

1

TARDIS: An Automation Framework for JPL Mission
Design and Navigation

Ian M. Roundhill1 and Richard M. Kelly2
Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109

Mission Design and Navigation at the Jet Propulsion Laboratory has implemented an
automation framework tool to assist in orbit determination and maneuver design analysis.
This paper describes the lessons learned from previous automation tools and how they have
been implemented in this tool. In addition this tool has revealed challenges in software
implementation, testing, and user education. This paper describes some of these challenges
and invites others to share their experiences.

I. Introduction
ission Design and Navigation at the Jet Propulsion Laboratory (JPL) has implemented an automation
framework tool named TARDIS (Traceable Automation with Remote Display and Interruptible Scheduler).

This ground software tool is intended to facilitate increased automation for orbit determination, maneuver design,
and other orbit analysis. While many JPL scenarios require human ingenuity, there are other scenarios that are
amenable to automation. One of the first users of this tool will be the Soil Moisture Active Passive (SMAP) orbit
determination team. This software is designed to allow users to specify the tasks to be executed and specify the
types of events that will trigger the creation of the tasks. The implementation of TARDIS also included testing and
implementation challenges that may be common to other software automation efforts. Some of the challenges
include duplication of test anomalies, methods for file detection, and integrating automation and security. This paper
will provide an overview of this software including the background of previous automation implementations,
requirements that we learned from those implementations, implementation details for TARDIS, and testing results.

II. Background
There have been various implementations of automation for orbit determination within Mission Design and

Navigation at JPL. Over the last twenty years, there have been six notable instances that were used as examples and
lessons for the implementation of TARDIS. These four missions were TOPography Experiment (TOPEX), Gravity
Recovery and Climate Experiment (GRACE), Mars Global Surveyor (MGS), and Mars Odyssey, Mars
Reconnaissance Orbiter (MRO), and Mars Science Laboratory (MSL).

The TOPEX spacecraft launched in 1992 into low orbit to measure the surface topography of the Earth’s
oceans1. JPL was responsible for orbit determination in support of scheduling, sequencing, and long-term orbit
maintenance. There were no specific navigation targets in terms of a specific place at a specific time. Due to the
operations scenario and the knowledge of the Earth’s environment, the team automated a significant portion of the
orbit determination process. They encoded the process into a monolithic script that was invoked via the UNIX cron
facility. This system worked well for a two or three member team with no intention of re-using the software for a
future mission.

The two GRACE spacecraft have been in a polar orbit measuring the Earth’s gravity field since 2002. JPL
conducted orbit determination on a daily basis to evaluate the performance of the end-to-end measurement system.
A customized application that implements the orbit determination process in multiple tasks was created to support
an extremely small number of operators. The application is constantly running and includes internal pauses. After an
internal pause, it evaluates which files are ready for processing and which tasks should act on them. This application

1 Navigation System Engineer, Jet Propulsion Laboratory, California Institute of Technology, MS 301-121, 4800
Oak Grove Drive, Pasadena, CA, 91109.
2 Engineering Applications Software Engineer IV, Jet Propulsion Laboratory, California Institute of Technology,
MS 301-121, 4800 Oak Grove Drive, Pasadena, CA, 91109.

M

2

creates the orbit determination solution, evaluates parameters against tolerance values, notifies the operator of any
anomalies, and prompts the operator to review the results & finalize the task via a Web interface.

The MGS and Odyssey spacecraft launched in 1996 and 2001 on missions to explore Mars. These teams adopted
a similar strategy to coordinate task creation via the Unix make function. This function allowed them to define tasks
based on the appearance and creation of files. In addition, users can define branching functionality via the creation
of different files based on the outcome of a task. For example, a ‘success,txt’ file can prompt a subsequent process
while an ‘error.txt’ file can prompt a messaging task.

The MRO spacecraft launched in 2005 and currently orbits Mars collecting global imaging, spectral, and radar
data. As the Navigation team learned more about the behavior of the spacecraft and its interactions with Mars, they
created a process to execute every morning. This quicklook process was designed to provide analysts with
information as they started their daily work. The implementation is a monolithic script that is operated via cron. The
recent MSL Navigation team created a very similar process to aid them in their work.

