Even high-quality, time-tested, well-known libraries are heavily dependent on the platform. In
this case, relying on the critical SPICE library requires the knowledge of over 50 different combinations
of implementation language/platform/compiler. For libraries of lesser quality, targeting specific systems is

impractical or simply impossible.

Take, for example, the SPICE Toolkit.2 SPICE is a central element to any mission design software which
deals with planetary and satellite ephemerides, coordinate frames, clocks for spacecraft navigation, and
fundamental astrodynamic algorithms; it is freely available online, and is based on a high-quality codebase

of fully standardized languages (Fortran 77 and an automatically-generated C translation).

3of 19

American Institute of Aeronautics and Astronautics

Sile Marager: Charles Aclon
NASA Official: Wiliam Knopf

However, inserting a dependency on SPICE can introduce software management difficulties unless the
source is shipped together with the product: as illustrated in Figure 3, SPICE can be installed in about fifty
different manners, and one needs to either be aware of the specific variation available on the target computer
(e.g., whether its instruction set is 32- or 64-bits; whether it is the Fortran version or the C version, and
in the case of the Fortran version, what specific compiler, as different Fortran compilers tend not to be
ABl-compatible).

Finally, one needs to ensure that the SPICE library is available in the dynamic library loading path of
the target computer, or modify the environment accordingly (which, in itself, is a software management
challenge).

And such complications arise with a mature, high-quality, enterprise-grade software library backed by a
knowledgeable development team (which most libraries are not). Libraries of lesser quality introduce many
more deployment barriers.

The SPICE developers have recently created a powerful Web interface to the SPICE library called We-
bGeocalc (cf. Figure 4 and visit http://naif. jpl.nasa.gov/naif/webgeocalc.html). This interface can
significantly ease the analysis of trajectories and geometric events, and it only requires a web browser.

With inspiration gained from the work of the SPICE developers in WebGeocale, we looked to allevi-
ate some of this challenges, we designed, assembled, and deployed a virtual machine for astrodynamical
calculations. We consider this milestone as one of the most beneficial outcomes of this investigation. The
virtual machine provides a computing environment which we have called Rocket Science Computing Platform
(RSCP). Figure 5 depicts the welcome banner of an SSH session on a deployed virtual image of RSCP.

The purpose of RSCP is to provide a new alternative to collaborative software development and mission
design. It is based on the idea that distributing full environments is more beneficial than distributing
individual software components.

At this point RSCP is based on Ubuntu Linux. Among other components, it contains the latest version
of the Fortran, C, and C++ compilers (as available via GCC 4.8.1), a full installation of LLVM and clang, a
full installation of Python 2.7 with its development libraries, the QT libraries, the Boost libraries, the Eigen
linear algebra libraries, the SPICE libraries (both in Fortran and C), generic SPICE kernels, two databases,
and message brokers. Table 1 depicts some of the baseline libraries and programs shipped with RSCP.

We contend that it is comparatively simpler to hand-tune one platform and distribute it, than it is to
hand-tune, a Makefile to correctly build on a variety of platforms®.

The model for collaboration based on RSCP would consist of a group of JPL employees in charge of
deciding what goes into RSCP, and to standardize the appropriate installation, documentation, and ver-
sioning of such components. Third parties (whether in JPL, other NASA centers, or external collaborators)
would be encouraged to submit for consideration libraries, code, and data sources suitable for inclusion in
the official distribution of RSCP. Over time, RSCP would increase its code base of original and contributed
capabilities.

Any party with access to RSCP would be able to deploy the virtual machine in its preferred host, whether
in private hardware (leveraging tools such as VMWare or Xen), or relying upon a cloud services provider
such as Amazon EC29,

III. Data Serialization

Data serialization denotes any mechanism by which the current state of a data structure is transformed into
a stream of information. Such stream can be stored or transferred over a network, and used to restore the
data structure on demand, at a later time, via data deserialization, a complementary mechanism.

Serialization is the process of translating a digital entity to and from a format that can be stored,
transmitted, and then reconstructed on the same or a different system (cf. Figure 6). For example, the
process of converting an instance of a class to a stream of bits, later read by another process or system and
reconstructed into an exact clone of the original object.

aFortran, C, and C++

bC and C++

“We need to clarify that we are not in a fight with such approach: it is both good and important. However, it addresses a
use case different from the one we are concerned with.

4t is possible to create a virtual machine utilizing one infrastructure, and deploy it in another infrastructure.

4 of 19

American Institute of Aeronautics and Astronautics

http://naif.jpl.nasa.gov/naif/webgeocalc.html

SHICE Cenmeiry Calrulator o

47 WebGeocalc - A GUI Interface to SPICE
T i 108 (R

Calculation Manu Enedtack FuesoiUss Abcutthe Culs Asout WeblGeocaks
prT—— P
Geometry Calculator N s ks
Stptn Vectr
Anquin: Separion otmervar.
Anauir Sze
Frome L
Mringien Ange Aasgat as saen

from an obaenvar, -
Eub-solar Poirt —
Suf-ntmenmr Point SotrSyviem Kemels kemel st O
‘Euraco igroopt Poind.
Geometric Event Finder

condition

Eislgr s bocis, | |

mabefins a condtion

condition.

condition.

arothar.
Sufan intaroapt Finder Fi
Teust Fiad time:

instrument.
B conlainad in

irstrument's fid-of-vidw.

