

American Institute of Aeronautics and Astronautics

1

APGEN scheduling: 15 years of Experience in Planning
Automation

Pierre F. Maldague,1 Steve Wissler,2 Matthew Lenda3 and Daniel Finnerty4
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, 91109

In this paper, we discuss the scheduling capability of APGEN (Activity Plan Generator),
a multi-mission planning application that is part of the NASA AMMOS (Advanced Multi-
Mission Operations System), and how APGEN scheduling evolved over its applications to
specific Space Missions. Our analysis identifies two major reasons for the successful
application of APGEN scheduling to real problems: an expressive DSL (Domain-Specific
Language) for formulating scheduling algorithms, and a well-defined process for enlisting
the help of auxiliary modeling tools in providing high-fidelity, system-level simulations of the
combined spacecraft and ground support system.

Nomenclature
ACS = Attitude Control System
AI = Artificial Intelligence
AL = APGEN Language
AMMOS = Advanced Multi-Mission Operations System
APGEN = Activity Plan GENerator
DI = Deep Impact
DPT = Data Priority Table
DSL = Domain-Specific Language
DSN = Deep-Space Network
FPT = Frame Priority Table
INSIGHT = Interior Exploration using Seismic Investigations, Geodesy and Heat Transport
MER = Mars Exploration Rover
MRO = Mars Reconnaissance Orbiter
MSL = Mars Science Laboratory
PEF = Predicted Event File
PEL = Power Equipment List
S/C = Spacecraft
SASF = Spacecraft Activity Sequence File
SEQGEN = SEQuence GENerator
TOL = Time-Ordered Listing

I. Introduction
HIS paper is mainly concerned with the application of APGEN (Activity Plan GENerator), a multi-mission
planning application that is part of the NASA AMMOS (Advanced Multi-Mission Operations System), to a

variety of scheduling problems in the context of recent NASA Space Missions. According to its initial design,
APGEN was to be used interactively by mission planners. The simulation capabilities of APGEN were intended to
support a planning paradigm in which the user comes up with a high-level activity plan, the software works out the
consequences in terms of critical resource usage, and the user decides whether or not to iterate or refine the search
for a plan that satisfies his or her criteria. The simulation capabilities of APGEN grew over time, to the point where

1 Senior Staff, Mission Planning and Execution Section
2 Chief Engineer, Mission Systems and Operations Division 2 Chief Engineer, Mission Systems and Operations Division
3 Mission Operations Engineer, Mission Planning and Execution Section
4 Multi-Mission Planning and Sequencing, Group Supervisor, Mission Planning and Execution Section

T

American Institute of Aeronautics and Astronautics

2

APGEN can accurately predict the impact of any S/C (spacecraft) sequence on key resources and states such as data
volume, battery charge and S/C attitude.1

One of the requirements on APGEN was that it should present the user with automatically generated activities
that would satisfy user-specified criteria. Although such a capability was not included in the initial design, two
capabilities were subsequently added to APGEN:

• a two-pass scheduling algorithm was implemented and delivered as part of the APGEN software
• in collaboration with the MER (Mars Exploration Rover) mission, the Europa search-based planner from

ARC (NASA Ames Research Center) was merged with APGEN into a mixed-initiative planning tool.
The collaboration with MER was discussed elsewhere. Here, we concentrate on the two-pass scheduling

capability of APGEN.
The basic idea behind the two-pass scheduling algorithm used by APGEN is simple. In a first pass, APGEN

predicts the effect of the current activity plan on S/C (spacecraft) states and ground resources. In a second pass,
APGEN examines the possibility of adding one or more activity to the plan, based on time intervals during which a
certain "scheduling condition" is true. If the condition is true for a given length of time, APGEN executes the
activity generation part of the scheduling algorithm, which adds new activities to the plan. If the condition is false,
APGEN keeps looking for other windows, always proceeding forward in time.

The scheduling condition must be provided by the APGEN user prior to running the algorithm. As an example,
such a condition might yield all intervals of time during which at least one DSN station is available for
telecommunications.

Note that availability of a DSN station implies not only that the DSN has made it available to the mission for a
given period of time, but also that the S/C is visible from Earth. Thus, evaluating the condition requires external
information from the DSN as well as computations of a geometric nature.

In making decisions, the activity generation algorithm of APGEN only has limited information, namely the
resource predictions that were made during the first pass and the predictions that were made for the second pass up
until the time at which a new activity could be added to the plan. In contrast with search-based planners, APGEN
does not allow the algorithm designer to iterate the search for optimal placement of a new activity in the plan. As a
result, APGEN's scheduling algorithm does not have the generality found in other, search-based planners.

The lack of generality of the APGEN scheduling algorithm is largely compensated by its scalability to complex
plans in which many resources need to be evaluated in a high-fidelity simulation. In our paper, we review the
successful application of APGEN scheduling to six NASA missions: EPOXI, Europa, INSIGHT, Juno, MRO, and
MSL. In each case, we review the operational challenges that led to the need for automation, and we show how these
challenges were met by the APGEN scheduling algorithm. In our conclusion, we will explain how our operations
experience has allowed us to turn APGEN into the generic, multi-mission scheduling tool it is today, and we will
outline our plans for providing continued support for space missions in early development as well as those that have
been in operations for several years.

II. Resource modeling in early versions of APGEN and SEQGEN
The APGEN DSL has undergone continuous changes over the 15-plus years of APGEN’s history, as APGEN

developers sharpened their understanding of space mission needs over time. To avoid forking APGEN into multiple,
competing versions, changes were introduced in a backward-compatible manner: the DSL always expanded and
never shrank. As a result, the DSL in its current state is somewhat of a hybrid; recent additions have turned it into a
reasonably modern-looking programming environment, while early features still present in the language make the
DSL arcane and non-intuitive. After 15 years of evolution, the time has probably come to take stock of lessons
learned and to undertake the development of a planning system that would be easier to learn and maintain than
APGEN. Besides the complexity of its DSL, there are good systems-level reasons to upgrade APGEN: modern
adaptations of APGEN demonstrate the need for integrating external S/C models into the planning model. Although
APGEN supports such an integration mechanism, there is a need to make integration easier and more systematic.

In spite of its blemishes, the APGEN DSL has been remarkably adept at modeling complex systems in support of
mission operations. In redesigning APGEN to better support future missions, one should take care not to throw the
baby with the bath water. In particular, a drastic redesign of the APGEN DSL might inadvertently throw away
arcane features that turned out to be essential in providing APGEN with the flexibility and scalability it enjoys
today. To help future designers avoid this problem, a significant portion of our paper has been devoted to a
description of these arcane features and to the role these features have played in actual APGEN adaptations in use
today. In this Section, we summarize the early history of APGEN and comment on the DSL as designed by its
original creators. In Section III we will discuss enhancements that were introduced into the APGEN DSL in order to

American Institute of Aeronautics and Astronautics

3

support the six space missions mentioned in the Introduction. In Section IV we will review the application of these
capabilities to actual space missions.

A. Early history of APGEN
APGEN handles two basic types of objects: activities and resources. Activities are blocks of time devoted to a

given purpose, such as a S/C maneuver or a science observation. Resources are numeric or discrete quantities that
say something about the state of the S/C and how that state is evolving as a function of time. The types of activities
that can be present in the plan, the resources that characterize the S/C state, and the interaction between the two are
specified by the APGEN adapter using an APGEN-specific DSL (Domain-Specific Language) which for lack of a
better name will refer to as the APGEN DSL. Users can then load the adapter’s code (referred to as the adaptation
code) into APGEN and create plans for the mission they are working on.

In the early phases of its development, APGEN was strongly influenced by its predecessor, a command sequence
simulation and validation tool called SEQGEN. Both tools expect their users to provide S/C activities as inputs to
the program, while the time histories of the resources were output by the program. The main difference between the
two tools was that APGEN was a lightweight version of SEQGEN, making it easier to use by planning engineers
while a mission was in its early phases. In particular, the APGEN DSL did not require that S/C commands be
defined, while in SEQGEN the use of commands was essential in establishing a link between S/C activities and
usage patterns for the various resources.

B. Expansion and modeling stages in early SEQGEN
As mentioned earlier, the early development of APGEN was strongly influenced by SEQGEN; in particular, the

fundamental way in which APGEN computes the effect of S/C activities on resources was directly patterned on the
way SEQGEN accomplished the same task. Because this still forms the foundation of the APGEN modeling
algorithm, we discuss the early SEQGEN algorithm in some detail. For simplicity, we refer to the various
components of a SEQGEN adaptation in informal terms; we refer the reader to the SEQGEN Users’ Guide for more
detailed information. We also use the present tense to indicate the way SEQGEN processes its input, even though
we are referring to an ancient version of SEQGEN; modern sequence processing requires considerably more
sophistication.

The basic ingredients of an early SEQGEN adaptation are the following:
• A model definition file, where model means a collection of elements identified each by a unique name

and, for each element, a collection of one or more element attributes declared as a variable of a given
type (Boolean, integer, string etc.) together with a description and an optional range within which the
attribute is to be confined.