Some common features are evident in these previous implementations of automated orbit determination: the use
of cron, the use of make and highly customized implementations. Many of them used the UNIX cron facility via an
individual analyst’s computer account. Cron is well documented and is easy for an individual user to implement.
However, there are a variety of limitations that we were interested in addressing. First, only one team member can
administer the cron job. If a user leaves the team or takes an extended vacation, other team members are limited in
their ability to administer the automation. Second, files appear to be created by this user, even though they were
intended to be created on behalf of the team. If one wants to examine the products created by the team it will be
difficult to discern which items were created by the team member via manual processing and which were created by
the automation. Third, a convoluted polling scheme is required if the team wants to run the analysis when files
appear. One would need to configure the cron facility to invoke software that would evaluate the filesystem. This
evaluation would need to reference a database of previously ‘discovered’ files and be able to append newly
discovered files to the database. Cron is not designed to detect the appearance of a file; it is designed to detect the
crossing a time boundary. Fourth, if a process takes an extended time to complete, the cron facility may create a
second process that might inadvertently interact with the first process.

Other teams used the UNIX make facility. Make is also well documented and many analysts can learn the syntax
with some practice and attention. Unfortunately make had a significant drawback because it cannot start itself based
on a file appearance. A user needs to invoke make in some fashion for it to evaluate the status of the files. Some
users did combine make and cron to create a daily orbit determination solution.

These implementations are also highly customized. They are written by the analysts for their exclusive use and
only they know how to operate them. The software expertise behind these implementations varied widely and this
fact resulted in uneven code sophistication and documentation. The result was that only operators who were deeply
familiar with them could make changes. These implementations were also very difficult to port to a new mission or
new task. There were a large number of mission-specific choices and assumptions that were embedded into the
implementations. Unfortunately these choices made significant reuse practically impossible and subsequent missions
would spend resources (time, money, focus) on a new implementation.

III. Design
As the Soil Moisture Active Passive mission was being designed at JPL, Mission Design and Navigation

recognized there was an opportunity to design a multi-mission process automation tool that benefited from the
previous experiences. The SMAP mission is an Earth orbiting mission intended to increase our knowledge of the
Earth’s water. This type of mission is amenable to automation of the orbit determination process because of the high
knowledge of the Earth’s environment and high observability of orbit due to the tracking station-spacecraft
geometries. Each tracking pass observes a significant amount of the spacecraft’s argument of latitude as compared to
a deep space mission. A parallel Misison Design and Navigation institutional effort to advance automation was also
completed as the SMAP design was beginning. A prototype of various automation functions had been created and
was demonstrated to navigators. The TARDIS system requirements were derived from the Mission Design and
Navigation automation prototype and the SMAP mission design.

Clearly one of the key elements of automation is the ability to create user-defined tasks. The operators need to be
able to define what actions need to be taken. For TARDIS, this can be a script stored inside TARDIS or it can be a
script or progam stored outside it. In the first case, TARDIS provides a graphical user interface to allow the user to
place a script into TARDIS’s internal database. When the script is needed, TARDIS places it on a filesystem in a
unique directory and executes it. In the second case, the user gives TARDIS a command line string that it will later
use to invoke a script or program already present on the filesystem.

3

We identified three types of events that should be detected by TARDIS and used to create a task. The first is the
occurrence of a time. For example, a task can be executed every morning at 5am to execute a routine script. When
the operators arrive at work, their work products are ready for evaluation, approval, or analysis. The user interface
allows users to input month, weekday, day, hour, and minute fields. Previous automation implementations used cron
and many of the operators are familiar with this style.

The second event is the appearance of a file. Files are often delivered onto a filesystem by a previous process
executed by another team. One example is when a ground station has completed a tracking pass and has delivered a
file. Similarly, a spacecraft team may have finished review of maneuver parameters and placed a file on a fileystem.
TARDIS will detect the appearance of the file and create a task to process the file in a pre-determined manner. An
example of this event definition is shown in Figure 1. This task will be created whenever the file ‘sigsolution.boa’ is
created in a numbered directory. In addition, the name of the file is passed to the script via the $1 variable specified
in the command line entry.

The third event is the completion of a TARDIS task. Additional options exist to narrow the specification based
on the name and the success or failure of the completed task. For example, the operator can request that a task be
invoked whenever tasks with the name string ‘orbit’ complete with an error code. This functionality allows the
operators to create sophisticated, custom notification schemes to support their specific mission.