SPCE Grometry Calculater

WebGeocalc - A GUI Interface lo SPICE

Vorsion 100 BEIE

——
State Vector

Canulan ar

Mol sodosion: | Bular Bymem Komoin 2 @

Target: [earm [

Oteanur: T -3

Ratorarca ¥ame: ot @

Light propagation: iMoo Tocbeerver o From chserver @

Ughtsme sigorthm: | Comvarged Newonan ¢ @

il abawation o Incluce smar sbemation comection @

~ nput Time

Tima syt Tor Bl

Tima et Enimrciar date mnd tma £ | @F

gt times S Singletime) Single inlenal I Listof imes) List of intervaly

Tira: [] o

State mpragenistion | Rsctanguiar 3|

Tima sarks pois: ommres @Speed (X Y OF Cdoas dva Cdia @

P parvent wakums

‘Solar System Kemets kemalsat. D

WebGeocalc - A GUI Interface to SPICE

Ve 100 218

Eewwd e
Diwtaros gor) Sewed [ruinp * o) ¥ ey Z{hmp DT (eraia} Vi (erwin i (hewip Tiwa o Tarpet Light Time {a}
1 14710817F. 4POD0EE 30.I000F7ET -267G1SAT.€7195425 L3ITLIEM46 49176146 STSISIHA9334EETE -20.790MEE17 -5.07EDME%E -] 20B65TE 2014-00-01 00:00:00. 000N TOT 49070004456] Hagnindmien
H JATUOTIIA BAZII0L 20 D0MATED -2PANSISH.G2SARSIE UUDGOTEAS.ARIPEIE SMATMGMONESI -19,TRSSOSES -5.19TISTE -1, SITIAG 49068851750
El 14TL0F2E0. GIEE3I04 30.J0034608 -2BOATETL.I2TE2ITA LAP40LI2E_IBITOLEL SMIB004FOSTAN4T 20 . TA0EA04E 5.JATHIFEE). MOATMS 40060700085
4 147106807 03632187 30.30039300 -2B600300.49129E35 132ITBIT7. 34402931 STIEFRID.E99171T0 -29.7151403 ~1.3576EDS 4900579007
5 147106536, BEGSTSO6 30 I003ALEE 29331564 OSEALETS 13IISO4IL_AR4A10AS STII6LSDG0O0749TL 19 EERTTETR -1 0958772 400 _ED438ETS
] TATLOER09, MABMME 30, I000027S -2957SSL.20071605 AIZIIRLOI.G1163004 STREITAS.ATASAGEY 29,6177 -1, 4508 490, (33025
7 147105914, 63391575 30.30003647 -IDEL284E.33440460 132014186.26419272 STIZ0ELA 63510649 -29.6341487F =1 S1INETD 490.€9251315 .
a 147105652, O5TER5AT 3030000402 31FS2741.92735517 1I1EATEAS.TII6TAI0 STITLOI.EL5EAI30 20, E0SED4TD -1, SEARERDE 490, £0154037 e Gt
L] JATL05424, GI205A0 3029570674 -J1EG1FIE.S0STRO51 DI1TSEE04.I54ILESE ST1IS0LL.ELSIGNET -29, 57TOLAIZ -1, EABEETST 2014-90-03 00 490, L0 I S - o
W H4-01-03 06 47105230, 00471945 20 09MPEH -DRSIMGALGGISS1S ADIGZ6MAT.L00S1SSF SAOELUM.AOSOIEL 19, 5AT22EL -6.1SABISBA -1 GGA2EASD 2014-81-00 06 490, 69022357 S s el
11 2044-01-0F 12 147105060, E1I2E40E 1020000401 -JFIEAJET.QSHSIEET 101402715 41110800 SPOORPMALORSE2NET -20.S1T41162 -6.17IDLOIG o). FOE1A00 2014-82-01 12 4008060444
] JATLOASEE, BIS6SILS 20 09BVABIL -BEOSELR ANTMARVZ ADLISSHLND0MGSS0Z SEBAAID.OLEIGAZY -204AGABAT -6.JGZENAES -1STIRSRIS 20145100 18:00:00,000080 TOT 490.6AS2MSL
et A | s e
Distance vs. Time
e
st |
E . -
] RL
-
e
[T s wom sen
e} ferr=r} mamar e
Datw {TOT)
f=1 el
Doertamt P | dsve o
- Speed vs, Time
=
i .
3 a
s
* Chaio: CLE 12880
’m o’ [Rrreepp———y Ty —
= Pivagy Poige * Projoct Managar Chusk Acton
= WWeh Sita Marngar: ok fioen.

Figure 4: The SPICE developers recently created a Web interface to their powerful SPICE library. Image
Credits: WebGeocalc website.