• A command definition file, which contains one entry per S/C command. Each command is identified by
its name, which must be unique. Each command may have an arbitrary number of parameters, each one
of which must have a type, an optional description and, if applicable, an allowed range. Finally, each
command is followed by a (usually short) program written in the SEQGEN DSL called a results
section. In that section, the adapter can use DSL programming statements to express the effect of a
command on the various elements of the models, using knowledge about the command’s execution time
and the values of its parameters.

• An activity definition file, which contains any number of activity types. Each activity type is similar to
a command in that it must have a unique name and may have an arbitrary number of parameters.
However, an activity does not have a results section; instead, it contains an expansion section which
indicates how a given activity decomposes or expands into a mix of lower-level activities and
commands.

In order to simulate a sequence, SEQGEN has to be given two things: first, an adaptation in the form of the three
files described above; and second, one or more sequence files describing the sequence to be simulated. A sequence
is an ordered set of time-tagged objects arranged in order of increasing time; each object is either an activity or a
command. Any activity in the sequence must be of a type that is included in the activity definition file, and any
command in the sequence must match an entry in the command definition file. The number of parameters of the two
types of objects in the sequence file must match the types listed in the definition files, and parameter values must be
within the indicated range if applicable.

Once loaded with adaptation and sequence files as indicated above, SEQGEN uses a two-step algorithm to
process sequences. The algorithm is described in Table 1 below.

American Institute of Aeronautics and Astronautics

4

Table 1. Stages used by early versions of SEQGEN in processing a command sequence.
Stage Description Final State

Expansion Activities in the sequence are expanded into
lower-level activities and commands, using the
activity type definitions to determine activity
and command timing and parameters. Any
resulting activities are likewise expanded until
all activities have been fully decomposed into
commands.

All commands – those initially present in the
sequence and those that result from activity
expansion – are collected in a single time-ordered
list, called the event queue.

Modeling Commands in the event queue are scanned in
time order, and the effect of each command on
the model element attributes is determined by
executing the code in its results section as
specified in the command definition file.

All state changes occurring in each model
element attribute are recorded in that attribute’s
history. All activities, commands and model
element attribute changes are collected in time
order in a file called the PEF (Predicted Event
File).

One important aspect of the expansion stage is that the resulting commands are placed in a single time-ordered

list, the event queue, which is then scanned in time order during the modeling stage. The time ordering of the event
queue is an essential aspect of SEQGEN and, by extension, of APGEN: the modeling code in the adaptation
frequently contains logic which changes the values of S/C states based on their current values. Such logic would fall
apart if commands were not processed in time order. There is of course a solid rationale for organizing commands in
time order while running the simulation, since that is the order in which they are executed onboard the S/C.

C. Decomposition and Modeling Phases in early APGEN
The designers of APGEN wanted to provide a capability similar to SEQGEN but easier to use and better adapted

to the needs of planning engineers. To this end, they made three decisions:
1. Allow users to represent the same plan at several levels of fidelity. This was done by introducing a

flexible scheme for letting high-level activities decompose into lower-level activities. Decomposition is
exclusive in the sense that only one level is reflected in the model. If the user chooses to display high-
level activities, their impact on the model is evaluated in a coarse, high-level manner. If the user
chooses instead to display lower-level activities, the impact on the model is evaluated at a higher-
fidelity level.

2. Eliminate the overhead associated with the need to define S/C commands. They accomplished this by
offering only a fixed set of modeling commands. Furthermore the effect of these commands was hard-
coded so there was no need for codifying the effect of commands in the adaptation.

3. Make the adaptation language more intuitive. The hard-coded modeling commands were given intuitive
names such as use, set and reset. Instead of SEQGEN’s model element attributes, the APGEN model is
made up of resources. Numeric resources are divided into consumable resources, which are depleted
with each usage, and non-consumable resources, which are restored to their default values when they
are no longer used. To represent discrete-valued quantities, adapters can use state resources, which
featured an adjustable, finite set of allowable states.

As a result of these decisions, APGEN does not process an activity plan the same way SEQGEN processes a
sequence. Decomposing activities into lower-level activities (and abstracting lower-level activities back into higher-
level ones) is a purely interactive task. Once the user has settled on a representation level – abstract or detailed – he
or she can ask APGEN to remodel the plan, i. e., to evaluate the effect of the activity plan (as currently displayed) on
the resources that make up the model.

The remodeling process is similar to SEQGEN’s processing of a sequence and is illustrated in Table 2 below.

Table 2. Stages used by early versions of APGEN in remodeling an activity plan
Stage Description Final State

Event generation Activities in the activity list are scanned in
time order. Any use and set commands
present in the resource usage section of each
activity are extracted and inserted as usage
events into the event queue.

All usage events extracted from the definition of
activities in the plan are collected in time order
in a time-ordered list called the event queue.

American Institute of Aeronautics and Astronautics

5

Stage Description Final State
Event modeling Usage events in the event queue are scanned

in time order, and the effect of each event on
the corresponding resource is calculated
based on the event’s timing and parameters.

All changes occurring in each resource are
recorded in that resource’s history. At the option
of the user, all activities and resource changes
are collected in a file called the TOL (Time-
Ordered Listing).

The Cassini cruise plan, which provided the first application of APGEN to a space mission, was modeled in

1996. It provides an example of resource and activity definitions in the APGEN DSL. The definition of the
Op(erational)Mode resource is shown in Fig. 1 below. The resource definition includes the resource data type
(string), the resource usage type (state), its parameter (neededState), the list of possible states (LS, …,
OrbInstDeploy_Maint), the default or profile state (LS), and the usage value, i. e., the function of the parameter (in
this case the identity function) which the resource should take on when used.

Figure 1. Definition of the OpMode state resource in the Cassini cruise adaptation

An example of an activity type definition is shown in Fig. 2 below; it illustrates the fact that the early version of
the APGEN DSL does not feature any conventional programming constructs such as declarations and assignments.
A form of conditional execution is provided through the when keyword followed by a Boolean expression. During
the event generation process, the usage events are placed on an event queue along with any attached when clauses.
When APGEN models the event as part of the second stage of the remodeling algorithm, the when clause is
evaluated at the time of the event, and the usage statement is executed if the Boolean expression following when is
true.

Table 3 below summarizes a few statistics about the Cassini cruise plan adaptation. These numbers should be
kept in mind when compared with statistics for adaptations of APGEN discussed in later Sections of this paper.

Table 3. Statistics of the Cassini cruise plan adaptation of APGEN.
 Globals Functions Resources Activity Types Constraints
Number of Items 0 0 61 345 15
Lines per Item N/A N/A 15 21 15

Although it was not used in the Cassini cruise plan, we want to mention one more feature of the early APGEN
DSL: abstract resources. Because activity decomposition in early APGEN was meant to represent alternative
representations of the same plan at various levels of fidelity, there was no way to organize complex activities into a
hierarchy of modular entities. To improve the scalability of the DSL, the notion of an abstract resource was
introduced. An abstract resource is essentially a function call. It can be invoked by an activity (or another abstract
resource) through a use statement, exactly like a consumable or non-consumable resource. Unlike a concrete
resource, an abstract resource does not have a state variable associated with it; instead, it is allowed to invoke other
(concrete or abstract) resources, much as a function can call other functions in a general programming language. By
collecting recurring usage patterns into abstract resources, adapters can make their code more modular.

resource	 OpMode	 :	 state	 string	
	 	 	 	 begin	
	 	 	 	 	 	 	 	 parameters	
	 	 	 	 	 	 	 	 	 	 	 	 neededState	 :	 string	 default	 to	 "Cruise2";	
	 	 	 	 	 	 	 	 states	
	 	 	 	 	 	 	 	 	 	 	 "LS","Cruise1_Decon","Cruise2","ME_TCM","RCS_TCM","PCO",	
	 	 	 	 	 	 	 	 	 	 	 "ICO","MAGcals1","MAGcals2","MAGcals3","UVISMaint",	
	 	 	 	 	 	 	 	 	 	 	 "PerInstMaint","PerEngrMaint","ORS","ORSMaxTorque","DFPW",	
	 	 	 	 	 	 	 	 	 	 	 "INMS_FPW","RADAR_INMS","RSS2_RCS","RSS2_RWA","RSS3_RWA",	
	 	 	 	 	 	 	 	 	 	 	 "CatbedWarmup_OR_RWUnload","SOI","ProbeRelay",	
	 	 	 	 	 	 	 	 	 	 	 "OrbInstDeploy_Maint";	
	 	 	 	 	 	 	 	 profile	
	 	 	 	 	 	 	 	 	 	 	 "LS";	
	 	 	 	 	 	 	 	 usage	
	 	 	 	 	 	 	 	 	 	 	 neededState;	
	 	 	 	 end	 resource	 OpMode	

American Institute of Aeronautics and Astronautics

6

Figure 2. An activity type definition taken from the Cassini cruise adaptation

The addition of abstract resources to the APGEN DSL restored the similarity between the APGEN remodeling

process and SEQGEN sequence processing, which had been partially lost when APGEN designers introduced the
notion of exclusive activity decomposition. Much as a SEQGEN adapter can use activity expansion to orchestrate
how a complex activity expands into commands, an APGEN adapter can organize a complex resource usage pattern
as a hierarchy of calls to suitable abstract resources. This is readily seen from the similarity between Table 4 below,
which describes APGEN remodeling in the presence of abstract resources, and Table 1 showing the analogous
SEQGEN process. For future reference, note that we refer to the modeling style in Table 4 as the a priori modeling
style – a priori because the code inside the definition of abstract resources is executed in the event generation phase,
before modeling commands in the event queue have had a chance to modify the history of any resources.