Finally, the operators can mix and match these events. For example, an operator can specify a task to be created
when the input file has been delivered and the time is 6 am. This feature allows an operator to implement a process
in a set of tasks. These tasks will then be invoked in the correct order based on the results of their completion.
TARDIS implements logic to allow complicated nesting and branching of tasks.

TARDIS also allows the user to control specific parameters concerning task execution. The operator can specify
the total number of tasks allowed to operate under TARDIS, their UNIX niceness level, and maximum execution
time. These parameters can be assigned per-task or globally. For example, the operator can specify that only one
task A is allowed to run at any time while three instances of task B are allowed. With these parameters, an operator
can ensure that high priority tasks are given preferential treatment and the computer is not accidentally filled with a
large number of tasks due to operator or data error. An example of the control parameters at the TARDIS level is
shown in Figure 2.

Figure 1: Example of File Event Definition

4

In addition we wanted TARDIS to assist the user in launching tasks in a manual manner. There may be a need
for special processing due to inconsistencies in the input data. Even the best laid plans can have unexpected events
and the ability to manually create tasks is used for these scenarios. The operator is allowed to enter a task definition
and request creation by TARDIS. This feature has been found to be useful during testing. An operator may have a
set of scripts to be implemented via TARDIS and there are some integration details to be finalized. The operator will
then invoke a task manually, evaluate the output, make changes, and invoke the task manually again. All of these
invocations will be stored in the TARDIS database with a record of the inputs and outputs.

Another key element of automation is the need to store information about the task results. When a failure occurs
in software operated by humans, diagnosis is typically conducted by visual inspection of output data. An automated
process would not have this benefit; a human is not present at the computer. TARDIS needs to record the results and
allow for inspection of the artifacts at a later time. This functionality is shown in Figure 3. The operator can review
which tasks have been retired, i. e. completed, the corresponding status code, the times of creation and retirement
and more.

Figure 2: TARDIS Control Parameters

Figure 3: Display of Retired Tasks

5

TARDIS runs on a host computer that may encounter sudden problems including power failure, hardware
failure, or others. If one of these problems occurred, clearly all automation would cease as the computer system
administrators address the problem. After the host computer has been returned to service, TARDIS needs to
autonomously start itself, address the status of the tasks that were running just before the interruption, and be ready
to create any new tasks. This functionality was addressed by running TARDIS as two UNIX daemons whose
lifetimes are controlled by UNIX init scripts. Whenever the host computer is returned to service, it will
automatically start the TARDIS daemons.

IV. Software Implementation and Challenges
We used object-oriented design throughout and implemented most of TARDIS in C++, with the remainder

implemented in Python. The C++ portion comprises the core modules and programs, including (a) the database
management system (DBMS) interface, (b) graphical user interface and web capabilities, (c) task definition and
execution, (d) event detection and evaluation, (e) monitor commands, (f) scheduler commands, and (g) system
administration commands. The Python portion provides a library of utility functions to assist any tasks written in
Python.

One important design decision was whether TARDIS's file-based event detection should be polled, event-driven,
or some combination of the two. A polling algorithm is easier to implement but has two main disadvantages. It can
result in long delays before file-based events are recognized, and it can overload a computer that has large
filesystems. An event-driven algorithm is harder to implement but removes these disadvantages. TARDIS
implements an event-driven algorithm that detects files written by the system that is hosting TARDIS. The
additional challenge of detecting files that are written by other computer systems to a common filesystem is a near-
term future improvement. An individual computer knows about the files that it is writing to a common filesystem. It
doesn’t automatically know about files being written by other computers to a common filesystem. The solution is for
the computers to exchange information about the files they are writing.

Another challenge we encountered was the interaction between the goals of increased automation and increased
individual computer accountability. Increased automation improves the reliability of simple systems and enables
individuals to focus their energies on other challenges. Increased individual computer accountability is used to
ensure that computer resources and the records stored within them are used for approved purposes. One result of
individual accountability is the restriction in the use of group accounts. We cannot create a computer account and
provide its password to multiple people. Nor can we implement a software authentication mechanism that essentially
duplicates group accounts. The use of automation on behalf of a team requires attention to the details of both of
these goals. We implemented a solution that allowed all of the team members to control the automation. All of the
actions of TARDIS are logged and all of the files written by the automation are identified as such. This solution
allows the flexibility for the members to act as a team and the accountability to understand the source of each of the
files on the filesystem.

