

American Institute of Aeronautics and Astronautics

1

Securing Ground Data System Applications
for Space Operations

Michael J. Pajevski*, Kam S. Tso†, and Bryan Johnson‡

Jet Propulsion Laboratory, California Institute of Technology,
Pasadena, CA 91109

The increasing prevalence and sophistication of cyber attacks has prompted the
Multimission Ground Systems and Services (MGSS) Program Office at Jet Propulsion
Laboratory (JPL) to initiate the Common Access Manager (CAM) effort to protect software
applications used in Ground Data Systems (GDSs) at JPL and other NASA Centers. The
CAM software provides centralized services and software components used by GDS
subsystems to meet access control requirements and ensure data integrity, confidentiality,
and availability. In this paper we describe the CAM software; examples of its integration
with spacecraft commanding software applications and an information management service;
and measurements of its performance and reliability.

I. Introduction
HE MGSS Program Office manages development of the Advanced Multi-Mission Operations System
(AMMOS)1 software that is used in ground data systems of NASA/JPL robotic space missions. The AMMOS

software suite includes applications for mission planning activities, commanding spacecraft, processing/displaying
telemetry data, producing science and engineering data products from spacecraft and instrument data, and providing
access to science data products (as some examples of AMMOS capabilities). The Deep Space Network (DSN)2
Project Office manages and is responsible for the entire life-cycle of the DSN. Two examples of the many services
that the DSN offers are uplink and downlink capabilities that support spacecraft commanding and telemetry capture,
respectively. Protecting capabilities of the AMMOS and DSN is very important to the security of NASA/JPL space
missions. Controlling access to important functions and information is crucial to the protection of highly valued
spacecraft, engineering data, and scientific information involved in robotic space missions.

To achieve a security solution that meets the needs of their evolving systems, MGSS and DSN management
(sponsored by NASA) agreed to collaboratively support the creation and use of common security services. The first
element delivered as part of that agreement is the Common Access Manager (CAM). By integrating the CAM into
MGSS and DSN products, they can uniformly address the following access control related needs:

1) Suitable granularity – appropriate for each software application and its mission users.
2) Managable – enable policy changes without development effort or service downtime.
3) Verifiable – facilitate the review of authorization policies to ensure their correctness.
4) Portability – support use of CAM and AMMOS/DSN applications at (or by) any NASA Center.
5) Minimal effort/cost – for application layer access control development, deployment, and operations.
6) Performance – keep up with usage rates of protected applications and information.
7) Reliability – provide availability needed to support time-critical spacecraft operations activities.

Section II describes the CAM software, how it is used to control access for various kinds of applications, and
how it supports site portability of applications. Section III covers examples of CAM integration with software
applications to minimize their access control related development, deployment, and operations effort/cost. Section
IV shows results of performance and reliability testing and analyses performed for the CAM software.

* Systems Engineer, Cyber Defense and Information Architecture, Mission Control Systems, M/S 301-480.
† Software Engineer, Cyber Defense and Information Architecture, Mission Control Systems, M/S 301-480.
‡ Group Supervisor, Cyber Defense and Information Architecture, Mission Control Systems, M/S 301-480.

T

American Institute of Aeronautics and Astronautics

2

II. AMMOS Common Access Manger
The Common Access Manger (CAM) is a software assembly in the Application Security (ASEC) subsystem of

the AMMOS. AMMOS and DSN software applications use the CAM software to control access to application
services and information. Other GDS software applications can also be protected by the CAM software with
minimal development effort.

The CAM software provides the following capabilities to protect application layer assets from unauthorized
access:

1) Authorization policy management: The ability to manage (i.e., view, create, update, and delete)
authorization policies is provided via graphical and command-line interfaces.

2) Single Sign-On (SSO): A capability that allows users to access all applications integrated with the CAM
(with restrictions according to authorization policies) with a single application layer log in. Functions are
also provided for validating SSO tokens, logging out of SSO sessions, administratively terminating SSO
sessions/tokens, and enforcing configurable idle timeouts and maximum session lifetimes.

3) Authorization policy enforcement: The ability to intercept attempts to access protected resources and reject
unauthenticated/unauthorized attempts is provided for Web/Application Servers.

4) Authorization checking: Mechanisms to check authorizations are provided for custom applications that
include their own enforcement points, but rely on the CAM for authorization management, authentication
(with single sign-on), and authorization checking.

5) Identity data retrieval: Applications can use the CAM software to request user information, including
username, full name, and group memberships.