A common problem in mission design and operations is that individual programs often rely on ad hoc

5 of 19

American Institute of Aeronautics and Astronautics

arnn 05 X Terminal — ssh — 10045 o

logged in:

s system gk hetps: /el

Figure 5: The welcome screen on the Rocket Science Computing Platform

serialization formats (for example, simple plain-text tabulation of data). This leads to situations where the
resulting serialized data looses information about the original object (similar to object slicing), and relies on
custom, one-of, data parsers, which proliferate as different teams write scripts to extract (different) subsets
of the original data.

Such parsers tend to become more complicated as the data needs increase, and they tend to be heavily
coupled to the actual program producing the output. For example: if the program modifies its separator
(e.g., tabs instead of spaces), then it is likely that the client parsers will break. Another problem arises when
a custom parser in fact reads a value of a different serialization, but interprets it differently.

As an alternative, there are a collection of serialization formats which are standardized in certain commu-
nities (that is, not standardized by an international standards organization such as ISO, but widely accepted
and with a clear reference implementation and grammar available for everyone to see and enforce).

Serialization format may be binary or human-readable. Human-readable formats are preferred when the
user is expected to modify the input to the program in an interactive manner. This allows the serialized
information itself to become also the primary user interface (a file-driven program). In addition, it becomes
possible to store program information as a simple text dump of the current state of the system. These
formats can immediately and directly be added to generic version control systems such as Mercurial or Git.

On the other hand, human readable formats tend to be inefficient for large quantities of numbers because
every entity requires parsing the text and transforming it into actual types at run time. This can incur a
significant performance penalty.

Binary formats, on the other hand, store the actual in-memory representation of an object and be read
immediately in their native format (for example, a 64-bit double precision number can be stored as a packed
8-byte structure). However, these cannot be read or edited directly by humans, and are difficult to version-
control®.

During the course of this investigation we determined that a major complicating factor impeding the
collaboration of different pieces of software (specially legacy code) is the lack of standardized serialization
formats.

Space mission design and operations rely on a variety of data formats. While it is not pragmatic or
effective to rewrite all tools to natively support one format, it is indeed possible to provide facades to the
heterogeneous data in a variety of common serialization formats. This targeted development of custom
output adapters could provide the capability of receiving the current output of different pieces of code, and

It is possible to efficiently store the differences between binary files, but it is difficult for a human to determine what exactly
changed between to versions of a binary dataset without relying on external tools.

6 of 19

American Institute of Aeronautics and Astronautics

sqlite3

Database
mongodb
Eigen
Linear Algebra | blas
LAPACK

SPICE Toolkit
Astrodynamics | CSPICE Toolkit
hx

GCC*
LLVM/Clang”
Haskell

Erlang

Python
Scripting Perl

Lua
RabbitMQ
ZeroMQ

nginx

Compilers

Messaging

‘Web Server

nodejs

Generic Kernels
DE421
JUP230

Data Sources

Table 1: The Rocket Science Computing Platform consists of an Ubuntu Linux distribution endowed with
a collection of libraries, programs, and data sources commonly used for astrodynamical calculations. Its
central goal is to provide a ready-to-use environment which can be distributed to third parties as a virtual
machine for immediate, collaborative mission design.

translating such outputs into one standard format. For example, the following typical output of a legacy
program

EPOCH: 18-Dec-2012 00:12:34.567891 UTC
FRAME: EME2000
POSITION: 1.234567891D+06 -7.6543210D+06 3.4567891D+02

can be surprisingly difficult to translate into native datatypes; it contains a date string (and parsing of date
strings are a common source of bugs), and relies on Fortran convention for scientific notation (that is, using
D instead if E or e to denote exponent). For this reason, it is likely that a user reading such output may
need to search-and-replace D with E, or—much worse—parse floating point numbers digit by digit (another
common source of bugs). It is important to mention that missing the exponent could lead to numbers that
are off by the entire order of magnitude (that is , reading 1.2345 instead of 1.2345E6; one kilometer instead
of a million kilometers!)

As an alternative, a single individual or a small group could be tasked with creating one adaptor capable
of transforming the previous output into, for example, JSON notation:

{"epoch":{
"day":18, "month":12, "year":2012,
"hour":0, "minute":12, "second":34.567891,
"iso":"2012-12-18T00:12:34.567891",
"clock":"utc"
})

"frame" :"eme2000",

7 of 19

American Institute of Aeronautics and Astronautics

Visualizing Data Serialization

!f L4
Information over the network m

+ altribute 1 =a + altribute 1 =a
011901011010001010111010010 [e—)

+ attribute 2 =b + aftribute 2 =b

+ attribute 3 = ¢ Selection Criteria for Serialization + attribute 3 = ¢

Serialization efficiency
Serialized size
Deserialization efficiency
Ability to manage schema versions

Whether human readability is SyStem B
desirable, required, or irrelevant

» Awailability of multi-platform, multi-
language AP libraries supporting the
format

LI)

System A

Figure 6: Data serialization is a central element to cloud computing because it enables the transmission of
an entity across a network.