V. Deployment of TARDIS
The TARDIS software and associated libraries are deployed on a virtual machine. The virtual machine emulates

the behavior of a stand-alone computer and is hosted on a computer with virtual machine management software.
This implementation has some significant advantages for Mission Design and Navigation. First, if the routine tasks
have small computational demands, we can achieve cost benefits by implementing many virtual machines on one
server. Perhaps various teams can stagger their ‘daily’ solutions at 15-minute intervals across the 6-o-clock hour.
There is no need to purchase multiple computers for a small amount of computations. Second, if one virtual machine
needs additional computing resources, we can rebalance the virtual machines across multiple servers to ensure that
every mission receives appropriate resources.

A low-demand virtual machine and a high-demand virtual machine can be housed on the same server. The use of
a virtual machine is not obligatory and we have deployed TARDIS to an individual workstation. There is also an
option to deploy multiple TARDIS instances to one computer. Such a deployment requires additional attention to
security because all of the operators with access to that computer will have access to the all of the TARDIS
instances. This may be encouraged for some missions with various sub-teams and may be disallowed when
operators are not allowed to view information from another mission. For example, many Mars orbiter navigators are
all on the same teams and are permitted to view each other’s work. A counter example is a team that has a foreign
national analyst who is only permitted to view a very specific range of information; therefore this team’s TARDIS
instance needs to be on a separate virtual machine.

6

VI. Testing and Results
The TARDIS team conducted testing in four campaigns. First, a standard, unit-testing approach was used to test

functions, classes, modules, programs, and program sets. This allowed most bugs to be caught as early as possible
while eventually ensuring correct operation of multiple programs working together. Second, a set of task definitions
were written to test various use cases in simulated user environments, including significant features, edge cases, and
stress tests. In addition to helping us catch more bugs, some of these task definitions also served as examples for the
User's Guides. Third, the MRO quicklook process was implemented via TARDIS to shadow the operations process.
An orbit determination solution was conducted every day and compared to the operations orbit determination
process. This test used files from the operations process and allowed users to experience how the automation may
interact with their process. Finally, simulated tracking data was created for the SMAP mission. This data was
processed through the SMAP TARDIS process. A result of this testing was the detection of various straightforward
bugs that were addressed. Other results of the testing are discussed elsewhere in this paper; for example the topic of
human evaluation is addressed below and the topic of access control was addressed previously.

The TARDIS system presents challenges for the investigation of testing anomalies. Mission Design and
Navigation typically writes single-threaded non-interactive software to implement orbit analysis mathematics. This
single-threaded type of software using file-based inputs is deterministic and easily repeatable. When a user
encounters unexpected behavior, he can typically copy all of the relevant files to an area where the software
developer can immediately duplicate the behavior. TARDIS is quite different. There are a variety of interleaved
inputs from the multiple users, operating system, and iterative behaviors within the software and tasks. A one-for-
one duplication of software errors can be extremely difficult. The logging system was designed to increase the
potential for recording the possible sources of errors and provide information to help the developer find and fix
bugs. We found ourselves constantly balancing the need for more logging information to support testing and the
need to keep the logging concise to support readability and to avoid overwhelming system resources.

The implementation of an automated process at the start of a mission created a discussion point for the operators
concerning the appropriate level of the human evaluation. Previous orbit determination processes used human
operators to create and review the solutions. A person was trained to review convergence criteria, check for bad data
points, etc. Whenever a task is automated, one needs to spend a non-trivial amount of time thinking, discussing, and
deciding on the appropriate level of human intervention. This topic was out of the scope for the software
implementation because users can design their processes to have human intervention whenever they want. Any
automation tool will benefit from a thoughtful discussion about the appropriate level of human evaluation and
control.

VII. Future Uses and Enhancements
The SMAP mission is on track to use an automated orbit determination process for the science mission. The

team has evaluated previous automation implementations, created the TARDIS implementation, tested TARDIS in
multiple test scenarios, and integrated TARDIS into the mission plan. SMAP will launch in November 2014 and
orbit determination will be conducted for a brief few months with significant human oversight. The goal in this
period is to tune the parameters and process for the actual SMAP specific environment. During this mission phase,
the operators will create manual orbit determination solutions and TARDIS will create automated solutions. These
manual and automated solutions will be compared to evaluate the performance of the automation. The spacecraft
will transfer into the science orbit and the automated process being run by TARDIS will be used for routine orbit
determination.