Table 4. Stages in remodeling an activity plan using the a priori modeling style of early APGEN

Stage Description Final State
Event generation Activities in the activity list are scanned in

time order. Any modeling commands (use,
set and reset) found in the resource usage
section of activity definitions are examined.
Commands that invoke concrete resources
are collected into a list. Any commands that
invoke abstract resources are themselves
scanned for further extraction of use and set
commands, until all invocations of abstract
resources have been processed.

Modeling commands extracted from the
definition of activities in the plan and from the
usage of abstract resources are encapsulated into
usage events which are collected into a time-
ordered list called the event queue.

Event modeling Usage events in the event queue are scanned
in time order, and the effect of each event on
the corresponding resource is calculated
based on the event’s timing and parameters.

All changes occurring in each resource are
recorded in that resource’s history. At the option
of the user, all activities and resource changes
are collected in a file called the TOL (Time-
Ordered Listing).

D. A non trivial example: a simple science activity
Before moving on to more recent examples of APGEN adaptation, we want to make one last point regarding the

early version of the APGEN DSL. In spite of the restrictions on it – no iteration, no local variables, limited
availability of conditional statements – the early APGEN DSL is surprisingly expressive. As will be seen later in our
paper, the current version of the APGEN DSL offers adapters a more complete set of programming constructs.
Unfortunately, the flexibility that results from the new constructs easily obscures the simple (although nontrivial)
infrastructure offered by early versions of the DSL. In hindsight, it might have been better to establish a clearer

activity	 type	 RemoteSensPalletReplHtr2	
	 	 	 	 begin	
	 	 	 	 	 	 	 	 attributes	
	 	 	 	 	 	 	 	 	 	 	 	 "Color"	 =	 "Orange	 Red";	
	 	 	 	 	 	 	 	 	 	 	 	 "Pattern"	 =	 2;	
	 	 	 	 	 	 	 	 	 	 	 	 "Duration"	 =	 Duration;	
	 	 	 	 	 	 	 	 	 	 	 	 "Legend"	 =	 "Remote	 Sensing	 Pallet	 Repl.	 Heater	 2	 (T/C)";	
	 	 	 	 	 	 	 	 parameters	
	 	 	 	 	 	 	 	 	 	 	 	 Duration	 :	 local	 float	 default	 to	 5400.0;	
	 	 	 	 	 	 	 	 	 	 	 	 PowerMode	 :	 local	 string	 default	 to	 "OFF";	
	 resource	 usage	
	 	 	 	 	 use	 RTGpower	 (21.32)	 when	 PowerMode	 ==	 "ON";	
	 	 	 	 	 use	 RTGpower	 (0.0)	 when	 PowerMode	 ==	 "OFF";	
	 	 	 	 	 use	 RTGpower	 (0.0)	 when	 PowerMode	 ==	 "ENABLE";	
	 	 	 	 end	 activity	 type	 RemoteSensPalletReplHtr2	

American Institute of Aeronautics and Astronautics

7

distinction between the early and late APGEN modeling styles, and we hope that future developers of APGEN (or
its successor) will take our remarks into account.

To illustrate our point, we consider a problem that frequently confronts APGEN adapters: the simple behavior
provided by the APGEN use and set statements leads to abrupt changes in the value of a resource; can we change it
so that the change in the resource becomes gradual? In the next few paragraphs, we will show that this problem can
be solved using the limited capabilities of the early APGEN DSL.

The solution of our problem is to write the adaptation so that activities control the rate at which a resource
changes, rather than the resource itself. To be specific, let us consider the problem of controlling the amount of data
volume through the rate at which data is created. We can solve the problem by introducing four resources:

• DataVolume, which is the main object of our modeling effort; we will measure it in Megabits.
• DataRate, the rate at which data is created; we will measure it in Megabits per second.
• LastUpdateTime, the time at which we last updated DataVolume to reflect the current data creation rate.
• AddData, an abstract resource which acts as a controller for the other three resources and provides a

simple API to activities that produce data.
We now show how these resources can be implemented in the early version of the APGEN DSL. Figure 3 below

illustrates the consumable resources that implement DataVolume and DataRate.
Figure 3. The APGEN code for the DataVolume and DataRate resources

We note some of the features of the APGEN DSL which we have not mentioned before: the attributes section of
the definition, in which general properties such as units can be defined. The interpolation attribute is used to control
the graphical appearance of the resource; its default value is zero, in which case the resource plot shows a
discontinuity at each usage event. We also note the APGEN idiom which consists in using an amount of the resource
equal to minus the parameter supplied as an argument to the use statement. Without the minus sign, any use of the
resource by some amount x reduces the value of the resource by x, in accordance with the basic paradigm of a
critical resource being used up by the activities that consume it.

Figure 4 below shows the code for LastTimeUpdated and AddData.
Figure 4. The APGEN code for LastTimeUpdated and AddData

The code for LastUpdateTime exhibits an APGEN idiom: the use of the currentval function in a usage
expression. For any concrete (non-abstract) resource R in the adaptation, the expression R.currentval() can be used
to refer to the current value of the resource. A usage expression of the form R.currentval() – t implies that the value

resource	 DataVolume:	 consumable	 float	
	 begin	
	 	 attributes	
	 	 	 	 "Units"	 =	 "Megabits";	
	 	 	 	 "Interpolation"	 =	 1;	
	 	 parameters	
	 	 	 	 x:	 float	 default	 to	 0.0;	
	 	 profile	
	 	 	 	 0.0;	
	 	 usage	
	 	 	 	 -‐x;	
	 end	 resource	 DataVolume	

resource	 DataRate:	 consumable	 float	
	 begin	
	 	 attributes	
	 	 	 	 "Units"	 =	 "Mbits/s";	
	 	 parameters	
	 	 	 	 x:	 float	 default	 to	 0.0;	
	 	 profile	
	 	 	 	 0.0;	
	 	 usage	
	 	 	 	 -‐x;	
	 end	 resource	 DataRate	

resource	 LastUpdateTime:	 consumable	 time	
	 begin	
	 	 parameters	
	 	 	 	 t:	 time	 default	 to	 2000-‐001T01:00:00;	
	 	 profile	
	 	 	 	 2014-‐093T20:00:00;	
	 	 usage	
	 	 	 	 LastUpdateTime.currentval()	 -‐	 t;	
	 end	 resource	 LastUpdateTime	

resource	 AddData:	 abstract	
	 begin	
	 	 parameters	
	 	 	 	 rate:	 float	 default	 to	 0.0;	
	 	 resource	 usage	
	 	 	 	 use	 DataVolume(DataRate.currentval()	
	 	 	 	 	 	 *	 ((now	 	 -‐	 LastUpdateTime.currentval())	 /	 0:0:1))	
	 	 	 	 	 	 when	 LastUpdateTime.currentval()	 <	 now;	
	 	 	 	 use	 DataVolume(0.0)	 when	 LastUpdateTime.currentval()	 >=	 now;	
	 	 	 	 use	 DataRate(rate);	
	 	 	 	 use	 LastUpdateTime(now);	
	 end	 resource	 AddData	

American Institute of Aeronautics and Astronautics

8

of R after execution of the statement use R(t) will be C – (C – t) = t, where C denotes the current value of R. Thus,
the indicated form of the usage statement of resource R ensures that the usage statement use R(t) results in R taking
on the value t.

The resource usage section of the code for the abstract resource, AddData, contains the algorithm for updating
DataVolume, DataRate and LastUpdateTime. Although the early APGEN DSL did not feature conditionals, it
provided a when clause that could be appended to a usage statement; execution of the usage statement would then
depend on whether the Boolean expression following when was true or false.

This leads us to a highly non-intuitive feature of the APGEN DSL: delayed execution of usage event logic. For
the logic of a when clauses to work correctly, it is essential that the evaluation of the Boolean expression following it
should take place while APGEN is scanning the event queue, and not while APGEN is extracting usage statements
from resource usage programs inside activity type definitions. In the APGEN language of Table 4, we would say
that evaluation of Boolean variables takes place at event modeling time, and not at event generation time. The
distinction between event modeling time and event generation time is clear, given the context in which APGEN was
first implemented. However, enhancements introduced later on into the APGEN DSL made the distinction harder to
keep in mind; this remains a point of confusion for APGEN adapters. We will return to this point later on in our
paper.

In order to exercise the adaptation we have just constructed, we need an activity type that uses the AddData
resource. Such an activity type, called science, is shown in Figure 5 below.

Figure 5. An activity type definition called science

To see how all these definitions work together, let us describe the modeling process APGEN goes through when
given a plan containing a single science activity. The sequence of events is shown in Table 5 below.

