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APGEN scheduling: 15 years of Experience in Planning 
Automation 

Pierre F. Maldague,1 Steve Wissler,2 Matthew Lenda3 and Daniel Finnerty4 
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, 91109 

In this paper, we discuss the scheduling capability of APGEN (Activity Plan Generator), 
a multi-mission planning application that is part of the NASA AMMOS (Advanced Multi-
Mission Operations System), and how APGEN scheduling evolved over its applications to 
specific Space Missions. Our analysis identifies two major reasons for the successful 
application of APGEN scheduling to real problems: an expressive DSL (Domain-Specific 
Language) for formulating scheduling algorithms, and a well-defined process for enlisting 
the help of auxiliary modeling tools in providing high-fidelity, system-level simulations of the 
combined spacecraft and ground support system. 

Nomenclature 
ACS = Attitude Control System 
AI = Artificial Intelligence 
AL = APGEN Language 
AMMOS = Advanced Multi-Mission Operations System 
APGEN = Activity Plan GENerator 
DI = Deep Impact 
DPT = Data Priority Table 
DSL = Domain-Specific Language 
DSN = Deep-Space Network 
FPT = Frame Priority Table 
INSIGHT = Interior Exploration using Seismic Investigations, Geodesy and Heat Transport 
MER = Mars Exploration Rover 
MRO = Mars Reconnaissance Orbiter 
MSL = Mars Science Laboratory 
PEF = Predicted Event File 
PEL = Power Equipment List 
S/C = Spacecraft 
SASF = Spacecraft Activity Sequence File 
SEQGEN = SEQuence GENerator 
TOL = Time-Ordered Listing 

I. Introduction 
HIS paper is mainly concerned with the application of APGEN (Activity Plan GENerator), a multi-mission 
planning application that is part of the NASA AMMOS (Advanced Multi-Mission Operations System), to a 

variety of scheduling problems in the context of recent NASA Space Missions. According to its initial design, 
APGEN was to be used interactively by mission planners. The simulation capabilities of APGEN were intended to 
support a planning paradigm in which the user comes up with a high-level activity plan, the software works out the 
consequences in terms of critical resource usage, and the user decides whether or not to iterate or refine the search 
for a plan that satisfies his or her criteria. The simulation capabilities of APGEN grew over time, to the point where 
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APGEN can accurately predict the impact of any S/C (spacecraft) sequence on key resources and states such as data 
volume, battery charge and S/C attitude.1 

One of the requirements on APGEN was that it should present the user with automatically generated activities 
that would satisfy user-specified criteria. Although such a capability was not included in the initial design, two 
capabilities were subsequently added to APGEN: 

• a two-pass scheduling algorithm was implemented and delivered as part of the APGEN software 
• in collaboration with the MER (Mars Exploration Rover) mission, the Europa search-based planner from 

ARC (NASA Ames Research Center) was merged with APGEN into a mixed-initiative planning tool. 
The collaboration with MER was discussed elsewhere. Here, we concentrate on the two-pass scheduling 

capability of APGEN. 
The basic idea behind the two-pass scheduling algorithm used by APGEN is simple. In a first pass, APGEN 

predicts the effect of the current activity plan on S/C (spacecraft) states and ground resources. In a second pass, 
APGEN examines the possibility of adding one or more activity to the plan, based on time intervals during which a 
certain "scheduling condition" is true. If the condition is true for a given length of time, APGEN executes the 
activity generation part of the scheduling algorithm, which adds new activities to the plan. If the condition is false, 
APGEN keeps looking for other windows, always proceeding forward in time. 

The scheduling condition must be provided by the APGEN user prior to running the algorithm. As an example, 
such a condition might yield all intervals of time during which at least one DSN station is available for 
telecommunications. 

Note that availability of a DSN station implies not only that the DSN has made it available to the mission for a 
given period of time, but also that the S/C is visible from Earth. Thus, evaluating the condition requires external 
information from the DSN as well as computations of a geometric nature. 

In making decisions, the activity generation algorithm of APGEN only has limited information, namely the 
resource predictions that were made during the first pass and the predictions that were made for the second pass up 
until the time at which a new activity could be added to the plan. In contrast with search-based planners, APGEN 
does not allow the algorithm designer to iterate the search for optimal placement of a new activity in the plan. As a 
result, APGEN's scheduling algorithm does not have the generality found in other, search-based planners. 

The lack of generality of the APGEN scheduling algorithm is largely compensated by its scalability to complex 
plans in which many resources need to be evaluated in a high-fidelity simulation. In our paper, we review the 
successful application of APGEN scheduling to six NASA missions: EPOXI, Europa, INSIGHT, Juno, MRO, and 
MSL. In each case, we review the operational challenges that led to the need for automation, and we show how these 
challenges were met by the APGEN scheduling algorithm. In our conclusion, we will explain how our operations 
experience has allowed us to turn APGEN into the generic, multi-mission scheduling tool it is today, and we will 
outline our plans for providing continued support for space missions in early development as well as those that have 
been in operations for several years. 

II. Resource modeling in early versions of APGEN and SEQGEN 
The APGEN DSL has undergone continuous changes over the 15-plus years of APGEN’s history, as APGEN 

developers sharpened their understanding of space mission needs over time. To avoid forking APGEN into multiple, 
competing versions, changes were introduced in a backward-compatible manner: the DSL always expanded and 
never shrank. As a result, the DSL in its current state is somewhat of a hybrid; recent additions have turned it into a 
reasonably modern-looking programming environment, while early features still present in the language make the 
DSL arcane and non-intuitive. After 15 years of evolution, the time has probably come to take stock of lessons 
learned and to undertake the development of a planning system that would be easier to learn and maintain than 
APGEN. Besides the complexity of its DSL, there are good systems-level reasons to upgrade APGEN: modern 
adaptations of APGEN demonstrate the need for integrating external S/C models into the planning model. Although 
APGEN supports such an integration mechanism, there is a need to make integration easier and more systematic. 

In spite of its blemishes, the APGEN DSL has been remarkably adept at modeling complex systems in support of 
mission operations. In redesigning APGEN to better support future missions, one should take care not to throw the 
baby with the bath water. In particular, a drastic redesign of the APGEN DSL might inadvertently throw away 
arcane features that turned out to be essential in providing APGEN with the flexibility and scalability it enjoys 
today. To help future designers avoid this problem, a significant portion of our paper has been devoted to a 
description of these arcane features and to the role these features have played in actual APGEN adaptations in use 
today. In this Section, we summarize the early history of APGEN and comment on the DSL as designed by its 
original creators. In Section III we will discuss enhancements that were introduced into the APGEN DSL in order to 
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support the six space missions mentioned in the Introduction. In Section IV we will review the application of these 
capabilities to actual space missions. 

A. Early history of APGEN 
APGEN handles two basic types of objects: activities and resources. Activities are blocks of time devoted to a 

given purpose, such as a S/C maneuver or a science observation. Resources are numeric or discrete quantities that 
say something about the state of the S/C and how that state is evolving as a function of time. The types of activities 
that can be present in the plan, the resources that characterize the S/C state, and the interaction between the two are 
specified by the APGEN adapter using an APGEN-specific DSL (Domain-Specific Language) which for lack of a 
better name will refer to as the APGEN DSL. Users can then load the adapter’s code (referred to as the adaptation 
code) into APGEN and create plans for the mission they are working on. 

In the early phases of its development, APGEN was strongly influenced by its predecessor, a command sequence 
simulation and validation tool called SEQGEN. Both tools expect their users to provide S/C activities as inputs to 
the program, while the time histories of the resources were output by the program. The main difference between the 
two tools was that APGEN was a lightweight version of SEQGEN, making it easier to use by planning engineers 
while a mission was in its early phases. In particular, the APGEN DSL did not require that S/C commands be 
defined, while in SEQGEN the use of commands was essential in establishing a link between S/C activities and 
usage patterns for the various resources. 

  

B. Expansion and modeling stages in early SEQGEN 
As mentioned earlier, the early development of APGEN was strongly influenced by SEQGEN; in particular, the 

fundamental way in which APGEN computes the effect of S/C activities on resources was directly patterned on the 
way SEQGEN accomplished the same task. Because this still forms the foundation of the APGEN modeling 
algorithm, we discuss the early SEQGEN algorithm in some detail. For simplicity, we refer to the various 
components of a SEQGEN adaptation in informal terms; we refer the reader to the SEQGEN Users’ Guide for more 
detailed information. We also use the present tense to indicate the way SEQGEN processes its input, even though 
we are referring to an ancient version of SEQGEN; modern sequence processing requires considerably more 
sophistication. 

The basic ingredients of an early SEQGEN adaptation are the following: 
• A model definition file, where model means a collection of elements identified each by a unique name 

and, for each element, a collection of one or more element attributes declared as a variable of a given 
type (Boolean, integer, string etc.) together with a description and an optional range within which the 
attribute is to be confined. 