6) Integration with institutional and/or project identification and authentication services: Including LDAP,
Kerberos, Active Directory, and RSA SecurID.

The authorization policy management capabilities of the CAM software enable customized policy based access
control over application functions and information. Policies can be established for any identifiable resource, various
kinds of “subjects” (i.e., individual user, group, role, all “authenticated users”, Web Services client, etc.), a
customizable set of action types (e.g., read, update, or delete), and various conditions (such as client
hostname/address, client network address range, day of week, or time of day). Section III describes the authorization
policy schemes for two different applications.

Software applications integrate with the CAM, which provides a consistent interface to applications regardless of
the venue specific details of the underlying identification and authentication services. The CAM supports the most
commonly used standards-based forms of identification and authentication services (as noted above), and can be
configured to use one or more sources of authentication credentials and identity information. The configurable
nature of the CAM software, and the abstraction layer it provides for applications, simplifies the deployment of
software applications in different venues with the differing identification and authentication services.

Integration with the CAM is made simple for application developers through the use of easy-to-use software
components. No programming is needed to support Web Browser clients and most Web/Application Server hosted
applications. Software library functions are provided to support integration with custom applications and to
implement fine-grained access control (in addition to, or in lieu of, Web interface access control). The examples in
Section III describe typical patterns for integrating the CAM software into applications.

The CAM software provides its capabilities through three major components shown in the figure below:
1) CAM Server provides functionality and service interfaces that software applications use to check

authentication, get single sign-on (SSO) tokens, validate SSO tokens, check authorization, retrieve identity
information, and log the results of access control processing performed by the CAM.

2) CAM Policy Agents intercept service requests (for Web Servers and Application Servers) and filter out
unauthenticated/unauthorized access attempts.

3) CAM Software Libraries provide programming interfaces that custom software applications use to call on
the capabilities of the CAM Server.

Figure 1 illustrates the major aspects of the CAM software. Protected applications use the CAM software, which
is configured to use the identification and authentication services available for the venue.

American Institute of Aeronautics and Astronautics

3

Figure 1. CAM Software Overview

The CAM software uses secure connections (i.e., SSL/TLS) for all of its service interfaces. The secure
connections are provided to ensure that authentication data and other sensitive information cannot be inappropriately
accessed in-transit (thus protecting authentication credentials from misuse). The CAM software also provides
logging capabilities to capture the results of access control actions performed by the CAM software.

The CAM Server software and Policy Agents are provided by the OpenAM3 open source software product,
managed and supported by ForgeRock. The CAM Software Libraries are developed by JPL to simplify the
integration of custom applications with the CAM in a product neutral manner (allowing underlying product used in
the CAM to be changed without needing to modify applications that use the CAM Software Libraries). More details
of the CAM software can be found in Reference 4.

III. CAM Integration Examples
The CAM software has been successfully integrated with AMMOS and DSN subsystems to provide access

control and single sign-on capabilities for a variety of Web, Java, and Python software client and server applications.
The CAM reusable components have greatly reduced the effort to implement application layer access control in
AMMOS and DSN subsystems.

In this paper we describe two examples of CAM integration with GDS software applications. One scenario
demonstrates a typical use of URL-based access control in the Command Preparation & Delivery (CPD) Web
Services. The second example shows how to augment URL-based access control with attribute based access control
that is tailored to the specific needs of an Information Management Service.

The examples described here represent practical experience integrating the CAM software with applications used
in the ground data systems of robotic space missions. The first case below is based on delivered capabilities that are
being used by missions. The second case is based on design and development work for future capabilities in the
AMMOS and DSN. Lessons learned and potential forward work items are summarized in the examples.

A. CPD Web Services
CPD Web Services are part of DSN’s modernization of its Telemetry, Tracking and Command (TTC) Services.

CPD Web Services make it possible for missions to use Web Browsers or mission control tools in the AMMOS
Mission Data Processing and Control System (AMPCS) to send commands to spacecraft via space communications
ground stations. The CPD Web Services and AMPCS tools support commanding throughout a mission’s lifecycle,
from as early as flight software development, through testbed, ATLO§, and operational phases.

The AMPCS software suite provides mission control, telemetry processing and storage, alarm processing,
display of telemetry through graphical and text-based user interfaces, spacecraft data query services and reporting,
and automation (as described in Reference 5). The mission control capabilities of AMPCS use CPD Web Services to
send commands to spacecraft. The CAM software is used for authentication and authorization checking between
AMPCS and CPD.