Note that the events created in step 2 of Table 5 correspond to the four usage statements in the definition of the
AddData resource, shown in Fig. 4. Because these statements do not contain an explicit time stamp (i. e., they do not
end with a temporal expression of the form at T where T is a time expression), their time stamp defaults to the time
at which the AddData resource is used, which is the start time of the science activity.

This leads us to discuss a frequent occurrence in APGEN modeling: the event queue contains several events
occurring at the same time. To deal with this eventuality, the event queue is endowed with a secondary key besides
the event creation time which provides the primary key. The secondary key is designed so that the resulting order is
simply the order of insertion into the queue. The resulting event ordering ensures that as new events are added to the
queue, the event queue iterator visits the new events once and never revisits events already processed.

Table 5. Sequence of steps taken by APGEN when modeling a science activity using a priori modeling
Step Description Final State

1 APGEN scans the time-ordered list of all activity
instances – there is only one in this case – and extracts
the modeling commands it finds in that activity’s
resource usage sections (see Fig. 5 above).

Two modeling commands are found, both
involving abstract resource AddData; the first
occurs at the start of the activity, denoted by S, the
second at the end of the activity, denoted by E.

2 The first modeling command is expanded by
consulting the resource usage section of AddData (see
the code in Fig. 4 above). This results in four new
events that are inserted into the event queue at time S.

The event queue now contains four usage events
with time tag S. These commands occur in a well-
defined order thanks to the secondary key of the
event queue, as discussed above.

3 The second modeling command involving AddData is
also expanded, which results in four new events that
are inserted into the event queue at time E.

The event queue now contains four additional
usage events with time tag E.

activity	 type	 science	
	 begin	
	 	 attributes	
	 	 	 	 "Duration"	 =	 Duration;	
	 	 parameters	
	 	 	 	 Duration:	 duration	 default	 to	 5:00;	
	 	 	 	 volume:	 float	 default	 to	 0.5;	
	 	 resource	 usage	
	 	 	 	 use	 AddData(volume/Duration)	 at	 start;	
	 	 	 	 use	 AddData(-‐volume/Duration)	 at	 finish;	
	 end	 activity	 type	 science	

American Institute of Aeronautics and Astronautics

9

Figure 6. Data Volume modeling as implemented above for the case of two overlapping science activities

Note: this concludes the event generation stage of the remodeling process.
4 APGEN scans the event queue in time order using an

iterator. The event iterator runs into the first event at
time S. It sets the value of global time variable now to
S.

The event queue iterator points at the event at time
S, which contains a conditional when clause with
argument 	 LastUpdateTime.currentval()	 <	 now.

5 The Boolean argument is evaluated. Because the
current value of LastUpdateTime is greater than now
(which was set to the time tag S of the current event),
the Boolean evaluates to false.

Since the Boolean clause in the current event was
found to be false, the event is not executed and the
state of the resource model is the same as before.

6 The event iterator iterates and finds the second of the
four statements in the resource usage section of
AddData, again notices the presence of a conditional,
and evaluates its Boolean argument; this time the
argument evaluates to true, and the usage statement
saying use DataVolume(0.0) is executed.

A new node recording the usage of 0 Megabits is
inserted in the history of the DataVolume resource
with time tag S. This node is necessary and marks
the start of a change in slope; without it, the slope
would depend on the time tag of the first node in
DataVolume’s history.

7 The event iterator iterates again, finds the event that
says use DataRate(rate) and executes it.

The value of the DataRate resource is changed by
the amount rate at time S.

8 The event iterator iterates once more, finds the event
that says use LastUpdateTime(now) and executes it.

The value of the LastUpdateTime resource is
changed and is set equal to S.

9 The iterator iterates and finds the first of the four
events at time E, notices the presence of a conditional,
and evaluates its Boolean argument; the argument
evaluates to true, and the usage statement saying use
DataVolume(…) is executed.

A new node recording the usage of an appropriate
number of Megabits is inserted at time E in the
history of the DataVolume resource.

10 The iterator finds the second of the events at E, notices
the presence of a conditional, finds the condition to be
false and the usage statement is not executed.

The state of the resource model is the same as
previously, since the usage statement for the
current event was not executed.

11 The iterator iterates, finds the event that says use
DataRate(rate) and executes it.

The value of the DataRate resource is changed by
the amount rate at time E.

12 The iterator iterates, finds the event that says use
LastUpdateTime(now) and executes it.

The value of the LastUpdateTime resource is
changed and is set equal to E.

Note: this concludes the event-modeling phase of the remodeling process.

American Institute of Aeronautics and Astronautics

10

While we have discussed the simple case of a single science activity, it should be obvious that the logic used in the
above example applies equally well to an arbitrary number of activities, overlapping or not. Figure 6 above
illustrates the above adaptation handling two science activities as displayed by a recent version of APGEN.

III. Evolution of the APGEN Adaptation Language
After the initial application of APGEN to the Cruise phase of the Cassini mission, it became clear that if APGEN

was to be used as a general multi-mission planning tool it would be necessary to enhance the APGEN DSL, in
particular in the resource usage section where the effect of an activity on resources is specified in detail. Early
APGEN offered no provision for things like declaring local variables and performing arithmetic on floating-point
and integer variables.

This changed around the year 1997 when APGEN was enhanced in order to provide support to upcoming Mars
missions such as Mars ’98. A number of new features were introduced at that time; we list them in Table 6 below.

Table 6. New features in the APGEN DSL
Item Description

1 An array data type, which was added to the list of APGEN data types: Boolean, string, integer, float,
time and duration. Strictly speaking, an APGEN array is not an array in the conventional programming
sense but rather a generic container which can be turned into a linked list or a string-based map,
depending on how it is used in the code. APGEN arrays allow adapters to introduce data structures of
arbitrary complexity in the APGEN code with essentially no overhead.

2 An instance data type, which can be used to store a pointer to an activity instance, for instance in the
midst of a decomposition algorithm. Individual attributes, parameters and local variables of that activity
instance can then be accessed (and modified) through the instance variable.

3 Global variables, which can be accessed and modified anywhere in the adaptation code.
4 Resource arrays; by referencing an existing list of many elements, a short resource declaration can be

used to define a large number of distinct resources. More importantly, maintenance is greatly facilitated:
if a new device was added to the S/C design, the adaptation code had to be modified in only one place.

5 Local variable declarations, which use the syntax already used for parameter declarations.
6 Conditional (if) and iterative (while) execution of a block of code. Code blocks are delimited by curly

braces { and }, similar to the C language.
7 Function calls and assignments.
8 A new type of activity decomposition called nonexclusive decomposition.
9 A new, optional modeling style that supports concurrent modeling in activity type and abstract resource

definitions. This option can be used instead of a resource usage section to provide a more natural
programming environment to APGEN adapters. When using this option, programmers can adopt a real-
time-programming style which includes the ability to wait and to send and catch signals.

10 An optional user-defined library, which can be used to extend the APGEN DSL through the addition of
code external to APGEN.

Enhancements 1 through 7 basically turn the APGEN DSL into a full-fledged, if non-standard, programming

language. Although they provide APGEN adapters with much more flexibility than was available in the original
DSL, they do not change the basic decomposition and remodeling algorithms in Table 4. The last three features,
numbers 8 through 10 in the list, do make significant changes to these basic algorithms, as we discuss below.

A. Improvements to the decomposition algorithm
Prior to the availability of nonexclusive decomposition, the way in which APGEN handled activity

decomposition had side effects that were potentially harmful. This is because of a couple of features that were
introduced in APGEN from the very beginning:

1. When a parent activity in the plan, say A, has a couple of child activities, say B1 and B2, only one set
of activities can be visible at a time: either A is visible while B1 and B2 are hidden, or B1 and B2 are
visible while A is hidden. The user can navigate between these two possibilities by using the abstract
and detail menu options of the APGEN GUI; abstract replaces visible children by their parent, and
detail replaces a visible parent by its children.

American Institute of Aeronautics and Astronautics

11

2. In the mind of the early APGEN designers, a parent activity and its child activities represent alternative
views of the same underlying reality. For example, a S/C maneuver could be represented as a single
activity called Maneuver, or by three child activities called First Turn, Burn, and Second Turn
respectively. It is up to the user whether the maneuver activity should be represented in symbolic form
by the Maneuver activity, or in more detailed form by the First Turn, Burn and Second Turn activities.
Accordingly, APGEN would model the activity plan differently, depending on which level activities
were presented to the user. If the Maneuver were visible, then only the resource usage section of the
Maneuver activity would contribute events to the event queue; if the child activities were visible, then
only their resource usage sections would be contributing.

In short, we can say that activity decomposition as implemented in early APGEN is exclusive. Exclusive
decomposition presents difficulties for both adapters and users. The first difficulty confronts adapters, who have to
maintain compatibility between the resource usage patterns used to model the parent and those used to model the
children. Obviously, computing resource usage in a consistent manner for a plan that can be viewed at several levels
of abstraction requires more work than computing resource usage for a plan in which the level of abstraction is
fixed. The second difficulty is that the availability of exclusive levels of abstraction makes things confusing for the
user when the plan contains hundreds of activities, as is the case for example for the Cassini cruise plan. The user
might be looking for resource usage features that are only present at a certain level of abstraction, for example; if the
user inadvertently displays the plan at another level, those features will be missing for no obvious reason.