• A command definition file, which contains one entry per S/C command. Each command is identified by 
its name, which must be unique. Each command may have an arbitrary number of parameters, each one 
of which must have a type, an optional description and, if applicable, an allowed range. Finally, each 
command is followed by a (usually short) program written in the SEQGEN DSL called a results 
section. In that section, the adapter can use DSL programming statements to express the effect of a 
command on the various elements of the models, using knowledge about the command’s execution time 
and the values of its parameters. 

• An activity definition file, which contains any number of activity types. Each activity type is similar to 
a command in that it must have a unique name and may have an arbitrary number of parameters. 
However, an activity does not have a results section; instead, it contains an expansion section which 
indicates how a given activity decomposes or expands into a mix of lower-level activities and 
commands. 

In order to simulate a sequence, SEQGEN has to be given two things: first, an adaptation in the form of the three 
files described above; and second, one or more sequence files describing the sequence to be simulated. A sequence 
is an ordered set of time-tagged objects arranged in order of increasing time; each object is either an activity or a 
command. Any activity in the sequence must be of a type that is included in the activity definition file, and any 
command in the sequence must match an entry in the command definition file. The number of parameters of the two 
types of objects in the sequence file must match the types listed in the definition files, and parameter values must be 
within the indicated range if applicable. 

Once loaded with adaptation and sequence files as indicated above, SEQGEN uses a two-step algorithm to 
process sequences. The algorithm is described in Table 1 below. 
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Table 1. Stages used by early versions of SEQGEN in processing a command sequence. 
Stage Description Final State 

Expansion Activities in the sequence are expanded into 
lower-level activities and commands, using the 
activity type definitions to determine activity 
and command timing and parameters. Any 
resulting activities are likewise expanded until 
all activities have been fully decomposed into 
commands. 

All commands – those initially present in the 
sequence and those that result from activity 
expansion – are collected in a single time-ordered 
list, called the event queue. 

Modeling Commands in the event queue are scanned in 
time order, and the effect of each command on 
the model element attributes is determined by 
executing the code in its results section as 
specified in the command definition file. 

All state changes occurring in each model 
element attribute are recorded in that attribute’s 
history. All activities, commands and model 
element attribute changes are collected in time 
order in a file called the PEF (Predicted Event 
File). 

 
One important aspect of the expansion stage is that the resulting commands are placed in a single time-ordered 

list, the event queue, which is then scanned in time order during the modeling stage. The time ordering of the event 
queue is an essential aspect of SEQGEN and, by extension, of APGEN: the modeling code in the adaptation 
frequently contains logic which changes the values of S/C states based on their current values. Such logic would fall 
apart if commands were not processed in time order. There is of course a solid rationale for organizing commands in 
time order while running the simulation, since that is the order in which they are executed onboard the S/C. 

C. Decomposition and Modeling Phases in early APGEN 
The designers of APGEN wanted to provide a capability similar to SEQGEN but easier to use and better adapted 

to the needs of planning engineers. To this end, they made three decisions: 
1. Allow users to represent the same plan at several levels of fidelity. This was done by introducing a 

flexible scheme for letting high-level activities decompose into lower-level activities. Decomposition is 
exclusive in the sense that only one level is reflected in the model. If the user chooses to display high-
level activities, their impact on the model is evaluated in a coarse, high-level manner. If the user 
chooses instead to display lower-level activities, the impact on the model is evaluated at a higher-
fidelity level. 

2. Eliminate the overhead associated with the need to define S/C commands. They accomplished this by 
offering only a fixed set of modeling commands. Furthermore the effect of these commands was hard-
coded so there was no need for codifying the effect of commands in the adaptation. 

3. Make the adaptation language more intuitive. The hard-coded modeling commands were given intuitive 
names such as use, set and reset. Instead of SEQGEN’s model element attributes, the APGEN model is 
made up of resources. Numeric resources are divided into consumable resources, which are depleted 
with each usage, and non-consumable resources, which are restored to their default values when they 
are no longer used. To represent discrete-valued quantities, adapters can use state resources, which 
featured an adjustable, finite set of allowable states. 

As a result of these decisions, APGEN does not process an activity plan the same way SEQGEN processes a 
sequence. Decomposing activities into lower-level activities (and abstracting lower-level activities back into higher-
level ones) is a purely interactive task. Once the user has settled on a representation level – abstract or detailed – he 
or she can ask APGEN to remodel the plan, i. e., to evaluate the effect of the activity plan (as currently displayed) on 
the resources that make up the model. 

The remodeling process is similar to SEQGEN’s processing of a sequence and is illustrated in Table 2 below. 
 

Table 2. Stages used by early versions of APGEN in remodeling an activity plan 
Stage Description Final State 

Event generation  Activities in the activity list are scanned in 
time order. Any use and set commands 
present in the resource usage section of each 
activity are extracted and inserted as usage 
events into the event queue. 

All usage events extracted from the definition of 
activities in the plan are collected in time order 
in a time-ordered list called the event queue. 
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Stage Description Final State 
Event modeling  Usage events in the event queue are scanned 

in time order, and the effect of each event on 
the corresponding resource is calculated 
based on the event’s timing and parameters. 

All changes occurring in each resource are 
recorded in that resource’s history. At the option 
of the user, all activities and resource changes 
are collected in a file called the TOL (Time-
Ordered Listing). 

 
The Cassini cruise plan, which provided the first application of APGEN to a space mission, was modeled in 

1996. It provides an example of resource and activity definitions in the APGEN DSL. The definition of the 
Op(erational)Mode resource is shown in Fig. 1 below. The resource definition includes the resource data type 
(string), the resource usage type (state), its parameter (neededState), the list of possible states (LS, …, 
OrbInstDeploy_Maint), the default or profile state (LS), and the usage value, i. e., the function of the parameter (in 
this case the identity function) which the resource should take on when used. 

 
Figure 1. Definition of the OpMode state resource in the Cassini cruise adaptation 

An example of an activity type definition is shown in Fig. 2 below; it illustrates the fact that the early version of 
the APGEN DSL does not feature any conventional programming constructs such as declarations and assignments. 
A form of conditional execution is provided through the when keyword followed by a Boolean expression. During 
the event generation process, the usage events are placed on an event queue along with any attached when clauses. 
When APGEN models the event as part of the second stage of the remodeling algorithm, the when clause is 
evaluated at the time of the event, and the usage statement is executed if the Boolean expression following when is 
true. 

Table 3 below summarizes a few statistics about the Cassini cruise plan adaptation. These numbers should be 
kept in mind when compared with statistics for adaptations of APGEN discussed in later Sections of this paper. 

Table 3. Statistics of the Cassini cruise plan adaptation of APGEN. 
 Globals Functions Resources Activity Types Constraints 
Number of Items 0 0 61 345 15 
Lines per Item N/A N/A 15 21 15 

Although it was not used in the Cassini cruise plan, we want to mention one more feature of the early APGEN 
DSL: abstract resources. Because activity decomposition in early APGEN was meant to represent alternative 
representations of the same plan at various levels of fidelity, there was no way to organize complex activities into a 
hierarchy of modular entities. To improve the scalability of the DSL, the notion of an abstract resource was 
introduced. An abstract resource is essentially a function call. It can be invoked by an activity (or another abstract 
resource) through a use statement, exactly like a consumable or non-consumable resource. Unlike a concrete 
resource, an abstract resource does not have a state variable associated with it; instead, it is allowed to invoke other 
(concrete or abstract) resources, much as a function can call other functions in a general programming language. By 
collecting recurring usage patterns into abstract resources, adapters can make their code more modular. 

 

resource	  OpMode	  :	  state	  string	  
	  	  	  	  begin	  
	  	  	  	  	  	  	  	  parameters	  
	  	  	  	  	  	  	  	  	  	  	  	  neededState	  :	  string	  default	  to	  "Cruise2";	  
	  	  	  	  	  	  	  	  states	  
	  	  	  	  	  	  	  	  	  	  	  "LS","Cruise1_Decon","Cruise2","ME_TCM","RCS_TCM","PCO",	  
	  	  	  	  	  	  	  	  	  	  	  "ICO","MAGcals1","MAGcals2","MAGcals3","UVISMaint",	  
	  	  	  	  	  	  	  	  	  	  	  "PerInstMaint","PerEngrMaint","ORS","ORSMaxTorque","DFPW",	  
	  	  	  	  	  	  	  	  	  	  	  "INMS_FPW","RADAR_INMS","RSS2_RCS","RSS2_RWA","RSS3_RWA",	  
	  	  	  	  	  	  	  	  	  	  	  "CatbedWarmup_OR_RWUnload","SOI","ProbeRelay",	  
	  	  	  	  	  	  	  	  	  	  	  "OrbInstDeploy_Maint";	  
	  	  	  	  	  	  	  	  profile	  
	  	  	  	  	  	  	  	  	  	  	  "LS";	  
	  	  	  	  	  	  	  	  usage	  
	  	  	  	  	  	  	  	  	  	  	  neededState;	  
	  	  	  	  end	  resource	  OpMode	  
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Figure 2. An activity type definition taken from the Cassini cruise adaptation 

 
The addition of abstract resources to the APGEN DSL restored the similarity between the APGEN remodeling 

process and SEQGEN sequence processing, which had been partially lost when APGEN designers introduced the 
notion of exclusive activity decomposition. Much as a SEQGEN adapter can use activity expansion to orchestrate 
how a complex activity expands into commands, an APGEN adapter can organize a complex resource usage pattern 
as a hierarchy of calls to suitable abstract resources. This is readily seen from the similarity between Table 4 below, 
which describes APGEN remodeling in the presence of abstract resources, and Table 1 showing the analogous 
SEQGEN process. For future reference, note that we refer to the modeling style in Table 4 as the a priori modeling 
style – a priori because the code inside the definition of abstract resources is executed in the event generation phase, 
before modeling commands in the event queue have had a chance to modify the history of any resources. 