Other teams within Mission Design and Navigation are evaluating TARDIS. These teams include the Cassini
Navigation team, MRO Navigation team, and the Mars and Lunar Collision Avoidance evaluation team2. All of
these teams have processes that matured over time and may be amenable to automation. The two navigation teams
have each operated their spacecraft for over a decade and they have gained significant knowledge about their
respective spacecraft and the space environment within they operate. The Mars and Lunar Collision Avoidance
evaluation team has the task of calculating close approaches of spacecraft at Mars and the Moon based on
trajectories provided by the respective missions. The calculations are fairly straightforward and need to be
conducted on a regular schedule. Clearly this is a task that is amenable to automation and this team is currently
evaluating TARDIS.

For each deployment above, TARDIS operates within one virtual machine and it is able to detect the appearance
of a file that is written on that virtual machine. Typically a file is written by this virtual machine onto a mounted
filesystem. We have architected a design to allow TARDIS to detect files that have been written by other computers
onto the same filesystem. Oftentimes a team will receive deliveries of files from outside teams via a mounted

7

filesystem. This feature will allow more flexibility in the automation and will also provide more robustness in the
event of hardware or software failure. Unfortunately, this feature did not fall within the scope and resources for this
initial deployment. This limitation means that when an outside team needs to deliver a file to the SMAP Navigation
team, this file needs to be imported via the local computer that is hosting TARDIS. This can be accomplished via a
push from the outside team or a pull from the local computer; either operation causes the TARDIS computer to write
the file. This limitation is acceptable for the SMAP team because of the inherent separation of the SMAP Navigation
team from the SMAP project repository, and because the SMAP Navigation team is using the Mission Design and
Navigation multi-mission infrastructure.3

Another future feature is the idea of using mobile phones to monitor the progress of the automated processes.
One can imagine a world where a user can launch a mobile application and view simple information. Some example
questions from the users are “have my input files been delivered?”, “did the processing stop with an error?”, and
“are my products available for human review?”

Over time we expect the users of TARDIS and other automation tools will become more experienced and use
these tools for more of their processes. Mission Design and Navigation employs many people who will experiment
in unexpected ways. They sometimes provide scenarios that would have been difficult to predict. We will reach out
to our users and encourage anyone who uses automation tools to provide feedback about their positive and negative
experiences with these tools.

VIII. Conclusions
Automation is an ongoing process; in this paper we shared our experiences and we’d like to hear about the

experiences of others. Mission Design and Navigation has collected the lessons from previous automation efforts
and turned them into a multi-mission tool to be used by multiple missions. The challenges have been across many
topics including software implementation, testing, and human evaluation of automation products.

As a result of this hard work, we now have a multi-mission tool that operators can use to automate the creation
and logging of their tasks. The operators can have confidence that the computer will conduct analyses for them at
specified times, when files appear, or when tasks complete. They can show up at work with a head start on the issues
that need human intervention and be relieved of the tedium of waiting for the computer to finish. Finally, they can
go on vacation with confidence. They know that their fellow operators are fully trained on the use of the automation
and have institutional assistance whenever they have questions.

Acknowledgments
This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a

contract with the National Aeronautics and Space Administration.

References
1 Cangahuala, L. and Muellerschoen, R., Yuan, D., Christensen, E., Graat, E., and Guinn, J., “TOPEX/Poseidon
Precision Orbit Determination With SLR and GPS Anti-Spoofing Data”, GPS Trends in Precise Terrestrial,
Airborne, and Spaceborne Applications, vol 115, Springer Berlin Heidelberg, 1996. p. 123-127.
2 Berry, D. and Guinn, J., Tarzi, Z., and Demcak, S., “Automated Spacecraft Conjunction Assessment at Mars and
the Moon,” Proceedings of SpaceOps 2012.
3 Gerasimatos, D. and A. Attiyah, “Engineering a Multimission Approach to Navigation Ground Data System
Operations,”SSC/DLR/AIAA SpaceOps 2012, Stockholm, Sweden: 2012.