Once non-exclusive decomposition became available, exclusive forms of decomposition all but disappeared from
APGEN adaptations, except in regression tests. As a result, the semantics of activity decomposition have become
simpler, and APGEN adapters have been freed from the burden of maintaining consistency between distinct versions
of an activity plan.

B. Changes to the remodeling algorithm
We now turn to item 9 in Table 6, which concerns the introduction of a concurrent modeling option. To illustrate

the impact of this change, we will again turn to the Data Volume modeling problem solved in the previous Section
using the methods of early APGEN.

Before we turn to concurrent modeling per se, we discuss one of the negative impacts of items 1-7 in Table 6
when used in conjunction with the original APGEN DSL infrastructure. One could use the improvements in Table 6
to improve the appearance of the adaptation code. Looking at the code in Fig. 4, we note that the code would
become more elegant, more readable and more scalable if the when clauses could be replaced by a more standard if
… else construction. We would also eliminate some duplication by using a local variable delta to store the quantity
now – LastUpdateTime.currentval(). This would lead us to replacing the AddData code in Fig. 4 by the code in Fig.
7 below. This code is indeed more elegant than that in Fig. 4, but it is unfortunately incorrect and will not lead to the
correct modeling behavior.

Figure 7. An improved, but incorrect, version of the AddData code

The reason why this code is incorrect is that it gets executed during the event generation phase, steps 2 and 3 in
Table 5, before any modeling commands have been processed. At that point, resources have been initialized, but
their history does not yet reflect the effect of any commands in the event queue. As a result, LastUpdateTime will
have the value listed in its profile (see Fig. 4), and not the value expected at the start time of the science activity.

resource	 AddData:	 abstract	
	 begin	
	 	 parameters	
	 	 	 	 rate:	 float	 default	 to	 0.0;	
	 	 resource	 usage	
	 	 	 	 delta:	 float	 default	 to	 (now	 -‐	 LastUpdateTime.currentval())	 /	 0:0:1;	
	 	 	 	 if(delta	 >	 0.0)	
	 	 	 	 	 	 use	 DataVolume(DataRate.currentval()	 *	 delta);	
	 	 	 	 else	
	 	 	 	 	 	 use	 DataVolume(0.0);	
	 	 	 	 use	 DataRate(rate);	
	 	 	 	 use	 LastUpdateTime(now);	
	 end	 resource	 AddData	

American Institute of Aeronautics and Astronautics

12

It is to remedy the highly non-intuitive consequences of coding patterns such as shown in Fig. 7 that the
concurrent modeling option was proposed. The correct version of the code is shown in Fig. 8 below.

Figure 8. An improved and correct version of the AddData code based on concurrent modeling

Two differences are evident with the previous version of AddData: first, the modeling code is contained in a
section entitled modeling, not resource usage; this provides APGEN with a hint that we wish to use concurrent
modeling instead of a priori expansion. Second, LastUpdateTime is now a global variable and not a resource. This
second change is not necessary but it demonstrates the combined benefits of having introduced global variables as
well as concurrent modeling; global variables require less space and time overhead than concrete resources.

In a nutshell, the code above will execute correctly because APGEN behaves as a multi-threaded application, in
which the modeling code in AddData and the scanning of the event queue are executed simultaneously. By
postponing execution of the modeling code till the event processing stage, the APGEN adapter can write the code as
if it were executed in real time.

To explain how APGEN multi-threading works, we need to use the concept of execution thread. Execution
threads are nothing new; any application that features a DSL needs to provide something like an execution thread in
order to execute an interpreted program. Loosely speaking, an execution thread provides the basic infrastructure
required to run an interpreter: a program counter, searchable lists of global and local variables, stacks for function
calls, etc. Suppose now that we wanted to execute a certain modeling program P when model time reaches a given
value T during the event processing stage of remodeling. We can do this by creating a new type of event, called a
resumption event, which holds a copy of the execution thread for P. We refer to this event as RE. We set the time tag
of RE to T, and we insert it into the event queue. Later on, when the iterator that scans the event queue reaches RE,
the execution thread encapsulated in RE will be re-enabled and execution of P will resume.

Table 7 below shows the operation of resumption events when AddData is implemented using concurrent
modeling, as opposed to the a priori modeling style illustrated in Table 5.

Table 7. Sequence of steps taken by APGEN when modeling a science activity using concurrent modeling

Step Description Final State
1 APGEN scans the time-ordered list of all activity

instances – there is only one in this case – and extracts
the two modeling commands it finds in the activity’s
resource usage sections (see Fig. 5 above).

Two modeling commands are found, both
involving abstract resource AddData; the first
occurs at the start of the activity, denoted by S, the
second at the end of the activity, denoted by E.

2 The definition of AddData contains the modeling
keyword, indicating the need for concurrent modeling.
A new execution thread is created, pointing to the
modeling program in AddData; this thread is
encapsulated in a resumption event with time tag S.

The event with time tags S is inserted into the
event queue. It contains an execution thread for
running the modeling program in the definition of
AddData.

3 The second modeling command involving AddData is
processed similarly, resulting in a new execution
thread encapsulated in a resumption event with time
tag E.

The event with time tag E is inserted into the event
queue. It contains an execution thread for running
the modeling program in the definition of
AddData. The event queue contains two events.

Note: this concludes the event generation stage of the remodeling process.

global	 time	 LastUpdateTime	 =	 2020-‐001T00:00:00;	
resource	 AddData:	 abstract	
	 begin	
	 	 parameters	
	 	 	 	 rate:	 float	 default	 to	 0.0;	
	 	 modeling	
	 	 	 	 delta:	 float	 default	 to	 (now	 -‐	 LastUpdateTime)	 /	 0:0:1;	
	 	 	 	 if(delta	 >	 0.0)	
	 	 	 	 	 	 use	 DataVolume(DataRate.currentval()	 *	 delta);	
	 	 	 	 else	
	 	 	 	 	 	 use	 DataVolume(0.0);	
	 	 	 	 use	 DataRate(rate);	
	 	 	 	 LastUpdateTime	 =	 now;	
	 end	 resource	 AddData	

American Institute of Aeronautics and Astronautics

13

Before leaving our simple example, we want to emphasize one issue which is a source of frequent confusion among
APGEN adapters: how is control transferred back and forth between the iterator which scans the event queue, and

4 APGEN scans the event queue in time order using an
iterator. The iterator runs into the resumption event
previously stored at time S. It sets the value of global
time variable now to S.

The event queue wakes up the execution thread
attached to the event at time S and loads it in the
APGEN interpreter. The APGEN interpreter starts
executing the modeling section of AddData as
shown in Fig. 8. A variable called delta is
initialized as shown.

5 Because the current value of LastUpdateTime is greater
than now (which was set to the time tag S of the
current event), delta is found to be negative. The
interpreter skips to the else and creates a modeling
command saying use DataVolume(0.0) at time S.

The new event is inserted in the event queue; it has
the same time tag S as the current event but since it
was inserted later it will occur next in the iterator
scan of the queue. This remark applies to all
subsequent insertions of new events.

6 The interpreter continues executing the AddData code
and creates a modeling command saying use
DataRate(rate). It encapsulates this command in a new
usage event at time S.

The new event is inserted in the event queue, also
at time S.

7 The interpreter continues executing the AddData code
and finds the instruction	 LastUpdateTime	 =	 now. It
executes that command immediately. The interpreter
notes that this is the last statement in the AddData
modeling program; it exits, thus returning control to
the event queue iterator.

Global variable LastUpdateTime is now equal to S.

8 The event iterator iterates and finds the usage
statement saying use DataVolume(0.0). The statement
is executed.

A new node recording the usage of 0 Megabits is
inserted in the history of the DataVolume resource
with time tag S. This node is necessary and marks
the start of a change in slope; without it, the slope
would depend on the time tag of the first node in
DataVolume’s history.

9 The event iterator iterates again, finds the usage event
that says use DataRate(rate) and executes it.

The value of the DataRate resource is changed by
the amount rate at time S.

10 The iterator runs into the event previously stored at
time E. It sets the value of global time variable now to
E.

The event queue wakes up the execution thread
attached to the event at time E and loads it in the
APGEN interpreter. The APGEN interpreter starts
executing the modeling section of AddData as
shown in Fig. 8. A variable called delta is
initialized as shown.

11 Because the current value of LastUpdateTime (which is
S) is less than now, delta is found to be positive. The
interpreter creates a usage event saying use
DataVolume(…) at time E.

The new event is inserted in the event queue at
time E.

12 The interpreter continues executing the AddData code,
skips the else and creates a usage event saying use
DataRate(rate) at time E.

The new event is inserted in the event queue, also
at time E.

13 The interpreter continues executing the AddData code
and finds the instruction	 LastUpdateTime	 =	 now. It
executes that command immediately. Since this is the
last statement in the AddData modeling program,
control returns to the event queue iterator.

Global variable LastUpdateTime is now equal to E.