 
Table 4. Stages in remodeling an activity plan using the a priori modeling style of early APGEN 

Stage Description Final State 
Event generation  Activities in the activity list are scanned in 

time order. Any modeling commands (use, 
set and reset) found in the resource usage 
section of activity definitions are examined. 
Commands that invoke concrete resources 
are collected into a list. Any commands that 
invoke abstract resources are themselves 
scanned for further extraction of use and set 
commands, until all invocations of abstract 
resources have been processed. 

Modeling commands extracted from the 
definition of activities in the plan and from the 
usage of abstract resources are encapsulated into 
usage events which are collected into a time-
ordered list called the event queue. 

Event modeling  Usage events in the event queue are scanned 
in time order, and the effect of each event on 
the corresponding resource is calculated 
based on the event’s timing and parameters. 

All changes occurring in each resource are 
recorded in that resource’s history. At the option 
of the user, all activities and resource changes 
are collected in a file called the TOL (Time-
Ordered Listing). 

D. A non trivial example: a simple science activity 
Before moving on to more recent examples of APGEN adaptation, we want to make one last point regarding the 

early version of the APGEN DSL. In spite of the restrictions on it – no iteration, no local variables, limited 
availability of conditional statements – the early APGEN DSL is surprisingly expressive. As will be seen later in our 
paper, the current version of the APGEN DSL offers adapters a more complete set of programming constructs. 
Unfortunately, the flexibility that results from the new constructs easily obscures the simple (although nontrivial) 
infrastructure offered by early versions of the DSL. In hindsight, it might have been better to establish a clearer 

activity	  type	  RemoteSensPalletReplHtr2	  
	  	  	  	  begin	  
	  	  	  	  	  	  	  	  attributes	  
	  	  	  	  	  	  	  	  	  	  	  	  "Color"	  =	  "Orange	  Red";	  
	  	  	  	  	  	  	  	  	  	  	  	  "Pattern"	  =	  2;	  
	  	  	  	  	  	  	  	  	  	  	  	  "Duration"	  =	  Duration;	  
	  	  	  	  	  	  	  	  	  	  	  	  "Legend"	  =	  "Remote	  Sensing	  Pallet	  Repl.	  Heater	  2	  (T/C)";	  
	  	  	  	  	  	  	  	  parameters	  
	  	  	  	  	  	  	  	  	  	  	  	  Duration	  :	  local	  float	  default	  to	  5400.0;	  
	  	  	  	  	  	  	  	  	  	  	  	  PowerMode	  :	  local	  string	  default	  to	  "OFF";	  
	   resource	  usage	  
	   	  	  	  	  use	  RTGpower	  (21.32)	  when	  PowerMode	  ==	  "ON";	  
	   	  	  	  	  use	  RTGpower	  (0.0)	  when	  PowerMode	  ==	  "OFF";	  
	   	  	  	  	  use	  RTGpower	  (0.0)	  when	  PowerMode	  ==	  "ENABLE";	  
	  	  	  	  end	  activity	  type	  RemoteSensPalletReplHtr2	  
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distinction between the early and late APGEN modeling styles, and we hope that future developers of APGEN (or 
its successor) will take our remarks into account. 

To illustrate our point, we consider a problem that frequently confronts APGEN adapters: the simple behavior 
provided by the APGEN use and set statements leads to abrupt changes in the value of a resource; can we change it 
so that the change in the resource becomes gradual? In the next few paragraphs, we will show that this problem can 
be solved using the limited capabilities of the early APGEN DSL. 

The solution of our problem is to write the adaptation so that activities control the rate at which a resource 
changes, rather than the resource itself. To be specific, let us consider the problem of controlling the amount of data 
volume through the rate at which data is created. We can solve the problem by introducing four resources: 

• DataVolume, which is the main object of our modeling effort; we will measure it in Megabits. 
• DataRate, the rate at which data is created; we will measure it in Megabits per second. 
• LastUpdateTime, the time at which we last updated DataVolume to reflect the current data creation rate. 
• AddData, an abstract resource which acts as a controller for the other three resources and provides a 

simple API to activities that produce data. 
We now show how these resources can be implemented in the early version of the APGEN DSL. Figure 3 below 

illustrates the consumable resources that implement DataVolume and DataRate. 
Figure 3. The APGEN code for the DataVolume and DataRate resources 

We note some of the features of the APGEN DSL which we have not mentioned before: the attributes section of 
the definition, in which general properties such as units can be defined. The interpolation attribute is used to control 
the graphical appearance of the resource; its default value is zero, in which case the resource plot shows a 
discontinuity at each usage event. We also note the APGEN idiom which consists in using an amount of the resource 
equal to minus the parameter supplied as an argument to the use statement. Without the minus sign, any use of the 
resource by some amount x reduces the value of the resource by x, in accordance with the basic paradigm of a 
critical resource being used up by the activities that consume it. 

Figure 4 below shows the code for LastTimeUpdated and AddData. 
Figure 4. The APGEN code for LastTimeUpdated and AddData 

The code for LastUpdateTime exhibits an APGEN idiom: the use of the currentval function in a usage 
expression. For any concrete (non-abstract) resource R in the adaptation, the expression R.currentval() can be used 
to refer to the current value of the resource. A usage expression of the form R.currentval() – t implies that the value 

resource	  DataVolume:	  consumable	  float	  
	  begin	  
	  	  attributes	  
	  	  	  	  "Units"	  =	  "Megabits";	  
	  	  	  	  "Interpolation"	  =	  1;	  
	  	  parameters	  
	  	  	  	  x:	  float	  default	  to	  0.0;	  
	  	  profile	  
	  	  	  	  0.0;	  
	  	  usage	  
	  	  	  	  -‐x;	  
	  end	  resource	  DataVolume	  

resource	  DataRate:	  consumable	  float	  
	  begin	  
	  	  attributes	  
	  	  	  	  "Units"	  =	  "Mbits/s";	  
	  	  parameters	  
	  	  	  	  x:	  float	  default	  to	  0.0;	  
	  	  profile	  
	  	  	  	  0.0;	  
	  	  usage	  
	  	  	  	  -‐x;	  
	  end	  resource	  DataRate	  

resource	  LastUpdateTime:	  consumable	  time	  
	  begin	  
	  	  parameters	  
	  	  	  	  t:	  time	  default	  to	  2000-‐001T01:00:00;	  
	  	  profile	  
	  	  	  	  2014-‐093T20:00:00;	  
	  	  usage	  
	  	  	  	  LastUpdateTime.currentval()	  -‐	  t;	  
	  end	  resource	  LastUpdateTime	  

resource	  AddData:	  abstract	  
	  begin	  
	  	  parameters	  
	  	  	  	  rate:	  float	  default	  to	  0.0;	  
	  	  resource	  usage	  
	  	  	  	  use	  DataVolume(DataRate.currentval()	  
	  	  	  	  	  	  *	  ((now	  	  -‐	  LastUpdateTime.currentval())	  /	  0:0:1))	  
	  	  	  	  	  	  when	  LastUpdateTime.currentval()	  <	  now;	  
	  	  	  	  use	  DataVolume(0.0)	  when	  LastUpdateTime.currentval()	  >=	  now;	  
	  	  	  	  use	  DataRate(rate);	  
	  	  	  	  use	  LastUpdateTime(now);	  
	  end	  resource	  AddData	  
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of R after execution of the statement use R(t) will be C – (C – t) = t, where C denotes the current value of R. Thus, 
the indicated form of the usage statement of resource R ensures that the usage statement use R(t) results in R taking 
on the value t. 

The resource usage section of the code for the abstract resource, AddData, contains the algorithm for updating 
DataVolume, DataRate and LastUpdateTime. Although the early APGEN DSL did not feature conditionals, it 
provided a when clause that could be appended to a usage statement; execution of the usage statement would then 
depend on whether the Boolean expression following when was true or false. 

This leads us to a highly non-intuitive feature of the APGEN DSL: delayed execution of usage event logic.  For 
the logic of a when clauses to work correctly, it is essential that the evaluation of the Boolean expression following it 
should take place while APGEN is scanning the event queue, and not while APGEN is extracting usage statements 
from resource usage programs inside activity type definitions. In the APGEN language of Table 4, we would say 
that evaluation of Boolean variables takes place at event modeling time, and not at event generation time. The 
distinction between event modeling time and event generation time is clear, given the context in which APGEN was 
first implemented. However, enhancements introduced later on into the APGEN DSL made the distinction harder to 
keep in mind; this remains a point of confusion for APGEN adapters. We will return to this point later on in our 
paper. 