"position":[1.234567891e6, -7.6543210e6, 3.4567891e2]}
and even augmented with metadata about the data origin and version

{"_meta": {"_id":"c461e83ba7{549319a3e63f36649b05e",
"product":"abcd", "mission":"mymission",
"user":"jarrieta", "tstamp":"2012-12-18T00:11:22.334455", "sw":{"myapp", "1.2.3"},
"sources": [{"od":"63f6bc22ef354f2c8c8252dfb6df3053"},
{"gin": "ab3dbe90452340e89055e7c430cb0ffc"}],
"xcheck": [{"nav":true, "rep":"jdoe", "tstamp":"2012-12-18T00:11:23.334455"},
{"sys":false}, {"prp":false}, {"acs":false}]},

"epoch":

Once available as JSON, the teams needing to use the data can use one of the widely available libraries
to parse JSON, available as high-quality, open-source code in a variety of languages. This simple action
enables all teams to have access to the same data (i.e., no object slicing), centralizes the detection and fixing
of translation bugs into a single point (the adapter interface), and removes the need of writing parsers (thus
saving time).

Libraries for parsing JSON documents are available for all major programming language, and obtaining
the data becomes a simple statement. In Python, for example (assuming the document is called data. json):

8 of 19

American Institute of Aeronautics and Astronautics

import json # this module is part of the Python Standard Library (version >= 2.6)
with open("data.json", "rb") as fp:

data = json.load(fp)
data is now available as a native data type (in this case, a Python dictiomary)
print(data["position"])
[1234567.8910000001, -7654321.0, 345.67890999999997]
from datetime import datetime # Standard Python Library
ISO_FORMAT = "%Y-/m-%dT%4H:%M:%S.%f" # timestamp format according to ISO 8601
print(datetime.strptime(data["epoch"] ["iso], ISO_FORMAT))
2012-12-18 00:12:34.567891

Other formats, like XML (http://w3.org/XML) and YAML (http://yaml.org), can be used for plain-text
serialization. Binary serialization formats are also available that provide all benefits of plain-text serialization
(except being human readable) and can dramatically enhance performance. BSON (http://bsonspec.
org)—the binary counterpart to JSON—has been adopted as the underlying format for MongoDB, and has
been used successfully in other data-intensive applications.>

In order to provide guidance on the selection of a serialization format, we analyzed what we consider to

be the leading serialization formats currently available.
Protocol Buffers — This serialization format (and a protocol for RPC, or remote-procedure call) was
proposed by Google, Inc. in 2008. It is currently the serialization format used internally by that company
to coordinate the interaction among its multitude of applications. Protocol Buffers is a source translator,
where a file is created with an schema defining the different data elements, and a program is ran on such file.
The output is a source code file which implements the serialization directly into code. The corresponding
header files can then be incorporated into a project and the objects can then be serialized or deserailized
with relative ease.

The main advantage of the protocol buffers is that they are very rapid, they are forward- and backward-
compatible, they are relatively simple to maintain, and they have been tested by a large corporation (and
hundreds of other users) in a variety of environments, platforms, and with a varying degree of expected
features. It is well-documented, battle-tested software.

The disadvantage relies mostly on the fact that it relies on a company foreign to JPL to maintain its
codebase, and at this point it is not feasible to rewrite the full code base. While the level of commits is very
strong, it is something to keep in mind.

Apache Avro — Apache Avro is a serialization library capable of generating binary formats. It is capable
of generating a very modern interface to the data, and it can be easily extensible. It aims to strengthen
features which are missing in Protocol Buffers, but it is (as of this writing) not nearly as mature. There
are several bugs in the current C++ implementation (a language critical to cloud-based solutions). Figure 9
depicts sample C++ code used to serialize a simple data structure using Avro.

HDF5 — This is a format which was originally designed for high-performance numerical supercomputing.
It has also been battle tested, and has the backing of a non-profit entity formed entirely for the purpose of
supporting the language. HDF5 is relatively easy to use, very huge performance, can be compressed on the
fly, and allows to structure highly structured data. It is probably the best candidate for heavily numerical
applications which rely on large sets of large data (as opposed to large sets of small data, where protocol
buffers may offer a superior alternative).

IV. Case Study — Generation of feasible tours

The mission design problem that we are trying to solve consists of the calculation of all the possible ballistic
flyby tours of the Jupiter system (given some initial conditions, and assumptions. See®® for a formal
description of the problem). We can see an example of the solutions (tours) obtained in Figure 11. These
kinds of problems result in large combinatorial optimization and search problems that can only be tackled
when parallel computational capabilities are available. In general, the algorithms solving these problems
work in two stages:®

Preprocessing It may take hours and outputs linear amount of data. In our problem: generating all the
possible tours (given some assumptions) and store solutions in a standard format.