14 The event iterator iterates and finds the usage event
saying use DataVolume(…). The statement is executed.

A new node recording the usage of an appropriate
number of Megabits is inserted in the history of the
DataVolume resource with time tag E.

15 The event iterator iterates again, finds the usage event
that says use DataRate(rate) and executes it.

The value of the DataRate resource is changed by
the amount rate at time E.

Note: this concludes the event-modeling phase of the remodeling process.

American Institute of Aeronautics and Astronautics

14

the interpreter which executes the program pointed to by a resumption event in the queue? To answer the question,
we look at the process described Table 7 in a more graphic manner. Figure 9 below illustrates steps 4, 5 and 6 of
Table 7; the grey rectangles illustrate the events in the event queue. At the beginning of step 4, the only event with
time tag S is the event bearing the label 2; the label reflects the fact that this event was created at step 2.

Figure 9. Graphic illustration of steps 4, 5 and 6 in Table 7

At the beginning of step 4, the execution thread pointed to is reactivated; execution of the modeling program of
AddData resumes as indicated in Table 7, and in steps 5 and 6 the modeling commands in the program result in two
new events (labeled 5 and 6 in Fig. 9) being inserted into the event queue.

At the conclusion of step 4, concrete resources DataVolume and DataRate have not yet been affected by the
events at time S. It is only when the event iterator advances to events 5 and 6, after the modeling program of
AddData has completed, that the usage statements take effect. This is illustrated in Figs. 10 and 11 below.

Figure 10. Graphic illustration of step 8 in Table 7

American Institute of Aeronautics and Astronautics

15

Figure 11. Graphic illustration of step 9 in Table 7

It is easy to lose track of the flow of control when writing a modeling program such as the one in AddData. One
way to bring resource histories in synch with the execution of the modeling program is to suspend execution of the
modeling program after each modeling command, as shown in Fig. 12 below. All it takes to suspend execution is to
add a wait statement with a time duration of zero seconds. This has the effect of pausing execution of the modeling
program and creating a new resumption event for it; the resumption event will have a secondary key greater than
that of the usage event created just before pausing, and as a result the event iterator will execute the usage event
first, then resume execution of the modeling program.

Figure 12. Modified version of the AddData modeling program

Since the creation of resumption events is expensive, a new feature was added to the APGEN DSL in the form of
a new temporal clause: using the keyword immediately in a modeling command invoking concrete resource R tells
APGEN to update the history of resource R immediately, instead of inserting a usage event in the event queue. The
program in Fig. 13 below has the same effect as the one above, but runs more efficiently.

	 	 modeling	
	 	 	 	 delta:	 float	 default	 to	 (now	 -‐	
LastUpdateTime)	 /	 0:0:1;	
	 	 	 	 if(delta	 >	 0.0)	
	 	 	 	 	 	 use	 DataVolume(DataRate.currentval()	
	 	 	 	 	 	 	 	 	 	 *	 delta);	
	 	 	 	 else	
	 	 	 	 	 	 use	 DataVolume(0.0);	
	 	 	 	 wait	 for	 0:0:0;	
	 	 	 	 use	 DataRate(rate);	
	 	 	 	 wait	 for	 0:0:0;	
	 	 	 	 LastUpdateTime	 =	 now;	

American Institute of Aeronautics and Astronautics

16

Figure 13. Version of the AddData modeling program using the immediately temporal clause

C. Extending the APGEN DSL through external libraries
Here we turn to item 10 in Table 6, the optional user-defined library. APGEN and SEQGEN are not the only

applications at JPL that provide high-fidelity simulations of complex systems such as S/C and their ground support
equipment. Many specialized tools are available from domain experts at JPL and elsewhere:

• The SPICE toolkit from NASA4
• The MMPAT Multi-Mission Power Analysis Tool5
• Slewth, a simulation and verification tool for the DAWN Attitude Control System6
• Telecom Forecast Predictor, a tool for predicting the performance of a telecommunications link7

APGEN offers adapters a mechanism for attaching such tools to their adaptation. This mechanism is known as
the user-defined library; it requires that the external simulation tool be available as a shared C or C++ library. The
main components of the user-defined library mechanism are

• The simulation tool as a shared library written in C or C++
• “Glueware” for linking the APGEN parser to the simulation library’s API

The simulation library and the glueware are linked together into a shared library that can be directly attached to
the APGEN executable. In the presence of this library, additional functions not built into APGEN become available
to the adapter; typically, such functions are available for

• initializing the external library
• setting parameters of the external model
• initiating the simulation at a given time T1
• propagating the state of the external model from T1 to T2
• ending the simulation

As long as the external simulation tool has an API which supports these basic functions, it can be integrated with
APGEN, in effect providing the adapter with an enhanced modeling tool at the cost of a small amount of
programming.

D. The current remodeling algorithm in APGEN
To facilitate the description of the current remodeling algorithm in APGEN, we first note that the APGEN DSL

supports four distinct types of programs:
1. Functions, which can be invoked from anywhere in the adaptation. APGEN offers a number of built-in

functions such as sin(x) and random(); custom functions can be declared and implemented in the
adaptation.

2. Decomposition programs, which appear inside activity type definitions under the heading
decomposition or nonexclusive decomposition depending on whether or not the decomposition is
exclusive. In addition to standard instructions, these programs support statements of the form
 ActType(arg1, arg2, …) at T;
meaning that a child activity of type ActType should be created with start time T and with the arguments
supplied in the activity call.

3. Resource usage programs, which can appear inside activity type or abstract resource definitions.
Besides standard programming instructions, such programs typically contain modeling commands
which affect the state of model resources or invoke abstract resources. These programs, identified by

modeling	
	 	 	 	 delta:	 float	 default	 to	 (now	 -‐	
LastUpdateTime)	 /	 0:0:1;	
	 	 	 	 if(delta	 >	 0.0)	
	 	 	 	 	 	 use	 DataVolume(DataRate.currentval()	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 *	 delta)	 immediately;	
	 	 	 	 else	
	 	 	 	 	 	 use	 DataVolume(0.0)	 immediately;	
use	 DataRate(rate)	 immediately;	
LastUpdateTime	 =	 now;	

American Institute of Aeronautics and Astronautics

17

the keywords resource usage at the beginning of the program, will be interpreted in the a priori
modeling style by APGEN.

4. Modeling programs, which also appear inside activity type or abstract resource definitions. In addition
to standard instructions and modeling commands, these programs support instructions with a real-time
flavor such as wait for duration, wait until condition and wait until “signal-name”. Such programs are
identified by the modeling keyword and they will be interpreted in the concurrent modeling style by
APGEN.

For convenience, we will refer to abstract resources containing a resource usage program as a priori abstract
resource, and to those containing a modeling program as concurrent abstract resources.

After these preliminaries, we can describe the current remodeling algorithm in APGEN as shown in Table 8
below.

Table 8. The current remodeling algorithm in APGEN
Step Description

1 The event queue and resource histories are cleared; resources are initialized to their default value.
2 The activities in the Activity List are scanned in time order.

a. If an activity in the list has a resource usage program, that program is executed immediately.
Any modeling command referencing a concrete resource results in the creation of a usage event
in the event queue. Any modeling command referencing an a priori abstract resource is
executed immediately, as if it were a function call. Any modeling command referencing a
concurrent abstract resource results in the creation of a resumption event pointing to the
modeling program of that abstract resource.

b. If an activity in the list has a modeling program, that program is paused at the very beginning
and a resumption event pointing to it is added to the event queue.

This concludes the event creation stage of the remodeling process.
3 The events in the event queue are scanned in time order.

a. Any usage event referencing a concrete resource is executed, resulting in an update of that
resource’s history.

b. Any resumption event causes the program it points to to be reactivated; execution of that
program resumes at the point where it was paused. Any modeling commands encountered
during execution are executed exactly the same way as in the event generation stage of the
remodeling process.

This concludes the event modeling stage of the remodeling process.

E. The Introduction of Scheduling Capabilities in APGEN
One of the requirements that had been levied onto APGEN was that it should assist its users by suggesting where

certain types of activities could be added to the plan. The vision behind this requirement was that a scientist could
start an APGEN session with a skeleton plan, i. e., a plan containing only engineering activities necessary for
maintaining the health of the S/C. The scientist could then choose a type of science activities and ask APGEN to
place it as judiciously as possible into the activity plan. For this to be possible, APGEN would have to be given rules
and constraints relative to the placement of such activities. Given such rules and constraints, some type of a
reasoning engine inside APGEN would come up with suggestions to the user, telling him or her where the activities
could be placed while satisfying all rules and constraints.

The requirement that APGEN should feature a reasoning engine went unmet for a number of years, until an
opportunity presented itself thanks to the MER (Mars Exploration Rover) mission. MER was concerned that without
such an engine, it was going to be impossible to conduct tactical planning sessions within the short turnaround time
allocated to surface operations. MER enlisted the help of the AI group at ARC (the NASA Ames Research Center),
which had developed a search-based automatic planner called Europa. In a couple of years’ development time,
APGEN and Europa were merged into a single mixed-initiative tool called MAPGEN; the MAPGEN tool is still in
use today as part of MER operations. MAPGEN was discussed in Ref. 2 and will not be discussed further here.