In order to exercise the adaptation we have just constructed, we need an activity type that uses the AddData 
resource. Such an activity type, called science, is shown in Figure 5 below. 

Figure 5. An activity type definition called science 

To see how all these definitions work together, let us describe the modeling process APGEN goes through when 
given a plan containing a single science activity. The sequence of events is shown in Table 5 below. 

Note that the events created in step 2 of Table 5 correspond to the four usage statements in the definition of the 
AddData resource, shown in Fig. 4. Because these statements do not contain an explicit time stamp (i. e., they do not 
end with a temporal expression of the form at T where T is a time expression), their time stamp defaults to the time 
at which the AddData resource is used, which is the start time of the science activity. 

This leads us to discuss a frequent occurrence in APGEN modeling: the event queue contains several events 
occurring at the same time. To deal with this eventuality, the event queue is endowed with a secondary key besides 
the event creation time which provides the primary key. The secondary key is designed so that the resulting order is 
simply the order of insertion into the queue. The resulting event ordering ensures that as new events are added to the 
queue, the event queue iterator visits the new events once and never revisits events already processed. 

Table 5. Sequence of steps taken by APGEN when modeling a science activity using a priori modeling 
Step Description Final State 

1 APGEN scans the time-ordered list of all activity 
instances – there is only one in this case – and extracts 
the modeling commands it finds in that activity’s 
resource usage sections (see Fig. 5 above). 

Two modeling commands are found, both 
involving abstract resource AddData; the first 
occurs at the start of the activity, denoted by S, the 
second at the end of the activity, denoted by E. 

2 The first modeling command is expanded by 
consulting the resource usage section of AddData (see 
the code in Fig. 4 above). This results in four new 
events that are inserted into the event queue at time S. 

The event queue now contains four usage events 
with time tag S. These commands occur in a well-
defined order thanks to the secondary key of the 
event queue, as discussed above. 

3 The second modeling command involving AddData is 
also expanded, which results in four new events that 
are inserted into the event queue at time E. 

The event queue now contains four additional 
usage events with time tag E. 

activity	  type	  science	  
	  begin	  
	  	  attributes	  
	  	  	  	  "Duration"	  =	  Duration;	  
	  	  parameters	  
	  	  	  	  Duration:	  duration	  default	  to	  5:00;	  
	  	  	  	  volume:	  float	  default	  to	  0.5;	  
	  	  resource	  usage	  
	  	  	  	  use	  AddData(volume/Duration)	  at	  start;	  
	  	  	  	  use	  AddData(-‐volume/Duration)	  at	  finish;	  
	  end	  activity	  type	  science	  
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Figure 6. Data Volume modeling as implemented above for the case of two overlapping science activities 

Note: this concludes the event generation stage of the remodeling process. 
4 APGEN scans the event queue in time order using an 

iterator. The event iterator runs into the first event at 
time S. It sets the value of global time variable now to 
S. 

The event queue iterator points at the event at time 
S, which contains a conditional when clause with 
argument 	  LastUpdateTime.currentval()	  <	  now. 

5 The Boolean argument is evaluated. Because the 
current value of LastUpdateTime is greater than now 
(which was set to the time tag S of the current event), 
the Boolean evaluates to false. 

Since the Boolean clause in the current event was 
found to be false, the event is not executed and the 
state of the resource model is the same as before. 

6 The event iterator iterates and finds the second of the 
four statements in the resource usage section of 
AddData, again notices the presence of a conditional, 
and evaluates its Boolean argument; this time the 
argument evaluates to true, and the usage statement 
saying use DataVolume(0.0) is executed. 

A new node recording the usage of 0 Megabits is 
inserted in the history of the DataVolume resource 
with time tag S. This node is necessary and marks 
the start of a change in slope; without it, the slope 
would depend on the time tag of the first node in 
DataVolume’s history. 

7 The event iterator iterates again, finds the event that 
says use DataRate(rate)  and executes it. 

The value of the DataRate resource is changed by 
the amount rate at time S. 

8 The event iterator iterates once more, finds the event 
that says use LastUpdateTime(now) and executes it. 

The value of the LastUpdateTime resource is 
changed and is set equal to S. 

9 The iterator iterates and finds the first of the four 
events at time E, notices the presence of a conditional, 
and evaluates its Boolean argument; the argument 
evaluates to true, and the usage statement saying use 
DataVolume(…) is executed. 

A new node recording the usage of an appropriate 
number of Megabits is inserted at time E in the 
history of the DataVolume resource. 

10 The iterator finds the second of the events at E, notices 
the presence of a conditional, finds the condition to be 
false and the usage statement is not executed. 

The state of the resource model is the same as 
previously, since the usage statement for the 
current event was not executed. 

11 The iterator iterates, finds the event that says use 
DataRate(rate) and executes it. 

The value of the DataRate resource is changed by 
the amount rate at time E. 

12 The iterator iterates, finds the event that says use 
LastUpdateTime(now) and executes it. 

The value of the LastUpdateTime resource is 
changed and is set equal to E. 

Note: this concludes the event-modeling phase of the remodeling process. 
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While we have discussed the simple case of a single science activity, it should be obvious that the logic used in the 
above example applies equally well to an arbitrary number of activities, overlapping or not. Figure 6 above 
illustrates the above adaptation handling two science activities as displayed by a recent version of APGEN. 

III. Evolution of the APGEN Adaptation Language 
After the initial application of APGEN to the Cruise phase of the Cassini mission, it became clear that if APGEN 

was to be used as a general multi-mission planning tool it would be necessary to enhance the APGEN DSL, in 
particular in the resource usage section where the effect of an activity on resources is specified in detail. Early 
APGEN offered no provision for things like declaring local variables and performing arithmetic on floating-point 
and integer variables. 

This changed around the year 1997 when APGEN was enhanced in order to provide support to upcoming Mars 
missions such as Mars ’98. A number of new features were introduced at that time; we list them in Table 6 below. 

Table 6. New features in the APGEN DSL 
Item Description 

1 An array data type, which was added to the list of APGEN data types: Boolean, string, integer, float, 
time and duration. Strictly speaking, an APGEN array is not an array in the conventional programming 
sense but rather a generic container which can be turned into a linked list or a string-based map, 
depending on how it is used in the code. APGEN arrays allow adapters to introduce data structures of 
arbitrary complexity in the APGEN code with essentially no overhead. 

2 An instance data type, which can be used to store a pointer to an activity instance, for instance in the 
midst of a decomposition algorithm. Individual attributes, parameters and local variables of that activity 
instance can then be accessed (and modified) through the instance variable. 

3 Global variables, which can be accessed and modified anywhere in the adaptation code. 
4 Resource arrays; by referencing an existing list of many elements, a short resource declaration can be 

used to define a large number of distinct resources. More importantly, maintenance is greatly facilitated: 
if a new device was added to the S/C design, the adaptation code had to be modified in only one place. 

5 Local variable declarations, which use the syntax already used for parameter declarations. 
6 Conditional (if) and iterative (while) execution of a block of code. Code blocks are delimited by curly 

braces { and }, similar to the C language. 
7 Function calls and assignments. 
8 A new type of activity decomposition called nonexclusive decomposition. 
9 A new, optional modeling style that supports concurrent modeling in activity type and abstract resource 

definitions. This option can be used instead of a resource usage section to provide a more natural 
programming environment to APGEN adapters. When using this option, programmers can adopt a real-
time-programming style which includes the ability to wait and to send and catch signals. 

10 An optional user-defined library, which can be used to extend the APGEN DSL through the addition of 
code external to APGEN. 

 
Enhancements 1 through 7 basically turn the APGEN DSL into a full-fledged, if non-standard, programming 

language. Although they provide APGEN adapters with much more flexibility than was available in the original 
DSL, they do not change the basic decomposition and remodeling algorithms in Table 4. The last three features, 
numbers 8 through 10 in the list, do make significant changes to these basic algorithms, as we discuss below. 

A. Improvements to the decomposition algorithm 
Prior to the availability of nonexclusive decomposition, the way in which APGEN handled activity 

decomposition had side effects that were potentially harmful. This is because of a couple of features that were 
introduced in APGEN from the very beginning: 

1. When a parent activity in the plan, say A, has a couple of child activities, say B1 and B2, only one set 
of activities can be visible at a time: either A is visible while B1 and B2 are hidden, or B1 and B2 are 
visible while A is hidden. The user can navigate between these two possibilities by using the abstract 
and detail menu options of the APGEN GUI; abstract replaces visible children by their parent, and 
detail replaces a visible parent by its children. 
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2. In the mind of the early APGEN designers, a parent activity and its child activities represent alternative 
views of the same underlying reality. For example, a S/C maneuver could be represented as a single 
activity called Maneuver, or by three child activities called First Turn, Burn, and Second Turn 
respectively. It is up to the user whether the maneuver activity should be represented in symbolic form 
by the Maneuver activity, or in more detailed form by the First Turn, Burn and Second Turn activities. 
Accordingly, APGEN would model the activity plan differently, depending on which level activities 
were presented to the user. If the Maneuver were visible, then only the resource usage section of the 
Maneuver activity would contribute events to the event queue; if the child activities were visible, then 
only their resource usage sections would be contributing. 