§ ATLO stands for Assembly, Test and Launch Operations.

American Institute of Aeronautics and Astronautics

4

CPD Web Services support manual and automated modes of radiation services. In manual mode, users load
command files either from a file store or local disk to the staging area, create radiation requests for the files, and
manually control the sending of spacecraft commands to DSN stations for radiation. In automated mode, users
prepare radiation sessions that contain a list of command sequence files to be radiated. When the session becomes
active, CPD automatically connects to the planned ground station and sends the files associated with the session.

CPD Web Services provide REST (Representational State Transfer) APIs that support inquiring various status
parameters, uplinking radiation requests, setting up automated radiation (a.k.a., AutoRad) sessions, and controlling
connections to ground stations..

The radiation requests contain the command sequences for operating the spacecraft. Although other safeguards
are in place to reduce risks associating with the sending of incorrect commands, such events must be avoided. Thus,
it is critical to protect the CPD services from unauthorized access. The AMPCS and CPD Web Services
applications use the CAM software to control access to these critical capabilities. Figure 2 below shows the use of
the CAM software by the two spacecraft command applications that make up Integrated Command.

Figure 2. CAM Integration with Spacecraft Command Applications

The figure above shows the use of Java-based client applications (e.g., AMPCS Chill_Up) that use a CAM
Software Library (see arrow 2 in the diagram) to authenticate the user and get an SSO Token from the CAM Server
(see Arrow 3). The CAM Server uses identification and authentication services provided by the institution (Arrow
4). The client application includes the SSO Token (as a cookie) in HTTP requests it sends to the CPD Web Services
(Arrow 5). The Apache Tomcat Server hosting the CPD Web Services calls a CAM Policy Agent (Arrow 6), which
uses a CAM Server to validate the SSO Token and check if the user’s request is authorized (Arrow 7). If the user is
authorized to make the request, the Policy Agent allows it to proceed to the CPD Web Services. Otherwise, the
request is rejected.

The CAM software supports user authentication for various kinds of applications and usage scenarios. The
AMPCS custom software client applications need to get SSO Tokens for interactive users and when being used in an
unattended/automated fashion. CPD’s Web interface also supports Web Browsers that need to get SSO Tokens.

American Institute of Aeronautics and Astronautics

5

The following approaches are used by the different CPD clients to authenticate users and get SSO Tokens:
• Web Browser Client:

CPD Web Services provide a Web interface that supports Web browser clients. When someone uses a
Web browser to access CPD Web Services, the request is intercepted by a Policy Agent and the browser is
redirected to a login page on the CAM Server. Depending on its configuration, the CAM Server can accept
RSA SecurID, Kerberos, and/or username/password authentication credentials. Upon successful
authentication, a cookie containing the user’s SSO Token will be added to the browser. A browser will
automatically include the SSO Token in requests it sends to the CPD Web Services.

• AMPCS GUI Client Application:
The AMPCS GUI Client (Chill_Up) is a Java application that uses CPD to control connections to space

communication stations and send selected commands to spacecraft. The client application uses an API in
the CAM Java Software Library to get an SSO Token. The Software Library prompts the user for
authentication credentials and interacts with the CAM Server to verify the credentials and get an SSO Token
(if authentication succeeds). The client application includes the SSO Token in all requests to CPD.

• AMPCS Automated Client Applications:
AMPCS includes two applications that are used in an automated/unattended manner. A status publisher

application runs as a background process to continuously obtain status from CPD and provide updates to
AMPCS GUIs via a Java Messaging Service (JMS) interface. An application called Chill_Send is executed
by scripts (i.e., MPCS Test Automation Kit (MTAK), described in Reference 5) to send commands to
spacecraft via CPD automatically to support testing or operations. When the automated applications call the
CAM API to get an SSO Token, they specify a Kerberos keytab file to use for authentication. The CAM
Software Library uses the keytab file to get a Kerberos ticket that is verified by the CAM Server in order to
to get an SSO Token. The AMPCS automated applications provide the SSO Token in all requests to CPD
just like the other clients. Regardless of the type of client application or authentication credential used, the
server-side application receives an SSO Token that verifies that the user/application has been authenticated.

As witnessed from experience with CPD, the CAM software can be integrated with client and server applications
with minimal effort. No server side programming is needed for access control because the Policy Agents filter out
unauthenticated/unauthorized requests. Web browsers are supported by using their native capabilities. Integration of
the Java and Python clients involves only a few simple API calls.