Here, we concentrate on another attempt to endow APGEN with automated scheduling capabilities, which was
initiated just before the start of the joint effort with ARC to develop MAPGEN. This earlier attempt did not have the
generality typically found in search-based approaches to planning, such as those discussed in Ref. 3. The APGEN
approach to scheduling is incremental in nature, and takes advantage of the forward-propagation character of the
simulation engine inside APGEN.

American Institute of Aeronautics and Astronautics

18

In a nutshell, the APGEN scheduling algorithm consists of a remodeling pass as in Table 4, followed by a second
pass during which scheduling actions – i. e., the creation of new activities - can take place. The second pass
resembles a remodeling pass, with the differences highlighted in Table 9 below.

Table 9. The scheduling pass in APGEN
Step Description

1 The event queue is cleared; resource histories are not, so that resource values reported by R.value(T) reflect
the state of resource R at the end of the remodeling pass.

2 The activities in the Activity List are scanned in time order.
a. If an activity in the list has a resource usage program or a modeling program, that program is

processed exactly as it was in the remodeling pass.
b. If an activity in the list has a scheduling program, that program is paused at the very beginning

and a resumption event pointing to it is added to the event queue. In addition to the types of
statements available in modeling programs, scheduling programs can also contain special
scheduling commands of the form
 wait until OKtoSchedule(Condition) for Duration.
Such a command interrupts the execution of the scheduling program. Execution will be
resumed in the event modeling stage only when a scheduling window is found. By definition, a
scheduling window is an interval during which Condition is found to be true continuously for a
duration at least equal to Duration.

This concludes the event creation stage of the scheduling pass.

3 The events in the event queue are scanned in time order.
a. Any usage event referencing a concrete resource is executed, resulting in an update of that

resource’s history.
b. Any resumption event causes the program it points to to be reactivated; execution of that

program resumes at the point where it was paused. Any modeling commands encountered
during execution are executed exactly the same way as in the event generation stage of the
remodeling process. Scheduling commands are executed as indicated in step 2b. Typical
scheduling conditions refer to present and future values of one or several resources; what makes
the computation of scheduling windows possible is the availability of complete resource
histories, as opposed to histories truncated at the value of now as in a remodeling pass.
Scheduling programs can also create (schedule) new activities, using a syntax similar to that of
activity creation statements in decomposition programs. As soon as an activity is created in this
manner, it is processed the same way as activities in the Activity List during the event
generation stage, resulting in new events being added to the event queue.

c. Whenever the event iterator advances and sets the global variable now from its current value T1
to a new time value T2, it deletes from resource histories any nodes with a time tag greater than
T1 and less than or equal to T2. The rationale for doing this is that these values were computed
during the remodeling pass; they are stale because they do not reflect the impact of any new
activities created by the schedulers. They are about to be replaced by up-to-date values resulting
from execution of the modeling events added to the queue during the scheduling pass.

This concludes the event modeling stage of the scheduling pass.

American Institute of Aeronautics and Astronautics

19

IV. The application of APGEN scheduling to space missions
Here we discuss the application of APGEN scheduling to six NASA missions: DI, Europa, INSIGHT, Juno,

MRO and MSL. The application of APGEN to DI (and its successor, EPOXI) has been discussed at length in Ref. 1;
the emphasis in that paper was put on the functional aspects of the DI planning tool, which consisted of APGEN
linked to five external libraries using the user-defined library mechanism. Here, we do not focus on the functionality
as much as on the manageability of the adaptation, as expressed by following questions:

1. How much work does it take to adapt APGEN to a new mission?
2. How difficult is it to reuse an APGEN adaptation?
3. How difficult is it to train operations personnel in the art of adapting APGEN?
4. Could APGEN be replaced by one or more standard modeling tools?

While we do not have sufficient INSIGHT to answer all of these questions, we want to pave the way for future
discussions and investigations of these issues. To this end, we will focus our questions on the morphology of an
APGEN adaptation in the following sense:

1. The form and structure of the adaptation: what are the main parts of the adaptation, how do these parts
interact?

2. Common features the adaptation may share with other adaptations we have studied: are there patterns
that make at least some of the adaptation code reusable?

3. APGEN-isms: does the adaptation make essential use of them? If so, is there a way to replace the non-
standard code by an external capability based on standard tools?

4. APGEN glue: an apparent strength of APGEN is its ability to let adapters build an integrated system out
of subsystems that were not meant to work together. What are the basic ingredients of this “glue”?
Could a similar integration capability be provided in a more standard way?

A. Generic morphology of an APGEN adaptation
We start with a preview of the four morphology questions introduced above.
1. Main parts of an adaptation

In general, an adaptation file written in the APGEN DSL contains seven distinct components as listed in Table
10 below.

Table 10. The main components of an APGEN adaptation
Component Description

Header The header consists of a line stating whether the file contains adaptation or scripting data and some
comments regarding the original files from which the adaptation information was taken.

Preliminaries Preliminaries contain the definition of custom attributes and custom data types (typedefs), directives
to APGEN such as the desired size and placement of the APGEN GUI on the screen, the definition
of important epochs, and the definition of any non-Earth-based time systems such as Mars Time.

Globals Globals contain the definitions of all global variables needed by the adaptation code. APGEN does
not distinguish between variables whose value is never changed (constants) and true variables whose
values can be changed by statements in the adaptation.

Functions This part of the adaptation file contains the definitions of custom functions invoked by other
sections in the adaptation.

Resources This part of the file contains the definitions of all APGEN resources. A resource can be concrete or
abstract. A concrete resource can be scalar or an array; it has a data type and a usage pattern type
that must be one of consumable, non-consumable or state. An abstract resource can be written in the
a priori modeling style, in which case it contains a section entitled resource usage, or in the
concurrent modeling style, in which case it contains a section entitled modeling.

Activity This part of the file contains the definitions of all activity types except for the generic activity type
which is available by default. Activities can contain attribute definitions, parameter definitions, an
exclusive or non-exclusive decomposition section, a resource usage or modeling section, and
creation and destruction sections.

Constraints Constraints are basically conditions that are expected to hold true throughout the activity plan. A
constraint must conform to one of a few specific types: logical condition, forbidden overlap etc.
Constraints are purely passive; if violated, the violation is reported but no attempt is made to
eliminate it.

American Institute of Aeronautics and Astronautics

22

3. Opportunities for improvement and automation
The dream multi-mission application is one that can be adapted to a new mission with virtually no effort. Most

real applications fall short of that dream. Because of the ever increasing complexity of space mission and the
continued need to reduce costs, it is therefore important to understand where the adaptation effort goes, and how the
level of effort could be reduced.

The charts shown above suggest some possible answers to these questions. Here are our observations:
• The most labor-intensive parts of the adaptation are the complex functions, abstract resources and

schedulers. Fortunately:
o there are relatively few of these
o many of them are common to more than one adaptation, indicating that they are generic in

nature
o in many cases, good documentation is available to guide future adapters

• Items found in large numbers, such as simple global variables, are good candidates for automatic
generation from Systems Engineering databases

• Items of moderate complexity such as utility functions are candidates for integration with other
modeling tools and libraries. Example: vector math libraries in matlab, ACS quaternion manipulation
utilities…

• Items of moderate complexity found in large numbers, such as short activity and concrete resource
definitions, might be extracted from SE databases or from external repositories such as VML programs
or SEQGEN files. Alternatively, modeling such activities could be delegated to external tools, such as a
VML simulation program or a SEQGEN modeling server.

B. The DI/EPOXI mission
The DI (Deep Impact) mission was a NASA Discovery mission. During a flyby of comet Tempel 1, it released a

small impactor spacecraft which collided with the comet in an explosion that was observed around the world and led
to a wealth of science data. The EPOXI follow-on mission (the acronym combines EPOCh, Extrasolar Planet
Observations and Characterization, and DIXI, Deep Impact Extended Investigation) featured both an encounter with
comet Hartley 2 and a series of extrasolar planet observations. DI/EPOXI provides the most ambitious example of
an APGEN adaptation in terms of comprehensive integration with high-fidelity models.

On the DI part of the mission, the primary benefit of the high-fidelity APGEN model was to have all the
subsystems integrated into the planning model, which allowed the Encounter System Lead (Steve Wissler) to build
and validate many versions of encounter sequences quickly and limit testbed use to sequences that were likely to
succeed. Note that it took 36 hours to simulate an encounter sequence on the DI testbed.

The EPOXI part of the mission was run on a very tight budget; as a result, the small team of Systems Engineers
running the mission had little Subsystem support. As a result, the Systems Engineers enhanced the APGEN model to
allow the small team to quickly build and validate sequences without the usual interaction with Subsystems
Engineers. In the past, such interactions were the source of many iterations through building and validating S/C
sequences prior to uplink. Since more automation was needed than in the DI phase of the mission, it was decided to
take advantage of APGEN scheduling and enhance the DI adaptation of APGEN.