In short, we can say that activity decomposition as implemented in early APGEN is exclusive. Exclusive 
decomposition presents difficulties for both adapters and users. The first difficulty confronts adapters, who have to 
maintain compatibility between the resource usage patterns used to model the parent and those used to model the 
children. Obviously, computing resource usage in a consistent manner for a plan that can be viewed at several levels 
of abstraction requires more work than computing resource usage for a plan in which the level of abstraction is 
fixed. The second difficulty is that the availability of exclusive levels of abstraction makes things confusing for the 
user when the plan contains hundreds of activities, as is the case for example for the Cassini cruise plan. The user 
might be looking for resource usage features that are only present at a certain level of abstraction, for example; if the 
user inadvertently displays the plan at another level, those features will be missing for no obvious reason. 

Once non-exclusive decomposition became available, exclusive forms of decomposition all but disappeared from 
APGEN adaptations, except in regression tests. As a result, the semantics of activity decomposition have become 
simpler, and APGEN adapters have been freed from the burden of maintaining consistency between distinct versions 
of an activity plan. 

B. Changes to the remodeling algorithm 
We now turn to item 9 in Table 6, which concerns the introduction of a concurrent modeling option. To illustrate 

the impact of this change, we will again turn to the Data Volume modeling problem solved in the previous Section 
using the methods of early APGEN. 

Before we turn to concurrent modeling per se, we discuss one of the negative impacts of items 1-7 in Table 6 
when used in conjunction with the original APGEN DSL infrastructure. One could use the improvements in Table 6 
to improve the appearance of the adaptation code. Looking at the code in Fig. 4, we note that the code would 
become more elegant, more readable and more scalable if the when clauses could be replaced by a more standard if 
… else construction. We would also eliminate some duplication by using a local variable delta to store the quantity 
now – LastUpdateTime.currentval(). This would lead us to replacing the AddData code in Fig. 4 by the code in Fig. 
7 below. This code is indeed more elegant than that in Fig. 4, but it is unfortunately incorrect and will not lead to the 
correct modeling behavior. 

 
Figure 7. An improved, but incorrect, version of the AddData code 

The reason why this code is incorrect is that it gets executed during the event generation phase, steps 2 and 3 in 
Table 5, before any modeling commands have been processed. At that point, resources have been initialized, but 
their history does not yet reflect the effect of any commands in the event queue. As a result, LastUpdateTime will 
have the value listed in its profile (see Fig. 4), and not the value expected at the start time of the science activity. 

resource	  AddData:	  abstract	  
	  begin	  
	  	  parameters	  
	  	  	  	  rate:	  float	  default	  to	  0.0;	  
	  	  resource	  usage	  
	  	  	  	  delta:	  float	  default	  to	  (now	  -‐	  LastUpdateTime.currentval())	  /	  0:0:1;	  
	  	  	  	  if(delta	  >	  0.0)	  
	  	  	  	  	  	  use	  DataVolume(DataRate.currentval()	  *	  delta);	  
	  	  	  	  else	  
	  	  	  	  	  	  use	  DataVolume(0.0);	  
	  	  	  	  use	  DataRate(rate);	  
	  	  	  	  use	  LastUpdateTime(now);	  
	  end	  resource	  AddData	  
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It is to remedy the highly non-intuitive consequences of coding patterns such as shown in Fig. 7 that the 
concurrent modeling option was proposed. The correct version of the code is shown in Fig. 8 below. 

Figure 8. An improved and correct version of the AddData code based on concurrent modeling 

Two differences are evident with the previous version of AddData: first, the modeling code is contained in a 
section entitled modeling, not resource usage; this provides APGEN with a hint that we wish to use concurrent 
modeling instead of a priori expansion. Second, LastUpdateTime is now a global variable and not a resource. This 
second change is not necessary but it demonstrates the combined benefits of having introduced global variables as 
well as concurrent modeling; global variables require less space and time overhead than concrete resources. 

In a nutshell, the code above will execute correctly because APGEN behaves as a multi-threaded application, in 
which the modeling code in AddData and the scanning of the event queue are executed simultaneously. By 
postponing execution of the modeling code till the event processing stage, the APGEN adapter can write the code as 
if it were executed in real time. 

To explain how APGEN multi-threading works, we need to use the concept of execution thread. Execution 
threads are nothing new; any application that features a DSL needs to provide something like an execution thread in 
order to execute an interpreted program. Loosely speaking, an execution thread provides the basic infrastructure 
required to run an interpreter: a program counter, searchable lists of global and local variables, stacks for function 
calls, etc. Suppose now that we wanted to execute a certain modeling program P when model time reaches a given 
value T during the event processing stage of remodeling. We can do this by creating a new type of event, called a 
resumption event, which holds a copy of the execution thread for P. We refer to this event as RE. We set the time tag 
of RE to T, and we insert it into the event queue. Later on, when the iterator that scans the event queue reaches RE, 
the execution thread encapsulated in RE will be re-enabled and execution of P will resume. 

Table 7 below shows the operation of resumption events when AddData is implemented using concurrent 
modeling, as opposed to the a priori modeling style illustrated in Table 5. 

 
Table 7. Sequence of steps taken by APGEN when modeling a science activity using concurrent modeling 

Step Description Final State 
1 APGEN scans the time-ordered list of all activity 

instances – there is only one in this case – and extracts 
the two modeling commands it finds in the activity’s 
resource usage sections (see Fig. 5 above). 

Two modeling commands are found, both 
involving abstract resource AddData; the first 
occurs at the start of the activity, denoted by S, the 
second at the end of the activity, denoted by E. 

2 The definition of AddData contains the modeling 
keyword, indicating the need for concurrent modeling. 
A new execution thread is created, pointing to the 
modeling program in AddData; this thread is 
encapsulated in a resumption event with time tag S. 

The event with time tags S is inserted into the 
event queue. It contains an execution thread for 
running the modeling program in the definition of 
AddData. 

3 The second modeling command involving AddData is 
processed similarly, resulting in a new execution 
thread encapsulated in a resumption event with time 
tag E. 

The event with time tag E is inserted into the event 
queue. It contains an execution thread for running 
the modeling program in the definition of 
AddData. The event queue contains two events. 

Note: this concludes the event generation stage of the remodeling process. 

global	  time	  LastUpdateTime	  =	  2020-‐001T00:00:00;	  
resource	  AddData:	  abstract	  
	  begin	  
	  	  parameters	  
	  	  	  	  rate:	  float	  default	  to	  0.0;	  
	  	  modeling	  
	  	  	  	  delta:	  float	  default	  to	  (now	  -‐	  LastUpdateTime)	  /	  0:0:1;	  
	  	  	  	  if(delta	  >	  0.0)	  
	  	  	  	  	  	  use	  DataVolume(DataRate.currentval()	  *	  delta);	  
	  	  	  	  else	  
	  	  	  	  	  	  use	  DataVolume(0.0);	  
	  	  	  	  use	  DataRate(rate);	  
	  	  	  	  LastUpdateTime	  =	  now;	  
	  end	  resource	  AddData	  
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Before leaving our simple example, we want to emphasize one issue which is a source of frequent confusion among 
APGEN adapters: how is control transferred back and forth between the iterator which scans the event queue, and 

4 APGEN scans the event queue in time order using an 
iterator. The iterator runs into the resumption event 
previously stored at time S. It sets the value of global 
time variable now to S. 

The event queue wakes up the execution thread 
attached to the event at time S and loads it in the 
APGEN interpreter. The APGEN interpreter starts 
executing the modeling section of AddData as 
shown in Fig. 8. A variable called delta is 
initialized as shown. 

5 Because the current value of LastUpdateTime is greater 
than now (which was set to the time tag S of the 
current event), delta is found to be negative. The 
interpreter skips to the else and creates a modeling 
command saying use DataVolume(0.0) at time S. 

The new event is inserted in the event queue; it has 
the same time tag S as the current event but since it 
was inserted later it will occur next in the iterator 
scan of the queue. This remark applies to all 
subsequent insertions of new events. 

6 The interpreter continues executing the AddData code 
and creates a modeling command saying use 
DataRate(rate). It encapsulates this command in a new 
usage event at time S. 

The new event is inserted in the event queue, also 
at time S. 

7 The interpreter continues executing the AddData code 
and finds the instruction	   LastUpdateTime	   =	   now. It 
executes that command immediately. The interpreter 
notes that this is the last statement in the AddData 
modeling program; it exits, thus returning control to 
the event queue iterator. 

Global variable LastUpdateTime is now equal to S. 

8 The event iterator iterates and finds the usage 
statement saying use DataVolume(0.0). The statement 
is executed. 

A new node recording the usage of 0 Megabits is 
inserted in the history of the DataVolume resource 
with time tag S. This node is necessary and marks 
the start of a change in slope; without it, the slope 
would depend on the time tag of the first node in 
DataVolume’s history. 