9 of 19

American Institute of Aeronautics and Astronautics

http://w3.org/XML
http://yaml.org
http://bsonspec.org
http://bsonspec.org

Sample Protocol Buffers Schema Definition

package cnawv;

#f enumeration of ovailable frames
enum Frame{

EME2066 = 8;

EMO2866 = 1;

/#/ ather frames can be added hers
i

/f serialization of Orbit Trim Mancwver (OTH) implementation data
message OTH{

// mancuver name, e.g. "321", or "323a"

required string name = I;

// define the epoch of the maneuver using a floating point number
(ET seconds past 12666)
aptional float epoch = 2;

// enumerate the ovailable execution windows
enum Executiondindow]
PRIME = 8;
BACKUP = 1;
CONTINGENCY = 2;
}
/#/ pick an execution window from the set of cvailable execution

Ff windows
aptional Executioniindow window = 3;

optional Frame frame = 8;
}

/## serialization of a natural satellite encounter
message Encounter{

/f encounter nome, =.g., "TEL", "D2~

required string name = 1;

#f define the epoch of the encounter using a floating point number
/7 (ET seconds past 12068)
optional float epoch = 2;

optional float Bdath = 3;
optional float BdotT = 4;
optional float tof = 5;

/f coordinate frome for the targeting parameters
optional Frame frame = 5;

¥

#f A maneuver strategy consists of one or more maneuvers targeting an
£/ encounter
message Strategy{
repested OTM otms= 1;
optional Encounter sncounter = 2;
}

// enumerate the ovailable engines
enum Engine{

MEA = 8;

MEB = 1;

RCSA = 2;

RSB = 3;
}

// pick an engine from the set of available engines
aptional Engine engine = 4;

/#/ define the Delta-v vector in terms of magmitude, right ascensiom,
/#/ and declingtion

aptional float magnitude = 5;

aptional float ra = 6;

aptional float dec = 7;

Figure 7: Sample Protocol Buffers schema definition for a simple data structure.

Query It should take milliseconds and uses the preprocessed data. In our problem: visualize solutions,
search for optimal solutions, etc.

In this section, we will describe the algorithms and the data format used in the preprocessing stage, and
some examples of the query phase.

Given a series of assumptions (like maximum total tour time, list of celestial bodies to flyby to, maximum
number of spacecraft revolutions between flybys, and others) and some initial conditions (like v, flyby body,
and ephemeris time of flyby) we can construct the set of all the possible tours.

In order to do this task we have used two algorithms: Dijkstra’s algorithm” and a breadth-first search
solution generation 1. Given a non-negative cost function between flybys (e.g., time-of-flight), Dijkstra’s
algorithm will generate all the minimum paths between the branches and the initial node.

The breadth-first approach is a strategy for searching in a graph that begins at a root node and inspects
all the neighboring nodes. Then, for each of those neighbor nodes in turn, it inspects their neighbor nodes
which were unvisited (OpenNodes), and so on . This algorithm has been incorporated mainly due to its easy
implementation in a parallel environment.

In order to generate all the possible flybys given the current state, (successors from the current node:
succ(current_node) in Algorithm 1), several algorithms have been implemented: a Lambert-based algorithm
for DT transfers, a new vo, matching algorithm based on Awv transfers,® and zero-finding and a minimization
algorithm that do not use derivatives.® An efficient implementation of these algorithms is key in the perfor-
mance of the algorithm that generates all the possible tours. Even with the availability of parallel computing
capabilities, a non-efficient implementation of the algorithms might result in a critical loss of performance.

10 of 19

American Institute of Aeronautics and Astronautics

Sample Protocol Buffers C++ Program

// Somple applicotion which uses the MWV serislization provided by /f write to durable storage

// Protocol Buffers ftrean cutput(“strategy.bin®, ios::out | ies::trunc | ios::binary);
strotegy. SeriolizeTo0streon{Soutput) ;

#f Cr+ Standard Library

Fincludeciostreom: // read from durable storage
#include<fstreams cnav::Strategy strotegyl;
Fincludecstring fstream input{ “strategy.bin®, ios::in | dos::binary);
qy2. ParseFroml: input);
Fincludeccnav. pb_hs // outomaticolly generated by “protoc’ std: rcout<d "Count: “¢istrotegy? otms_size()ccstd: cendl;
for{unsigned int k=8; k ¢ strategy? otms_size(); ki)
wsing nomespoce std; const cnav::0TH otw = strotegy? otms(k);
std: : cout< < "OTH- "c<otm. name() ccstd: zendl;
int mainfint arge, char* argu[]){ F
/f create g new Strategy return 8;

engu: :Strategy strategy;

// add two OTMs to the Strategy ¥
cngv: :0TM* otml = strategy.add otms();

cngv: :0TM* otm2 = strategy.add otms();

otml->set_name("2817);

otml-3>set_spoch(B.8);

otml-»set_window{cnav: :OTM: : PRIME) ;

otml-»set_engine{cnav::OTH: :MEA) ;

otml-rset_frome(onav: :EME2088) ;

otml-»set_mognitude(2. 8563);

otml-»set_ra(28.123);

otml-»set_dec(8.6543);

otm2- »set_name("2827);

otm2-»set_spoch(otml->epoch({) + B64B8.8 * 6); // six doys ofter previous maneuver
otm2- »set_window{cnav: :OTM: : PRIME) ;

otm2- »set_engine{nav::0TH: :MEA) ;

otm2- »set_frome(onav: :EME2088) ;

otm2- »set_mognitude (8. 12345) ;

otm2-»set_ra(18.8);

otm2-rset_dec(28.8);