The Policy Agent used by CPD is implemented as a plug-in filter for the Apache Tomcat Server. It intercepts all
the HTTP requests as they are received by Tomcat. The agent uses the SSO Token, uniform resource identifier
(URI), and HTTP method (e.g., GET or POST) information in each HTTP request to get an authorization decision
from the CAM Server (or to find a previous decision in the agent’s cache).

The authorization decisions are based on the evaluation of authorization policies and information about the
request and the user making the request. The authorization policies that are managed and enforced by the CAM
software consist of three components — a subject, an action, and a resource.

• The subject of the policy is the entity being granted permissions to a resource. In this case, the subject is a
Lightweight Directory Access Protocol (LDAP) group that represents a mission role. LDAP groups provide
a simple and convenient way to assign users to roles, as noted in references 6 and 7.

• The action is one of the HTTP methods (i.e, GET, POST, PUT, and DELETE) that can be used in requests to
access the CPD REST APIs.

• The resource is represented by a URI in the REST architectural style.
To test CAM software integration with AMPCS and CPD, authorization policies were developed for a set of

roles and simulated resources. The policies used in testing are based on four roles in order to demonstrate the ability
for the CAM software to control access to various CPD services with differing authorization policies.

The following four roles are used in the verification of CAM software integration with CPD:
1) SCIENTIST: This role is assigned to mission scientists who write command sequences for controlling the

onboard science instruments. The requests from all scientists are stored in the same SCIENTIST pool. They
can edit, delete, and flush the requests in that pool but not in the other pool.

2) SEQUENCE: This role is assigned to mission engineers who write command sequences for controlling the
spacecraft, rovers, landers, etc. Again, they can edit, delete, and flush the requests in the SEQUENCE pool.

3) ACE: This role is assigned to mission controllers who are responsible for the radiation of command
sequences. They can create, edit, delete, and flush requests in the ACE pool. They also have super power to
delete and flush, but not edit, requests of all other pools. They are the only users who can control the DSN
stations for radiation.

American Institute of Aeronautics and Astronautics

6

4) VIEWER: This is a read-only role which is assigned to users to who are only allowed to view the status of
the stations and radiation requests.

The following set of policies were defined to specify the access privileges associated with each role:
1) All authenticated users are allowed to GET all resources.
2) The SCIENTIST users are allowed to GET, POST, PUT, and DELETE resources in the SCIENTIST pool.
3) The SEQUENCE users are allowed to GET, POST, PUT, and DELETE resources in the SEQUENCE pool.
4) The ACE users are allowed to GET, POST, PUT, and DELETE all resources.
5) The ACE users are denied the ability to POST or PUT resources in the SCIENTIST and SEQUENCE pool.

This part of the test policies demonstrates how to use “deny rules” to create exceptions to “allow rules”.
Applicable deny rules always take precedence over any applicable allow rules.

Testing of the CAM software integration with CPD has proven successful. The CAM software is able to enforce
role-based authorizations for CPD services. The combination of AMPCS, CPD Web Services, and the CAM
software has been successfully tested at subsystem and system levels. It has also been deployed into testbeds and
ATLO environments for the Soil Moisture Active Passive (SMAP) mission, and will be used to support the
mission’s operations.

B. Information Management Service
The Information Management Service in this CAM software integration example is a generalization of services

being developed for the AMMOS and DSN to manage mission information and metadata. This example is based on
aspects of the Information & Data Management (IDM) and Sequence Revitalization (SEQ-R) subsystems being
developed for the AMMOS, and on aspects of the Information Management Service (IMS) being developed for the
DSN. The approach described here is conceptual. Details of actual subsystems are beyond the scope of this paper.

An Information Management Service provides access to information and metadata in one or more forms.
Information may be in the form of timelines (see references 8 and 9), non-timeline data, files, bundles, packets, etc.
Metadata may be represented as attribute-value pairs, triplesets (denoting relationships), etc. Regardless of the form
of the information and metadata, typical aspects of information management services such as arranging information
in collections and associating metadata with information/collections provide ways to reference protected resources
in authorization policies. Typical application integration patterns such as Web interfaces and software library
interfaces provide simple integration points for using the CAM software.

The approach for integrating with the CAM software depends on the nature of the application being protected.
Applications hosted in Web/Application Servers can be protected by Policy Agents as described in the CPD Web
Services example. In some cases, the URL based authorization enforcement capabilities of the Policy Agents are
not sufficient to provide fine-grained access control. This example illustrates one of those cases, and expands upon
the Web interface access control approach by adding a layer of attribute based access control in order to provide
fine-grained access control that meets the needs of an Information Management Service and its mission users.