9 The event iterator iterates again, finds the usage event 
that says use DataRate(rate)  and executes it. 

The value of the DataRate resource is changed by 
the amount rate at time S. 

10 The iterator runs into the event previously stored at 
time E. It sets the value of global time variable now to 
E. 

The event queue wakes up the execution thread 
attached to the event at time E and loads it in the 
APGEN interpreter. The APGEN interpreter starts 
executing the modeling section of AddData as 
shown in Fig. 8. A variable called delta is 
initialized as shown. 

11 Because the current value of LastUpdateTime (which is 
S) is less than now, delta is found to be positive. The 
interpreter creates a usage event saying use 
DataVolume(…) at time E. 

The new event is inserted in the event queue at 
time E. 

12 The interpreter continues executing the AddData code, 
skips the else and creates a usage event saying use 
DataRate(rate) at time E. 

The new event is inserted in the event queue, also 
at time E. 

13 The interpreter continues executing the AddData code 
and finds the instruction	   LastUpdateTime	   =	   now. It 
executes that command immediately. Since this is the 
last statement in the AddData modeling program, 
control returns to the event queue iterator. 

Global variable LastUpdateTime is now equal to E. 

14 The event iterator iterates and finds the usage event 
saying use DataVolume(…). The statement is executed. 

A new node recording the usage of an appropriate 
number of Megabits is inserted in the history of the 
DataVolume resource with time tag E. 

15 The event iterator iterates again, finds the usage event 
that says use DataRate(rate)  and executes it. 

The value of the DataRate resource is changed by 
the amount rate at time E. 

Note: this concludes the event-modeling phase of the remodeling process. 
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the interpreter which executes the program pointed to by a resumption event in the queue? To answer the question, 
we look at the process described Table 7 in a more graphic manner. Figure 9 below illustrates steps 4, 5 and 6 of 
Table 7; the grey rectangles illustrate the events in the event queue. At the beginning of step 4, the only event with 
time tag S is the event bearing the label 2; the label reflects the fact that this event was created at step 2. 

Figure 9. Graphic illustration of steps 4, 5 and 6 in Table 7 

At the beginning of step 4, the execution thread pointed to is reactivated; execution of the modeling program of 
AddData resumes as indicated in Table 7, and in steps 5 and 6 the modeling commands in the program result in two 
new events (labeled 5 and 6 in Fig. 9) being inserted into the event queue. 

At the conclusion of step 4, concrete resources DataVolume and DataRate have not yet been affected by the 
events at time S. It is only when the event iterator advances to events 5 and 6, after the modeling program of 
AddData has completed, that the usage statements take effect. This is illustrated in Figs. 10 and 11 below. 

Figure 10. Graphic illustration of step 8 in Table 7 
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Figure 11. Graphic illustration of step 9 in Table 7 

It is easy to lose track of the flow of control when writing a modeling program such as the one in AddData. One 
way to bring resource histories in synch with the execution of the modeling program is to suspend execution of the 
modeling program after each modeling command, as shown in Fig. 12 below. All it takes to suspend execution is to 
add a wait statement with a time duration of zero seconds. This has the effect of pausing execution of the modeling 
program and creating a new resumption event for it; the resumption event will have a secondary key greater than 
that of the usage event created just before pausing, and as a result the event iterator will execute the usage event 
first, then resume execution of the modeling program. 

Figure 12. Modified version of the AddData modeling program 

Since the creation of resumption events is expensive, a new feature was added to the APGEN DSL in the form of 
a new temporal clause: using the keyword immediately in a modeling command invoking concrete resource R tells 
APGEN to update the history of resource R immediately, instead of inserting a usage event in the event queue. The 
program in Fig. 13 below has the same effect as the one above, but runs more efficiently. 

 

	  	  modeling	  
	  	  	  	  delta:	   float	   default	   to	   (now	   -‐	  
LastUpdateTime)	  /	  0:0:1;	  
	  	  	  	  if(delta	  >	  0.0)	  
	  	  	  	  	  	  use	  DataVolume(DataRate.currentval()	  
	  	  	  	  	  	  	  	  	  	  *	  delta);	  
	  	  	  	  else	  
	  	  	  	  	  	  use	  DataVolume(0.0);	  
	  	  	  	  wait	  for	  0:0:0;	  
	  	  	  	  use	  DataRate(rate);	  
	  	  	  	  wait	  for	  0:0:0;	  
	  	  	  	  LastUpdateTime	  =	  now;	  
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Figure 13. Version of the AddData modeling program using the immediately temporal clause 

C. Extending the APGEN DSL through external libraries 
Here we turn to item 10 in Table 6, the optional user-defined library. APGEN and SEQGEN are not the only 

applications at JPL that provide high-fidelity simulations of complex systems such as S/C and their ground support 
equipment. Many specialized tools are available from domain experts at JPL and elsewhere: 

• The SPICE toolkit from NASA4 
• The MMPAT Multi-Mission Power Analysis Tool5 
• Slewth, a simulation and verification tool for the DAWN Attitude Control System6 
• Telecom Forecast Predictor, a tool for predicting the performance of a telecommunications link7 

APGEN offers adapters a mechanism for attaching such tools to their adaptation. This mechanism is known as 
the user-defined library; it requires that the external simulation tool be available as a shared C or C++ library. The 
main components of the user-defined library mechanism are 

• The simulation tool as a shared library written in C or C++ 
• “Glueware” for linking the APGEN parser to the simulation library’s API 

The simulation library and the glueware are linked together into a shared library that can be directly attached to 
the APGEN executable. In the presence of this library, additional functions not built into APGEN become available 
to the adapter; typically, such functions are available for 

• initializing the external library 
• setting parameters of the external model 
• initiating the simulation at a given time T1 
• propagating the state of the external model from T1 to T2 
• ending the simulation  

As long as the external simulation tool has an API which supports these basic functions, it can be integrated with 
APGEN, in effect providing the adapter with an enhanced modeling tool at the cost of a small amount of 
programming. 

D. The current remodeling algorithm in APGEN 
To facilitate the description of the current remodeling algorithm in APGEN, we first note that the APGEN DSL 

supports four distinct types of programs: 
1. Functions, which can be invoked from anywhere in the adaptation. APGEN offers a number of built-in 

functions such as sin(x) and random(); custom functions can be declared and implemented in the 
adaptation. 

2. Decomposition programs, which appear inside activity type definitions under the heading 
decomposition or nonexclusive decomposition depending on whether or not the decomposition is 
exclusive. In addition to standard instructions, these programs support statements of the form 
 ActType(arg1, arg2, …) at T; 
meaning that a child activity of type ActType should be created with start time T and with the arguments 
supplied in the activity call. 

3. Resource usage programs, which can appear inside activity type or abstract resource definitions. 
Besides standard programming instructions, such programs typically contain modeling commands 
which affect the state of model resources or invoke abstract resources. These programs, identified by 

modeling	  
	  	  	  	  delta:	   float	   default	   to	   (now	   -‐	  
LastUpdateTime)	  /	  0:0:1;	  
	  	  	  	  if(delta	  >	  0.0)	  
	  	  	  	  	  	  use	  DataVolume(DataRate.currentval()	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  	  	  	  	  	  	  *	  delta)	  immediately;	  
	  	  	  	  else	  
	  	  	  	  	  	  use	  DataVolume(0.0)	  immediately;	  
use	  DataRate(rate)	  immediately;	  
LastUpdateTime	  =	  now;	  
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the keywords resource usage at the beginning of the program, will be interpreted in the a priori 
modeling style by APGEN. 

4. Modeling programs, which also appear inside activity type or abstract resource definitions. In addition 
to standard instructions and modeling commands, these programs support instructions with a real-time 
flavor such as wait for duration, wait until condition and wait until “signal-name”. Such programs are 
identified by the modeling keyword and they will be interpreted in the concurrent modeling style by 
APGEN. 

For convenience, we will refer to abstract resources containing a resource usage program as a priori abstract 
resource, and to those containing a modeling program as concurrent abstract resources. 

After these preliminaries, we can describe the current remodeling algorithm in APGEN as shown in Table 8 
below. 

Table 8. The current remodeling algorithm in APGEN 
Step Description 

1 The event queue and resource histories are cleared; resources are initialized to their default value. 
2 The activities in the Activity List are scanned in time order. 

a. If an activity in the list has a resource usage program, that program is executed immediately. 
Any modeling command referencing a concrete resource results in the creation of a usage event 
in the event queue. Any modeling command referencing an a priori abstract resource is 
executed immediately, as if it were a function call. Any modeling command referencing a 
concurrent abstract resource results in the creation of a resumption event pointing to the 
modeling program of that abstract resource. 

b. If an activity in the list has a modeling program, that program is paused at the very beginning 
and a resumption event pointing to it is added to the event queue. 

This concludes the event creation stage of the remodeling process. 
3 The events in the event queue are scanned in time order. 

a. Any usage event referencing a concrete resource is executed, resulting in an update of that 
resource’s history. 

b. Any resumption event causes the program it points to to be reactivated; execution of that 
program resumes at the point where it was paused. Any modeling commands encountered 
during execution are executed exactly the same way as in the event generation stage of the 
remodeling process. 