1. Main parts of the DI adaptation
APGEN scheduling was used in two areas:

• To build observations and downlink sequences in EPOCh
• To build background sequences during the Hartley 2 encounter

Figure 17 below shows complexity and size data for the individual sections of the DI/EPOXI adaptation.
Adaptation items fall into the following categories:

• Highest complexity items:
o Complex Activities
o Complex Abstract Resources
o Large Global Arrays

• Moderate complexity items:
o Onboard Blocks
o Schedulers
o Generic activities
o Generic abstract resources

• Low complexity items:

American Institute of Aeronautics and Astronautics

26

• The Ground model (which includes the DSN model) and much of the Telecommunications model was
mostly inherited from DI also.

3. Opportunities for improvement and automation
Although the APGEN adapters were able to tap the System Engineering database for PEL information, other

subsystems are still in development. The plan is that as more and more of the subsystem designs gets captured in
engineering databases, the APGEN model will be updated through new automated pathways between these
databases and the model.

D. The INSIGHT (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) mission
The INSIGHT lander will carry three science instruments to the surface of Mars. Although the payloads of the

two missions are quite different, the spacecraft itself will be very similar to the Phoenix Mars Lander, which landed
on the surface of Mars in 2008. As a result, the INSIGHT adaptation of APGEN will reuse a number of features
originally developed for Phoenix.

Lander operations typically involve S/C-Ground interactions in a closed loop, so that telemetry from a given sol
(Martian day) can be used to plan the activities for the next sol. Although this does not mean that there is no
opportunity for automatic plan and sequence generation in a lander mission, the tactical (daily) operations on
Phoenix were largely done by hand, with the exception of initial task scheduling which was performed by the
Europa planner from NASA’s Ames Research Center.

For most of INSIGHT landed operations, the instruments will be operating autonomously, and as a result the
need for closed-loop operation between the S/C and ground personnel will be much reduced compared with
Phoenix. As a result, there is likely to be significant opportunity for automated scheduling.

One area where some automated scheduling has already taken place is the use of a high-fidelity data model to
assist in the selection of the best configuration for the various data buffers onboard the S/C. The INSIGHT data
model uses the following inputs:

1. A set of realistic DSN allocations
2. Parameters that determine the sizes of the various internal data buffers

The output consists of a complete scenario spanning the entire duration of the mission. The scenario includes a
prediction of how much high-resolution data has been downloaded over the course of the entire mission, assuming
that the Science Team always elects to downlink as much data as can be accommodated by the onboard data storage
system and telecommunications opportunities with Earth.

The current INSIGHT adaptation only produces engineering data, not S/C sequences. At about 1400 lines of
adaptation code, the INSIGHT adaptation of APGEN is therefore much smaller than the other adaptations we
discuss. We expect to carry out a more meaningful comparison once some of the mission operations processes have
been fully automated.

E. The Juno mission
Juno is a spinning solar-powered spacecraft currently in its Cruise phase towards Jupiter; once there it will enter

a highly elliptical orbit that avoids most of Jupiter’s high radiation regions. The main purpose of the present Juno
adaptation of APGEN is to automate a number of tasks in the Cruise phase. The initial automation effort was carried
out for Mars missions such as Odyssey and MRO by Roy Gladden using his AUTOGEN program,8 a complex
wrapper around APGEN; the result of this effort was the BGSG (BackGround Sequence Generation) tool. BGSG
was subsequently refurbished and adapted to the Cruise phase of the Juno mission by Matthew Lenda who added a
new repointing algorithm described below.

1. Main parts of the Juno adaptation
Figure 20 below shows the main components of the Juno APGEN adaptation, which implements the automated

BGSG process. This process requires the following inputs:
• Spice kernels for the S/C and DSN stations.
• DSN allocations and view period files.

The main outputs from the BGSG process are
• SASFs (Spacecraft Activity Sequence File) to be fed to SEQGEN for sequence validation and creation

of uplink products.
Note that an SASF contains, besides commands and S/C activities, a number of directives to SEQGEN. For

example, one of those directives may order SEQGEN to create a FINCON (Final Conditions file) at a certain time in
the simulation. This is one of the tasks automated by the BGSG process.

American Institute of Aeronautics and Astronautics

28

Each one of the above tasks was assigned to a specific scheduler in the APGEN adaptation. These schedulers do
not work in isolation; they take advantage of the modeling work provided by the resource model and by non-
scheduling activities.
 2. Recurring patterns in the Juno adaptation

There is a lot in common between the Juno adaptation and previous APGEN work, especially the DI adaptation
(for its Ground model) and the AUTOGEN adaptation. As a result much of the adaptation code was inherited from
previous missions. On the other hand, about half of the schedulers involve features that are specific to the Juno S/C.

3. Opportunities for improvement and automation
As in other examples of adaptations derived from the original AUTOGEN, adaptations such as this one would

benefit from true adaptation templates. Currently, re-using a previous adaptation of APGEN generally means hand-
editing some of the adaptation files from that previous adaptation. Adaptation templates would remove the need for
such edits, making the adaptation much easier to maintain.

F. The MRO mission
1. Main parts of the MRO adaptation

The MRO (Mars Reconnaissance Orbiter) S/C was launched in 2005 to provide high-resolution remote sensing
observations of the surface of Mars and to provide a high-data-rate communications relay for Mars surface missions.
Because it is an orbiter, its operation is highly repetitive. As a result, planning and sequencing personnel decided to
modify Roy Gladden’s AUTOGEN tool8 and adapted it to the MRO mission. Recently, there was a need to revisit
the algorithms in AUTOGEN, in part because the original scripts needed maintenance and in part because the
complexity of the scheduling requirements kept increasing. The current version of AUTOGEN, named AUTOGEN
Mk-II, was put together by Matthew Lenda.

AUTOGEN Mk-II is a collection of scripts which have at their core an adaptation of APGEN. This adaptation
has much in common the earlier DI adaptation; in particular, the Ground model used to track the state of DSN
stations is identical to that used in DI (and also with the models used in Europa and MSL Cruise).

Just like Juno and other missions that use some version of AUTOGEN, a number of tasks have been automated
by the adaptation. The list of tasks that were automated for the MRO mission is shown below. A special scheduler
was written for each specific task.

1. Orbital Geometry Events
Schedulers were written to handle the following types of events:

a. Occultations
b. Eclipses
c. Periapsis and Apoapsis
d. Ascending and Descending Nodes

2. Daily activities
3. RWA (Reaction Wheel Assembly) desaturation activities
4. HGA (High Gain Antenna) hard stop Activities
5. HGA management activities
6. Ranging and radio science orbits
7. Downlink data rate selection
8. Low-elevation downlink suppressors
9. Communications blocks
10. Daily activities in contact
11. Critical low-level activities
The main components of the MRO adaptation of APGEN are shown in Figure 21 below.

American Institute of Aeronautics and Astronautics

30

V. Conclusion
In our paper, we have described the APGEN scheduling tool and we have provided a quick tour of the basic

ingredients of an APGEN adaptation, first in terms of basic concepts and then in more detail by reviewing the use of
APGEN scheduling in six different missions and proposed missions. Because of the technical depth of the subject,
we have only provided basic information concerning the specifics of the scheduling algorithms involved. In our
future work, we plan to explore the possibility of making APGEN more modular, so that it could be better integrated
with SEQGEN for sequence validation and with other planning and scheduling tools of interest to future space
missions.

Acknowledgments
This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a

contract with the National Aeronautics and Space Administration.

References

1Wissler, S., Maldague, P.F., Rocca, J., and Seybold, C., “Deep Impact Sequence Planning Using Multi-Mission Adaptable
Planning Tools with Integrated Spacecraft Models,” AIAA SpaceOps 2006 Conference, 2006.

2Mitchell, A., Bresina, J., et al, MAPGEN: Mixed-Initiative Planning and Scheduling for the Mars Exploration Rover
Mission, IEEE Intelligent Systems [online journal], IEEE1094-7167/04, pp8-12, URL:
http://ieeexplore.ieee.org/iel5/9670/28315/01265878.pdf?arnumber=1265878 [cited 10 May 2006].

3Chien, S., Johnston, M., Frank, J., Giuliano, M., Kavelaars, A., Lenzen, C., and Policella, N., “A Generalized Timeline
Representation, Services, and Interface for Automating Space Mission Operations,” AIAA SpaceOps 2012 Conference, 2012.

4Acton, C.H., “Ancillary Data Services of NASA’s Navigation and Ancillary Information Facility”, Planetary and Space
Science, Vol. 44, No. 1, pp. 65-70, 1996.

5Wood, E., and Adamson, A., “Multi-Mission Power Analysis Tool”, URL:
http://www.techbriefs.com/component/content/article/1059-gdm/tech-briefs/9446-npo-47290 [cited Apr. 8, 2014]

6Vanelli, A., Swenka, E., and Smith, B., “Verification of Pointing Constraints for the Dawn Spacecraft”, AIAA/AAS
Astrodynamics Specialist Conference and Exhibit, Aug. 2008.

7Cheung, K.-M., and Lee, C., “Link-capability driven network planning and operation”, IEEE Aerospace Conference
Proceedings, 2002.

8Gladden, R. E., “AUTOGEN: The Mars 2001 Odyssey and the ‘Autogen’ Process”, AIAA Small Satellite Conference,
Logan UT, August 2002.