The Information Management Service in this example arranges information objects hierarchically using
namespaces10. The following kinds of namespaces are defined for this example:

1) Registered namespace - an administratively created namespace that represents a collection of information
objects (and possibly other collections) and is associated with one or more authorization policies.

2) User defined namespace – a namespace that is created by a normal user (i.e., without administrative
privileges) and resides within a registered namespace. Access to user defined namespaces (and information
objects in them) is controlled by the authorization policy for its parent registered namespace.

Associating authorizations with registered namespaces provides a relatively simple way to define different
collections of information in different security categories. If the registered namespaces are completely orthogonal to
one another (i.e, there is no nesting of namespaces with different authorization policies) and the URL in each HTTP
request sent to the Information Management Service Web interface contains the identifier(s) of the namespace(s)
being accessed, then the URL based authorization enforcement capabilities of the Policy Agents can provide
sufficient fine-grained control (down to the registered namespace level). However, the Information Management
Service in this example supports the nesting of registered namespaces. Doing so does not rule out the possibility of
crafting URL based authorization policies that can sufficiently control access to the information, but such policy sets
may be complex and difficult to maintain.

American Institute of Aeronautics and Astronautics

7

Figure 3 illustrates the major aspects of this CAM integration example.

Figure 3: CAM Integration with Information Management Service

1. Web Interface Access Control
The Web interface access control mechanisms provide course grained control (e.g., by mission/venue; and

normal user vs. administrator) over the services provided by the Information Management Service. User requests
coming in through the Web interface (see Arrow 1) are screened by a policy agent that enforces URL based
authorization policies by using the services of a CAM Server (see Arrows 2 and 5), which uses Identification &
Authentication Services provided by the institution (see Arrows 3 and 4). The Web Services provided by the
Information Management Services are not accessed (see Arrow 6) unless the user is authenticated and is authorized
to access the requested Web resource.

The granularity of the authorization policies at the Web interface can vary depending on the needs of the
mission. In this example, a simple set of authorizations is used as follows:

1) All mission users can use service interfaces for accessing managed information and metadata.
2) Information Service Administrators can use service management interfaces.

The authorizations associated with user access can be very simple for the Web interface layer when fine-grained
access control is performed by a layer of attribute based access control. Keeping the number of policies at the Web
interface layer relatively low simplifies policy management (particularly verification and maintenance). Also, a
smaller set of policies (for each policy agent) takes less time to be fetched from a CAM Server, consumes less
memory in policy agent caches, and requires less time to process during authorization checking.
2. Attribute Based Access Control

Attribute based access control (ABAC)11 is accomplished with the CAM software by using attributes of
information/collections to identify reources in authorization policies. In this example, the identifiers of registered
namespaces are used to reference protected resources. At run-time, a Policy Enforcement Point (PEP) in the
Information Management Service determines the set of registered namespaces affected by a service request, and
passes the identifiers of those namespaces (along with the type of action being performed on each namespace and
the SSO Token of the user who made the request) to the CAM software in order to get an authorization decision.

American Institute of Aeronautics and Astronautics

8

When using registered namespace identifiers in authorization policies to refer to protected resources, a new
policy (or set of policies) must be created whenever a new registered namespace is created. Doing so involves
administrative actions in the Information Management Service to create the registered namespace and administrative
actions on the CAM Server to create policies. The separation of the administrative actions provides greater control
over the provisioning of new registered namespaces, but can also result in delays when setting up new registered
namespaces. In cases in which the set of registered namespaces and authorizations can be defined up-front,
registered namespaces and authorization policies can be set up at system deployment time. In cases in which new
registered namespaces may be needed well into the operational life of a system, good procedures and people should
be in place to facilitate the timely set up of new registered namespaces.

One way to avoid the need to create new authorization policies when new registered namespaces are created is to
use an “access tag” instead of the registered namespace identifier in the authorization policies. Using access tags
instead of registered namespace identifiers also lowers the number of authorization policies if there are more
registered namespaces than access tags (i.e., multiple registered namespaces per information security category).
Authorization policies for access tags can be set up in advance of setting up the registered namespaces. When a
registered namespace is created, an access tag value is selected for it. At run-time, the access tag values for the
registered namespaces accessed by a service request are determined and passed to the CAM software to check
authorization. Using registered namespace identifiers to check authorization may be sufficient for most Information
Management Service instances, but providing the option to use an access tag instead offers better support for
systems that use registered namespaces for more than creating one separate collection for each security category.