This concludes the event modeling stage of the remodeling process. 
 

E. The Introduction of Scheduling Capabilities in APGEN 
One of the requirements that had been levied onto APGEN was that it should assist its users by suggesting where 

certain types of activities could be added to the plan. The vision behind this requirement was that a scientist could 
start an APGEN session with a skeleton plan, i. e., a plan containing only engineering activities necessary for 
maintaining the health of the S/C. The scientist could then choose a type of science activities and ask APGEN to 
place it as judiciously as possible into the activity plan. For this to be possible, APGEN would have to be given rules 
and constraints relative to the placement of such activities. Given such rules and constraints, some type of a 
reasoning engine inside APGEN would come up with suggestions to the user, telling him or her where the activities 
could be placed while satisfying all rules and constraints. 

The requirement that APGEN should feature a reasoning engine went unmet for a number of years, until an 
opportunity presented itself thanks to the MER (Mars Exploration Rover) mission. MER was concerned that without 
such an engine, it was going to be impossible to conduct tactical planning sessions within the short turnaround time 
allocated to surface operations. MER enlisted the help of the AI group at ARC (the NASA Ames Research Center), 
which had developed a search-based automatic planner called Europa. In a couple of years’ development time, 
APGEN and Europa were merged into a single mixed-initiative tool called MAPGEN; the MAPGEN tool is still in 
use today as part of MER operations. MAPGEN was discussed in Ref. 2 and will not be discussed further here. 

Here, we concentrate on another attempt to endow APGEN with automated scheduling capabilities, which was 
initiated just before the start of the joint effort with ARC to develop MAPGEN. This earlier attempt did not have the 
generality typically found in search-based approaches to planning, such as those discussed in Ref. 3. The APGEN 
approach to scheduling is incremental in nature, and takes advantage of the forward-propagation character of the 
simulation engine inside APGEN. 
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In a nutshell, the APGEN scheduling algorithm consists of a remodeling pass as in Table 4, followed by a second 
pass during which scheduling actions – i. e., the creation of new activities - can take place. The second pass 
resembles a remodeling pass, with the differences highlighted in Table 9 below. 

Table 9. The scheduling pass in APGEN 
Step Description 

1 The event queue is cleared; resource histories are not, so that resource values reported by R.value(T) reflect 
the state of resource R at the end of the remodeling pass. 

2 The activities in the Activity List are scanned in time order. 
a. If an activity in the list has a resource usage program or a modeling program, that program is 

processed exactly as it was in the remodeling pass. 
b. If an activity in the list has a scheduling program, that program is paused at the very beginning 

and a resumption event pointing to it is added to the event queue. In addition to the types of 
statements available in modeling programs, scheduling programs can also contain special 
scheduling commands of the form 
 wait until OKtoSchedule(Condition) for Duration. 
Such a command interrupts the execution of the scheduling program. Execution will be 
resumed in the event modeling stage only when a scheduling window is found. By definition, a 
scheduling window is an interval during which Condition is found to be true continuously for a 
duration at least equal to Duration. 

 
This concludes the event creation stage of the scheduling pass. 

3 The events in the event queue are scanned in time order. 
a. Any usage event referencing a concrete resource is executed, resulting in an update of that 

resource’s history. 
b. Any resumption event causes the program it points to to be reactivated; execution of that 

program resumes at the point where it was paused. Any modeling commands encountered 
during execution are executed exactly the same way as in the event generation stage of the 
remodeling process. Scheduling commands are executed as indicated in step 2b. Typical 
scheduling conditions refer to present and future values of one or several resources; what makes 
the computation of scheduling windows possible is the availability of complete resource 
histories, as opposed to histories truncated at the value of now as in a remodeling pass. 
Scheduling programs can also create (schedule) new activities, using a syntax similar to that of 
activity creation statements in decomposition programs. As soon as an activity is created in this 
manner, it is processed the same way as activities in the Activity List during the event 
generation stage, resulting in new events being added to the event queue. 

c. Whenever the event iterator advances and sets the global variable now from its current value T1 
to a new time value T2, it deletes from resource histories any nodes with a time tag greater than 
T1 and less than or equal to T2. The rationale for doing this is that these values were computed 
during the remodeling pass; they are stale because they do not reflect the impact of any new 
activities created by the schedulers. They are about to be replaced by up-to-date values resulting 
from execution of the modeling events added to the queue during the scheduling pass. 

This concludes the event modeling stage of the scheduling pass. 
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IV. The application of APGEN scheduling to space missions 
Here we discuss the application of APGEN scheduling to six NASA missions: DI, Europa, INSIGHT, Juno, 

MRO and MSL. The application of APGEN to DI (and its successor, EPOXI) has been discussed at length in Ref. 1; 
the emphasis in that paper was put on the functional aspects of the DI planning tool, which consisted of APGEN 
linked to five external libraries using the user-defined library mechanism. Here, we do not focus on the functionality 
as much as on the manageability of the adaptation, as expressed by following questions: 

1. How much work does it take to adapt APGEN to a new mission? 
2. How difficult is it to reuse an APGEN adaptation? 
3. How difficult is it to train operations personnel in the art of adapting APGEN? 
4. Could APGEN be replaced by one or more standard modeling tools? 

While we do not have sufficient INSIGHT to answer all of these questions, we want to pave the way for future 
discussions and investigations of these issues. To this end, we will focus our questions on the morphology of an 
APGEN adaptation in the following sense: 

1. The form and structure of the adaptation: what are the main parts of the adaptation, how do these parts 
interact? 

2. Common features the adaptation may share with other adaptations we have studied: are there patterns 
that make at least some of the adaptation code reusable?  

3. APGEN-isms: does the adaptation make essential use of them? If so, is there a way to replace the non-
standard code by an external capability based on standard tools? 

4. APGEN glue: an apparent strength of APGEN is its ability to let adapters build an integrated system out 
of subsystems that were not meant to work together. What are the basic ingredients of this “glue”? 
Could a similar integration capability be provided in a more standard way? 

A. Generic morphology of an APGEN adaptation 
We start with a preview of the four morphology questions introduced above. 
1. Main parts of an adaptation 

In general, an adaptation file written in the APGEN DSL contains seven distinct components as listed in Table 
10 below. 
 

Table 10. The main components of an APGEN adaptation 
Component Description 

Header The header consists of a line stating whether the file contains adaptation or scripting data and some 
comments regarding the original files from which the adaptation information was taken. 

Preliminaries Preliminaries contain the definition of custom attributes and custom data types (typedefs), directives 
to APGEN such as the desired size and placement of the APGEN GUI on the screen, the definition 
of important epochs, and the definition of any non-Earth-based time systems such as Mars Time. 

Globals Globals contain the definitions of all global variables needed by the adaptation code. APGEN does 
not distinguish between variables whose value is never changed (constants) and true variables whose 
values can be changed by statements in the adaptation. 

Functions This part of the adaptation file contains the definitions of custom functions invoked by other 
sections in the adaptation. 

Resources This part of the file contains the definitions of all APGEN resources. A resource can be concrete or 
abstract. A concrete resource can be scalar or an array; it has a data type and a usage pattern type 
that must be one of consumable, non-consumable or state. An abstract resource can be written in the 
a priori modeling style, in which case it contains a section entitled resource usage, or in the 
concurrent modeling style, in which case it contains a section entitled modeling. 

Activity This part of the file contains the definitions of all activity types except for the generic activity type 
which is available by default. Activities can contain attribute definitions, parameter definitions, an 
exclusive or non-exclusive decomposition section, a resource usage or modeling section, and 
creation and destruction sections. 

Constraints Constraints are basically conditions that are expected to hold true throughout the activity plan. A 
constraint must conform to one of a few specific types: logical condition, forbidden overlap etc. 
Constraints are purely passive; if violated, the violation is reported but no attempt is made to 
eliminate it. 
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3. Opportunities for improvement and automation 
The dream multi-mission application is one that can be adapted to a new mission with virtually no effort. Most 

real applications fall short of that dream. Because of the ever increasing complexity of space mission and the 
continued need to reduce costs, it is therefore important to understand where the adaptation effort goes, and how the 
level of effort could be reduced. 

The charts shown above suggest some possible answers to these questions. Here are our observations: 
• The most labor-intensive parts of the adaptation are the complex functions, abstract resources and 

schedulers. Fortunately: 
o there are relatively few of these 
o many of them are common to more than one adaptation, indicating that they are generic in 

nature 
o in many cases, good documentation is available to guide future adapters 

• Items found in large numbers, such as simple global variables, are good candidates for automatic 
generation from Systems Engineering databases 

• Items of moderate complexity such as utility functions are candidates for integration with other 
modeling tools and libraries. Example: vector math libraries in matlab, ACS quaternion manipulation 
utilities… 

• Items of moderate complexity found in large numbers, such as short activity and concrete resource 
definitions, might be extracted from SE databases or from external repositories such as VML programs 
or SEQGEN files. Alternatively, modeling such activities could be delegated to external tools, such as a 
VML simulation program or a SEQGEN modeling server. 