£/ create @ new Encounter

engv: :Encounter* snc = strotegy.mutoble sncounter();

enc-»set_name(“TE1");

enc->set_epoch(otm2-repoch() + 86488.8 * 3); // three days ofter approoch manewver
enc-»set_frame(cnav: :ENO2068) ;

enc-»set_bdotr(-1568.8);

enc-»set_bdott(B88);

enc-rset_tof(8.8);

Figure 8: Sample C++ program utilizing the automatically-generated header files based on the schema
described in Figure 7.

Once the tour generation algorithm has finished, we can save the solutions as a database of individual
tours or instead, we can save it as a double-directed graph (DDG) (see”). In order to generate the database
of individual tours we need to get the predecessors of each node in the EndNodes set in Algorithm 1 (using
the Predecessor map in Algorithm 1). If the double-directed option is chosen (see Figure 12), the Successors
and Predecessor sets from Algorithm 1 would have to be saved. There are different formats available for the
storage of these databases as it has been discussed in previous sections. In the current implementation we
have decided to use JSON (see'®) as the format for the solution file. In Figure 13, we can see an excerpt of
the JSON file containing all the tours. The JSON syntax is very simple and human readable. The first part
of the file defines the assumptions and initial conditions of the problem we are solving, the second part (the
main part) contains a list of the tours found using the algorithms described above. In

Below we present an example of the Python code used to process the solutions. When the number of
solutions found is the order of millions this format might not be the most appropriate to store the tours. In
that case a standard binary format like HDF5 (see'!) might have to be used.

import jsomn
json_data=open("Bender_Example. json")

data = json.load(json_data)

n_tours = len(data["solutions"])

jupiter_gm = data["central_body_gm"] [0]
jupiter_radius = data["central_body_radius"][0]
initial_et = data["initial_vinf_in"]["et"]

11 of 19

American Institute of Aeronautics and Astronautics

Apache Avro Sample Program

o
\file measurement. cpp
\brief Demonstration of Apache's Aurc for sericlizing composits data types.

This C++ program will read and writs "Measurement” cbjects. The
included header file "megsurement.hpp” was created automatically by
issuing the following command:

gencpp -1 _json -0 _hpp
where "megsurement_json” is the file where I provided the data
schema. Appart from the “measurement_json” file and the code

contained here, I did not write anything else.

Compile this code with clangt, or gi+. I used the following clang
version:

Apple clang version 4.1 (togs/Apple/clang-421.11.66) (based an LLWM 3.1sun)
Target: x86_64-apple-darwinil.4. 2

Threod model: posix

and the following compilation Line

clangt+ -omegsurement megsurement.cpp -lavrocpp

MNotice thot I have instolled the avro Library beforehand.

mt main{)}
// create @ new measurement - notice that I did NOT write this
// class, it was automotically generatsd By avre (it contains the
/F setter and getter methods)
Measurement my_measuremert ;

/f store soms volues in my measurement

/_measurement.station = "IPL-817;
_measurement lat = 34.1996;
/_measurenent lon = 118.1747;
_measurement .epoch = 123.4568;
/_measurement . temperature = 23.1588;

/f @t this point I will work exclusively on memory, so I open a
// memory output stream™to which I will write the encoded data; I
/ want binary dats, so I choose a binary encoder.

std: :awto_ptriavro: :OutputStream: out = avro: :memoryOutputStrean();
awro:: & = avrn: thinary 0;

Af imitiglize the encoder to write to the memory stream
e-rindt(*out);

/f encode the megsurement into the memory stream

avro: zencode(*e, my_measurement);

/F @t this point I have serialized “my_measurement’ to a buffer in
/# memory. I could read it back inte a new mecsurement object. To
A/ this end, I cregte o memory input stream (mopped to the memory

// output stream created earlier), ond a binary decoder

Progrom output: std: :auwto_ptriavro: :InputStreams in = avro: :memoryInputStrean(*out);
Station: JPL-81 avro: d = avro: -binary 0;

Lat: 34.1996 /f imitiglize the decoder to reod from the memory stream

Lot: 118175 d-3init(*in);

Epoch: 123_456

// create o fresh instonce of “my_measurement”
_Fresh s 3
Bouthor J. Arrieta <Juan.Arristo@ipl.nosa.govs // read the decoded data into my_fresh measurement
* avro: :decode(*d, my_fresh_measurement);

Temperature: 23.15

#f Cr+ Standard Library
#include<iostream:

// now print the frezh measurement to scresn, just to confim that
/f the dota is what we sxpected
std::cout<<"Station: “<imy_fresh_measurement station<<std: :endl

Af Avro Library ¢"Lat: " omy_fresh_measurement. lat<<std: endl
#include<avro/Encoder. hh> <¢"Lot: "gimy_Fresh_measurement . lon<cstd: jendl
#include<avro/Decoder. hh> <¢"Epoch: "gimy_Fresh_measurement . epoch< cstd: sendl

<<"Temperature: "<dmy_fresh_measurement.temperature<<std: tendl;
47 Local includes
#include “measurement_hpp™ // this File wos outomoticolly generated

Figure 9: Sample C++ code for the serialization and deserialization of a simple data structure using Apache
Avro.