Another approach for dealing with the potential need to create authorization policies when resources are created
(or modify policies when information objects change state) is the implementation of a CAM software API that
enables some integration of authorization management between applications and the CAM software. Implementing
a CAM API for managing authorization and implementing capabilities in applications to use those new CAM APIs
would require additional development effort, but could provide a more user friendly (and timely) way to manage
authorizations for dynamically created and updated resources while maintaining the ability to centrally review,
backup, restore, and update authorization policies for all applications that use the CAM. There is the potential for
future work implementing policy management APIs and supporting their use by GDS software applications.

Figure 4 shows a sequence diagram for an information service using the CAM software to check authorizations
based on resource attributes. Interactions between the CAM Software Library and CAM Server are omitted from
the diagram for the sake of simplicity and to focus on the interactions between the application service and the CAM
software.

Figure 4. Sequence Diagram for Attribute Based Access Control

American Institute of Aeronautics and Astronautics

9

After successful authentication and authorization at the Web interface, service requests that involve access to
managed information are passed on to the Information Services layer (see Arrow 7 in Figure 3), where fine-grained
attribute-based access control mechanisms are applied. The Information Services layer is comprised of software
code that processes information management service requests. The request processing path includes a Policy
Enforcement Point (PEP) that uses the CAM software to check authorizations associated with service requests. The
PEP is a collection of code that is responsible for determining the set of protected resources associated with each
request (and the actions being taken on the resources), obtaining the protected resource attributes that are needed to
check authorization, constructing authorization decision requests, using the CAM software to get authorization
decisions, and enforcing the decisions (i.e., rejecting unauthorized requests).

The PEP retrieves the necessary attributes (i.e., metadata) from the Information Store (see Arrow 8 in Figure 3
and Arrow 2 in Figure 4). The PEP constructs an authorization decision request that includes the SSO Token of the
user who submitted the request and a set of “target resource – action pairs”. The “target resource” in each pair is a
registered namespace identifier (or an access tag value) and the “action” is the kind of operation being performed
(e.g., GET, POST, or DELETE). The PEP uses a CAM software interface (see Arrow 9 in Figure 3 and Arrow 4 in
Figure 4) to sumbit the authorization decision request and get a decision Optionally, the PEP may check for
matching recent decisions in an internal cache; and use matching decisions instead of using the CAM Software
Library to get new decisions. Such caching of decisions for some relatively short amount of time (e.g., 5 - 10
minutes) will greatly reduce latencies associated with using a CAM Server (when a user sends numberous requests
involving access to the same information) while still being reasonably responsiveness to authorization changes.

The CAM Software Library uses a CAM Server to get an authorization decision (see Arrows 10 and 11 in Figure
3; not shown in Figure 4). The CAM Server uses Identification & Authentication Services to get identity
information (such as group memberships) needed to make an authorization decision. The CAM Server caches
identity information (for a configurable period) to minimize latencies associated with using identity information.
Access control processing at the application’s Web interface will most likely result in the user’s identity information
already being cached by the CAM Server by the time the attribute based access control processing occurs.

The PEP receives the authorization decision(s) from the CAM Software Library (see Arrow 12 in Figure 3 and
Arrow 5 in Figure 4). If all of the resource – action pairs are permitted for the user, the request is allowed to be
fulfilled. If any of the resource – action pairs are not allowed, the entire transaction should be rejected in order to
prevent unexpected results. Allowing partially authorized requests to be fulfilled may be reasonable in some cases
(e.g., read-only access) in which partial results are meaningful and not misleading. Examples of such cases are
beyond the scope of this paper.

Requests that are authenticated and authorized are forwarded (see Arrow 14 in Figure 3 and Arrow 6 in Figure 4)
to the Request Fulfillment code, which performs the requested operations on the information and returns a response
back through the Web interface. The policy agent is not involved in the response path.

Registered namespace level access control is likely to cover most cases. A registered namespace can be created
for each security category of information, and properly followed mission procedures can keep information
associated with the correct namespaces and policies. However, in some cases an additional measure of protection
may be necessary. The additional protection can be provided by object level access control.