B. The DI/EPOXI mission 
The DI (Deep Impact) mission was a NASA Discovery mission. During a flyby of comet Tempel 1, it released a 

small impactor spacecraft which collided with the comet in an explosion that was observed around the world and led 
to a wealth of science data. The EPOXI follow-on mission (the acronym combines EPOCh, Extrasolar Planet 
Observations and Characterization, and DIXI, Deep Impact Extended Investigation) featured both an encounter with 
comet Hartley 2 and a series of extrasolar planet observations. DI/EPOXI provides the most ambitious example of 
an APGEN adaptation in terms of comprehensive integration with high-fidelity models. 

On the DI part of the mission, the primary benefit of the high-fidelity APGEN model was to have all the 
subsystems integrated into the planning model, which allowed the Encounter System Lead (Steve Wissler) to build 
and validate many versions of encounter sequences quickly and limit testbed use to sequences that were likely to 
succeed. Note that it took 36 hours to simulate an encounter sequence on the DI testbed. 

The EPOXI part of the mission was run on a very tight budget; as a result, the small team of Systems Engineers 
running the mission had little Subsystem support. As a result, the Systems Engineers enhanced the APGEN model to 
allow the small team to quickly build and validate sequences without the usual interaction with Subsystems 
Engineers. In the past, such interactions were the source of many iterations through building and validating S/C 
sequences prior to uplink. Since more automation was needed than in the DI phase of the mission, it was decided to 
take advantage of APGEN scheduling and enhance the DI adaptation of APGEN. 

1. Main parts of the DI adaptation 
APGEN scheduling was used in two areas: 

• To build observations and downlink sequences in EPOCh 
• To build background sequences during the Hartley 2 encounter 

Figure 17 below shows complexity and size data for the individual sections of the DI/EPOXI adaptation. 
Adaptation items fall into the following categories: 

• Highest complexity items: 
o Complex Activities 
o Complex Abstract Resources 
o Large Global Arrays 

• Moderate complexity items: 
o Onboard Blocks 
o Schedulers 
o Generic activities 
o Generic abstract resources 

• Low complexity items: 
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• The Ground model (which includes the DSN model) and much of the Telecommunications model was 
mostly inherited from DI also. 

3. Opportunities for improvement and automation 
Although the APGEN adapters were able to tap the System Engineering database for PEL information, other 

subsystems are still in development. The plan is that as more and more of the subsystem designs gets captured in 
engineering databases, the APGEN model will be updated through new automated pathways between these 
databases and the model. 

D. The INSIGHT (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) mission 
The INSIGHT lander will carry three science instruments to the surface of Mars. Although the payloads of the 

two missions are quite different, the spacecraft itself will be very similar to the Phoenix Mars Lander, which landed 
on the surface of Mars in 2008. As a result, the INSIGHT adaptation of APGEN will reuse a number of features 
originally developed for Phoenix. 

Lander operations typically involve S/C-Ground interactions in a closed loop, so that telemetry from a given sol 
(Martian day) can be used to plan the activities for the next sol. Although this does not mean that there is no 
opportunity for automatic plan and sequence generation in a lander mission, the tactical (daily) operations on 
Phoenix were largely done by hand, with the exception of initial task scheduling which was performed by the 
Europa planner from NASA’s Ames Research Center. 

For most of INSIGHT landed operations, the instruments will be operating autonomously, and as a result the 
need for closed-loop operation between the S/C and ground personnel will be much reduced compared with 
Phoenix. As a result, there is likely to be significant opportunity for automated scheduling. 

One area where some automated scheduling has already taken place is the use of a high-fidelity data model to 
assist in the selection of the best configuration for the various data buffers onboard the S/C. The INSIGHT data 
model uses the following inputs: 

1. A set of realistic DSN allocations 
2. Parameters that determine the sizes of the various internal data buffers 

The output consists of a complete scenario spanning the entire duration of the mission. The scenario includes a 
prediction of how much high-resolution data has been downloaded over the course of the entire mission, assuming 
that the Science Team always elects to downlink as much data as can be accommodated by the onboard data storage 
system and telecommunications opportunities with Earth. 

The current INSIGHT adaptation only produces engineering data, not S/C sequences. At about 1400 lines of 
adaptation code, the INSIGHT adaptation of APGEN is therefore much smaller than the other adaptations we 
discuss. We expect to carry out a more meaningful comparison once some of the mission operations processes have 
been fully automated. 

E. The Juno mission 
Juno is a spinning solar-powered spacecraft currently in its Cruise phase towards Jupiter; once there it will enter 

a highly elliptical orbit that avoids most of Jupiter’s high radiation regions. The main purpose of the present Juno 
adaptation of APGEN is to automate a number of tasks in the Cruise phase. The initial automation effort was carried 
out for Mars missions such as Odyssey and MRO by Roy Gladden using his AUTOGEN program,8 a complex 
wrapper around APGEN; the result of this effort was the BGSG (BackGround Sequence Generation) tool. BGSG 
was subsequently refurbished and adapted to the Cruise phase of the Juno mission by Matthew Lenda who added a 
new repointing algorithm described below. 

1. Main parts of the Juno adaptation 
Figure 20 below shows the main components of the Juno APGEN adaptation, which implements the automated 

BGSG process. This process requires the following inputs: 
• Spice kernels for the S/C and DSN stations. 
• DSN allocations and view period files. 

The main outputs from the BGSG process are 
• SASFs (Spacecraft Activity Sequence File) to be fed to SEQGEN for sequence validation and creation 

of uplink products. 
Note that an SASF contains, besides commands and S/C activities, a number of directives to SEQGEN. For 

example, one of those directives may order SEQGEN to create a FINCON (Final Conditions file) at a certain time in 
the simulation. This is one of the tasks automated by the BGSG process.  
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Each one of the above tasks was assigned to a specific scheduler in the APGEN adaptation. These schedulers do 
not work in isolation; they take advantage of the modeling work provided by the resource model and by non-
scheduling activities. 
   2.     Recurring patterns in the Juno adaptation 

There is a lot in common between the Juno adaptation and previous APGEN work, especially the DI adaptation 
(for its Ground model) and the AUTOGEN adaptation. As a result much of the adaptation code was inherited from 
previous missions. On the other hand, about half of the schedulers involve features that are specific to the Juno S/C. 

3. Opportunities for improvement and automation 
As in other examples of adaptations derived from the original AUTOGEN, adaptations such as this one would 

benefit from true adaptation templates. Currently, re-using a previous adaptation of APGEN generally means hand-
editing some of the adaptation files from that previous adaptation. Adaptation templates would remove the need for 
such edits, making the adaptation much easier to maintain. 

F. The MRO mission 
1. Main parts of the MRO adaptation 

The MRO (Mars Reconnaissance Orbiter) S/C was launched in 2005 to provide high-resolution remote sensing 
observations of the surface of Mars and to provide a high-data-rate communications relay for Mars surface missions. 
Because it is an orbiter, its operation is highly repetitive. As a result, planning and sequencing personnel decided to 
modify Roy Gladden’s AUTOGEN tool8 and adapted it to the MRO mission. Recently, there was a need to revisit 
the algorithms in AUTOGEN, in part because the original scripts needed maintenance and in part because the 
complexity of the scheduling requirements kept increasing. The current version of AUTOGEN, named AUTOGEN 
Mk-II, was put together by Matthew Lenda. 

AUTOGEN Mk-II is a collection of scripts which have at their core an adaptation of APGEN. This adaptation 
has much in common the earlier DI adaptation; in particular, the Ground model used to track the state of DSN 
stations is identical to that used in DI (and also with the models used in Europa and MSL Cruise). 

Just like Juno and other missions that use some version of AUTOGEN, a number of tasks have been automated 
by the adaptation. The list of tasks that were automated for the MRO mission is shown below. A special scheduler 
was written for each specific task.  

1. Orbital Geometry Events 
Schedulers were written to handle the following types of events: 

a. Occultations 
b. Eclipses 
c. Periapsis and Apoapsis 
d. Ascending and Descending Nodes 

2. Daily activities 
3. RWA (Reaction Wheel Assembly) desaturation activities 
4. HGA (High Gain Antenna) hard stop Activities 
5. HGA management activities 
6. Ranging and radio science orbits 
7. Downlink data rate selection 
8. Low-elevation downlink suppressors 
9. Communications blocks 
10. Daily activities in contact 
11. Critical low-level activities 
The main components of the MRO adaptation of APGEN are shown in Figure 21 below. 
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V. Conclusion 
In our paper, we have described the APGEN scheduling tool and we have provided a quick tour of the basic 

ingredients of an APGEN adaptation, first in terms of basic concepts and then in more detail by reviewing the use of 
APGEN scheduling in six different missions and proposed missions. Because of the technical depth of the subject, 
we have only provided basic information concerning the specifics of the scheduling algorithms involved. In our 
future work, we plan to explore the possibility of making APGEN more modular, so that it could be better integrated 
with SEQGEN for sequence validation and with other planning and scheduling tools of interest to future space 
missions. 
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