Processing the solutions — Once the solutions are obtained in the preprocessing phase, as individual
tours or as a double-directed graph, we can start processing them (query phase). If the goal is to solve
some optimization problem over the possible tours, the double directed-graph representation of the tours
will allow more efficient searches than just processing individual tours. The optimization problem will be
defined by a cost function to minimize (maximize) and a feasible set (i.e. DDG). The optimization problem
formulated like this will be a combinatorial optimization problem. Search algorithms like A* (see'?) and
its variants can be used to perform efficient searches on the DDG. On the other hand, If the solutions are
saved as individual tours, the search will be inefficient since we will have to explore all the solutions to find
the optimal one. However, this representation can be used for visualization and in general with tasks that
require the evaluation of the whole space of solutions. For example, we can visualize the tree of solutions
(depicted in terms of the Tisserand graph in Figure 15). We can also visualize how the inclination (over the
ecliptic plane) of the spacecraft trajectory changes during the tours (see Figure 14). Similar visualizations
could include: variation in the parameters of the trajectory (period, right-ascension of the ascending node,
line of apsides), radiation, and others.

V. Conclusions

Space mission design is subject to natural and intrinsic sources of complexity because the multiple stake-
holders involved in the design of a space mission strive to optimize competing objectives. This complexity
tends to fragment systems, formats, datasets, and protocols.

12 of 19

American Institute of Aeronautics and Astronautics

HDF5 Sample Program

Fiss /# Main program - create one million datasets, sach consisting of
Efile hdfS-testBS5.cpp // @ vectaor of 1,000,000 clements
@brief Demonstrotion of ability of HDFS to serialize lorge doto structures.
@outhor J. Arrieta <Juan.Arristo@ipl.nosa.govs int main() {
. #f in this case we will store the dotoset to disk. However, it
/7 could just as easily be persisted into a buffer and semt
£/ Cr+ Standard Library /f ocross o wire
#include<random> SimpleVectors sp(”../data/testB5 h5");
#include<iostream>
#include<sstream> sp.create_group("/Legs");
#include<alporithns
#include<vector> std: :vector<double> data;
#f HDFS Library For{size_t k=8; kel8®; ki+) {
#include<HSCpp.h> std: :stringstrean ss;
ss<<"Legs/"a<k;
// A simple vector comtainer capable of being serialized to and from HOFS data.clear();
class SimpleVectors { std: :penerate_n(std: sback_inserter(data), 1888008, std::rand);
public: sp.add_data(ss. ste(), data);
SimpleVectors(const std::stringh Filename) }
- m_filename(filename),
m_fp{n_filename.c_str{), H5F_ACC_TRUNC) { } return 8;
SimpleVectorsE create_group(const std::stringd name) { 1

m_fp. createGroup(name . c_str()});
return *this;

1

template<typenane Container>
SimpleVectorsg add_data(const std::stringd name, const Comtainerd data) {
hsize t din[] = {d=ta.size(), 1};
H5: :DataSpace dspace(l, dim);
H5: :DataSet dataset = m_fp. (name .c_str(), H5:: ype: :NATIVE_DOUBLE,,
dspace) ;
dataset write(data.data(), H5::PredType: :NATIVE_DOUBLE);
return *this;

1

~SinpleVectors(} {
m_fp.cloze();

1

private:

std: :string m_filename;

HS: :HSFile m_fp;

b

Figure 10: Demonstration of the ability of HDF5 to quickly serialize a relatively complex data structure
consisting of one million datasets, each consisting of one hundred double-precision numbers. The resulting
serialized version requires 763 MB of disk space, and is generated in about five seconds on an off-the-shelf
laptop computer.

We propose the cloud computing model as a tool to alleviate this fragmentation, in particular:

e Develop analytical bundles for collaboration create a single virtual machine where all the appropriate
software, libraries, tools, and datasets required for mission design are deployed in a well-configured
manner and maintained by a group serving as single point of contact

e Provide datasets in standardized formats in particular, we observed that the JSON formats is practical,
efficient, and clean for data that is intended to be human readable. For high-performance datasets we
provided information and sample code for the formats Protocol Buffers, Apache Avro, and HDF5.

Acknowledgments

The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space Administration. Reference herein to any specific commer-
cial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute
or imply its endorsement by the United States Government or the Jet Propulsion Laboratory, California
Institute of Technology.