The same basic mechanisms shown in the diagram above may be used to apply object level control by
associating access control metadata with individual information objects, referencing the object level access control
metadata in authorization policies, and using the object level metadata to make authorization decisions at run-time.
In this case, access tags may be a better choice than registered namespace identifiers because there will be many
information objects in each security category. Object level access tags can be used to enforce more restrictive
authorizations on objects (e.g., to make them private) within a registered namespace. Such tags can also be used to
denote mandatory authorization policies that must be checked in addition to any other applicable policies.

The potential performance impacts of using object level access control is a concern when many objects that have
their own authorizations are accessed to fulfill a service request. Using object level access control sparingly can
minimize the performance concern. Using separate registered namespaces for different authorization policies
instead of enforcing object level authorizations avoids the concern, but constraints the way that information can be
arranged. Using other mechanisms, such as database level access controls or a custom application-specific solution,
may provide better performance for object level control; but implementing such mechanisms is likely to increase the
cost and complexity of the software and its usage.

Performance and reliability are valid concerns for any software set that supports critical mission operations.
These aspects of the CAM software have been characterized for a typical usage scenario. Results of that
characterization are presented in Section IV of this paper.

American Institute of Aeronautics and Astronautics

10

IV. Performance and Reliability Evaluation
It is important that the CAM software does not impose unreasonable performance overhead or decrease the

reliability of the applications that rely upon it. Thus, stringent requirements on performance and reliability are
imposed on the CAM software. A test tool suite has been developed to verify the performance and reliability
requirements. The suite consists of the following components:

• The Load Generators use multiple test users to make requests to the CAM Server or Agent at the specified
rates. There are four distinct load generators each targets the CAM Java API, Python API, J2EE Agent, and
Web Agent, respectively. When the test starts the load generator reads a list of test users and passwords and
spawns a thread to run the tasks of each user. For the API load generators the tasks use the respective Java
and Python CAM API to make requests to the CAM Server, thus measuring both the performance and
reliability of the CAM API and the CAM Server. For the J2EE agent load generator the tasks make HTTP
GET, POST, PUT, and DELETE requests to an agent-protected demonstration CPD server application hosted
on Tomcat. Similarly, the Web agent load generator makes HTTP GET requests to static web pages hosted
by an Apache server protected by a Web agent. The load is controlled by the number of test users and the
time between requests. The length of the test depend on the number of iterations the tasks are run. The result
and timing of the response to each request are logged in a data file for performance and reliability analysis.

• The Test Analyzer verifies the correctness of the results and collects the timing information to compute the
throughput and average response time of each type of tasks and and overall result among all the tasks.

• The performance and reliability tests are run by a Test Script which varies the parameters for the number of
users, user pace-in time, user think time, and number of iterations to obtain different settings of the tests.

A. Performance Evaluation
The timeliness requirements imposed on the CAM software are summarized in the Table 1.

Table 1: Performance Requirements of the CAM Software

Request Type Response Time (milliseconds)
Authentication 500
Authorization (non-initial) 20
User Profile 50
Validate SSO Token 50
Invalidate SSO Token 20

 For throughput, the CAM software must be capable of processing at least 500 subsequent (non-initial)

authorization decision requests per second. It should be noted that achieving the specified performance depends on
having hardware that meets the minimum system requirements — a dual-core CPU and 4GB of memory. The
authorization API performance numbers are specified and measured for non-initial requests in order to characterize
steady state performance and factor out the effects of loading classes, priming caches, and making initial
connections.

Our test results show that the CAM Software Library APIs, Policy Agents, and Server meet the performance
requirements. Figure 5 and Figure 6 show the timeliness and throughput performance of the Java and Python API
tests with a setting of user pace-in time of 0.1 second and user think time of 0.05 seconds. The short think time was
used to generate a high rate of requests to the CAM Server in order to achieve the specified throughput.

 Figure 5 shows the average response time increases rapidly with increased number of users. The throughput
shown in Figure 6 increases as more requests hitting the CAM Server but it starts to peak toward 100 users as the
requests take longer to process. The results also show the Java and Python APIs have similar performance since the
determining factor is the performance of the CAM Server, which is the same for both tests.

American Institute of Aeronautics and Astronautics

11

Figure 5: Response Time of CAM Java and Python APIs for Authorization.

Figure 6. Throughput of CAM Java and Python APIs for Authorization

B. Reliability Evaluation
The reliability requirements imposed on the CAM software specify 99.9% availability and a mean-time between

failure (MTBF) of 90 days. For testing, we use a compressed reliability test to shorten the test time. The intention
of the compressed reliability test is to compress the 90-day operations into 3 days, implying a scaling factor of 30.
The test assumes “nominal operation” to be a 16-hour work day with 20 users each making one request per second
to a Web server application, and concurrently another 20 users each making one request per second to a Tomcat
Java EE application.