13 of 19

American Institute of Aeronautics and Astronautics

ZANYMEDE

Figure 11: Inertial view of a representative tour of the Jovian system. The flyby sequence is: Europa (red)

— Europa (blue) — Callisto (blue) -+ Ganymede (blue) — Callisto (blue) — Io (green).

VI. References

1 Arrieta, J., Beswick, R., and Gerasimatos, D., “Cloud Computing for Mission Design and Operations,”
SpaceOps 2012 Conference, American Institute of Aeronautics and Astronautics, 2012.

2 Acton, C. H., “Ancillary Data Services of NASA’s Navigation and Ancillary Information Facility,” Plan-
etary and Space Science, Vol. 44, No. 1, 1996, pp. 65-70.

14 of 19

American Institute of Aeronautics and Astronautics

Algorithm 1 Pseudocode for the Breadth-first solution generation
create set OpenNodes
create set EndNodes
create map Predecessor
create map of sets Successors
OpenNodes.insert(vo (o))
do
if OpenNodes.size()=0
break
current_node + OpenNodes.first()
OpenNodes.delete _first()
succ_arcs +— succ(current_node)
if succ_arcs.size()=0
EndNodes.insert(current_node)
for all succ in succ_arcs
if succ.et-tg > maximum TOF
continue
OpenNodes.insert(succ)
Predecessor.insert(succ, current_node)
Successors.insert(current_node, succ)
if no nodes inserted in OpenNodes in for loop
EndNodes.insert(current_node)
while(true)

anymede
t4

—— 8 Predecessor
——— m Successor

Figure 12: Example of the Successor/Predecessor relationship in a double-directed graph.

3 Morrow, A., “Low latency event logging with BSON,” Video from the MongoDB Silicon Valley Conference,
2010.

Buffington, B., Campagnola, S., and Petropoulos, A., “EUROPA multiple-flyby trajectory design,”
ATAA/AAS Astrodynamics Specialist Conference, Minneapolis, Minnesota, August 13-16, 2012, 2012.

5 Kloster, K. W., Petropoulos, A. E., and Longuski, J. M., “Europa Orbiter Mission Design with Io Gravity
Assists,” AAS/AIAS Astrodynamics Specialist Conference, Pittsburgh, PA, August 9-13, 2009., 2009.

6 Goldberg, A. V. and Kaplan, H., “Reach for A*: Efficient Point-to-Point Shortest Path Algorithms,”
Proceedings of the 8th Workshop on Algorithm Engineering and Ezperiments (ALENEX’06), Miami,
Florida, 2006.

15 of 19

American Institute of Aeronautics and Astronautics

10

11

12

e OO0 N\ xterm

"Bk 00010, t F—““].—

Figure 13: A sample of the data generated (in JSON format) for a gravity tour design case study.

Papadimitriou, C. H. and Steiglitz, K., Combinatorial Optimization: Algorithms and Complezity, Dover
Books on Computer Science, 1998.

Senent, J. S., “Closed-form and numerically-stable solutions to problems related to the optimal two-
impulse transfer between specified terminal states of Keplerian orbits,” AAS/AIAA Astrodynamics Spe-
cialist Conference July 31-August 4, 2011 Girdwood, Alaska, 2011.

Brent, R. P., Algorithms for Minimization Without Derivatives, Prentice-Hall, 1973.
“JSON (JavaScript Object Notation),” hitp://www.json.org/ .
Group, T. H., “Hierarchical Data Format (HDFS),” http://www.hdfgroup.org/HDF5/ .

Hart, P. E., Nilsson, N. J., and Raphael, B., “A Formal Basis for the Heuristic Determination of Minimum
Cost Paths,” IEEFE Transactions on Systems Science and Cybernetics, Vol. 4, 1968, pp. 100-107.

16 of 19

American Institute of Aeronautics and Astronautics

=
[&4]

TOF (day)
%]
(=]

25
30
35
400 2 4 6 8 10 12 14 16

Orbit inclination (deg) ECLIPJ2000

10k f /81
20k | WG ORI

TOF (day)
w
(=]

S
o

50

600 2 4 6 8 10 12 14 16
Orbit inclination (deg) ECLIPJ2000

Figure 14: Tree-like visualization of the changes in inclination of the spacecraft trajectory for all the possible
tours with maximum time of flight of 40 days (top), and 60 days (bottom).

17 of 19

American Institute of Aeronautics and Astronautics

25 ! ! ! ! !

20

Period (day)
o

10

30

251

20

15F

Period (day)

10

2 4 6 8 10 12 14 16

Figure 15: Visualization of the Tisserand plots for all possible tours with maximum time of flight of 40 days
(top), and 60 days (bottom).

18 of 19

American Institute of Aeronautics and Astronautics

TOF (day)

10_..5) : PR

20_..5 = = .

301

TOF (day)

40

50

60 10 EUROPA GANYMEDE CALLISTO

Flyby

Figure 16: Visualization of the flyby trees generated for all possible tours with maximum time of flight of 40
days (top), and 60 days (bottom).

19 of 19

American Institute of Aeronautics and Astronautics