With a scaling factor of 30, each test runs for 32 minutes with requests being made 30 times per second. After
each test run is done, the test application sleeps for 16 minutes. The cycle repeats 90 times to simulate the 90 days
of operations. After the test is completed the correctness of the responses of all the requests are verified.

American Institute of Aeronautics and Astronautics

12

The compressed reliability tests have been run a number of times, simulating well over a year of continued
operation, and the reliability has been 100%. All errors identified in the test results were found to be the result of
problems with the test set up, the network, or the LDAP service. That is not to say that our experience does not
include any issues with the underlying product in our solution, but it has proven its ability to deliver the necessary
capabilities (at miminal cost) and operate continuously for long periods of time.

V. Conclusion
The Common Access Manager (CAM) software is a useful tool for easily incorporating access control into

software applications used in ground data systems. The CAM software is well suited for Web-based applications,
and the CAM software capabilities can also be utilized to provide fine-grained attribute-based access control.

The capabilities of the CAM software meet the needs noted at the top of this paper. The cost effective solution
provided by the CAM software offers centrally managed and reviewable control over access to protected resources,
simplifies site portability of applications, and achieves required performance and reliability results. However, there
are potential future work items for enhancing the capabilities and performance of the CAM software.

While the centralized authorization policy management mechanisms of the CAM software simplify the
deployment and maintenance of authorizaion policies for a number of applications in a venue (or set of venues), the
separation of authorization management from information management services can interfere with the timely
creation of policies for new resources. There is potential future work in the creation of CAM APIs for managing
authorizations so that applications can interface with the CAM to automatically establish policies for new resources
(as permitted by the current set of authorization policies).

 Custom software applications that use the CAM Software Library APIs may need to implement decision
caching, if necessary to support very high timeliness and throughput rates. A potential future area of work is the
caching of access control related information in the CAM software. Other potential future work related to
performance and reliability includes the use of load balancing and hot swap capabilities.

Acknowledgments
The work described in this paper was funded by the JPL Multimission Ground Systems and Services Office and

performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National
Aeronautics and Space Administration.

References
Web Sites
1Jet Propulsion Laboratory, “AMMOS: Advanced Multi-Mission Operations System,” URL: https://ammos.jpl.nasa.gov

[cited March 28, 2014].
2Jet Propulsion Laboratory, “DSN: Deep Space Network,” URL: http://deepspace.jpl.nasa.gov [cited: March 28, 2014].
3ForgeRock, “OpenAM Project”, URL: http://openam.forgerock.org [cited: March 28, 2014].
10Wikipedia, “Namespace”, URL: http://en.wikipedia.org/wiki/Namespace [cited 28 March 2014].

Proceedings
4Tso, K. S., Pajevski, M., and Johnson, B., “Access Control of Web and Java Based Applications,” Proceedings of the IEEE

17th Pacific Rim International Symposium on Dependable Computing (PRDC 2011), Dec. 2011, pp. 320–325.
5Choi, J. S. and Sanders, A. L., “Cost-Effective Telemetry and Command Ground Systems Automation Strategy for the Soil

Moisture Active Passive (SMAP) Mission,” Proceedings of the 12th International Conference on Space Operations (SpaceOps
2012), Stockholm, Sweden, June 2012.

6Ferraiolo, D. and Kuhn, D., “Role Based Access Control,” 15th National Computer Security Conference, Oct. 1992, pp.
554–563.

7Sandhu, R., Coyne, E., Feinstein, H., and Youman, C., “Role-Based Access Control Models,” IEEE Computer, Vol. 29,
Nov. 2, 1996, pp. 38–47.

8Reinholtz, W. K., “Timeline as Unifying Concept for Spacecraft Operations,” Proceedings of the 12th International
Conference on Space Operations (SpaceOps 2012), June 2012.

9Chung, S. and Bindschadler, D., “Timeline-based Mission Operations Architecture: An Overview,” Proceedings of the 12th
International Conference on Space Operations (SpaceOps 2012), June 2012.

Special Publications
11National Institute of Standards and Technology (NIST), Special Publication 800-162 “Guide to Attribute Based Access

Control (ABAC) Definition and Considerations”, Jan. 2014.

