

American Institute of Aeronautics and Astronautics

1

Using Modern Methodologies with Maintenance Software

Barbara A. Streiffert1 and Laurie K. Francis2
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 USA

Benjamin D. Smith3
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 USA

Jet Propulsion Laboratory uses multi-mission software produced by the Mission
Planning and Sequencing (MPS) team to process, simulate, translate, and package the
commands that are sent to a spacecraft. MPS works under the auspices of the Multi-Mission
Ground Systems and Services (MGSS). This software consists of nineteen applications that
are in maintenance. The MPS software is classified as either class B (mission critical) or class
C (mission important). The scheduling of tasks is difficult because mission needs must be
addressed prior to performing any other tasks and those needs often spring up unexpectedly.
Keeping track of the tasks that everyone is working on is also difficult because each person is
working on a different software component. Recently the group adopted the Scrum
methodology for planning and scheduling tasks. Scrum is one of the newer methodologies
typically used in agile development. In the Scrum development environment, teams pick
their tasks that are to be completed within a sprint based on priority. The team specifies the
sprint length usually a month or less. Scrum is typically used for new development of one
application. In the Scrum methodology there is a scrum master who is a facilitator who tries
to make sure that everything moves smoothly, a product owner who represents the user(s) of
the software and the team. MPS is not the traditional environment for the Scrum
methodology. MPS has many software applications in maintenance, team members who are
working on disparate applications, many users, and is interruptible based on mission needs,
issues and requirements. In order to use scrum, the methodology needed adaptation to
MPS. Scrum was chosen because it is adaptable. This paper is about the development of the
process for using scrum, a new development methodology, with a team that works on
disparate interruptible tasks on multiple software applications.

I. Introduction
HE Mission Planning and Sequencing (MPS) group, an element of Multi-Mission Ground Systems and Services
(MGSS) at Jet Propulsion Laboratory (JPL), has developed software to plan, simulate, translate and package

spacecraft commands and activities for science and engineering. The activities include observations, experiments,
calibrations, maneuvers, etc. This software is in maintenance even though it is regularly updated to meet the
specifications of newer spacecraft capabilities. MPS maintains nineteen applications that are NASA rated Class B
(mission critical) or Class C (mission important). Software components that simulate the state of the spacecraft
based on the commands that are being scheduled or translate and package the commands are considered class B
because if they produce incorrect results the spacecraft could be damaged. Software elements that edit the
commands or plan activities are considered class C because they aid in development of the command generation, but
are not the final constraint checking software that is used. Figure 1 provides a functional diagram of the MPS
maintenance applications. The color-coding indicates the component and the inputs for the component and its
outputs. Since the software is being used on spacecraft that are currently flying as well as spacecraft that are in

1 Software Systems Engineer, Multi-Mission Planning and Sequencing, 4800 Oak Grove Dr. Pasadena CA 91109
M/S 301-250D.
2 Software Systems Engineer, Multi-Mission Planning and Sequencing, 4800 Oak Grove Dr. Pasadena CA. 91109
M/S 301-250D.
3 Mission Planning and Sequencing Element Manager, Multi-Mission Planning and Sequencing, 4800 Oak Grove
Dr. Pasadena CA. 91109 M/S 301-250D.

T

American Institute of Aeronautics and Astronautics

4

Figure 3. Burn Down Chart in hours.

There is one additional tenant that is part of Scrum basics and that is the concept that Scrum is adjustable and
must meet the needs of the team. The use of Scrum and its various tenants must make sense in any situation.

III. MPS Scrum
MPS core software and the core software team doesn’t fit the normal Scrum development environment.

Generally, a Scrum team works on a single software product and often those products are in new development. The
MPS core team consists of nine people including software engineers, testers and systems engineers for all nineteen
core software components. All nineteen are in maintenance. Each of the software engineers is responsible for
multiple components. Each of the components is a separate product that is significantly different from the other
components. The components work together in a mostly linear process and fall under the following categories:
planning, simulation, packaging and various utilities that enable the other three categories to work more seamlessly.
The bottom line is that each product is very different from the others. They perform separate tasks and are written in
multiple languages including scripting languages and some utilize browser capabilities. These differences make it
difficult to swap or add software engineers to tasks for other components than the ones that they are responsible for.
Figure 4 shows the categories and the placement of the components into their respective categories. Another
difference for MPS is that missions take priority. If a mission finds a problem with one of the components, that issue
takes precedence over any other work the software engineer, system engineer or tester is working on. Having the
software engineer able to work on the chosen task for an entire Sprint is one of the major tenants for Scrum because
it increases productivity.

In order to figure out how MPS could tailor Scrum to fit MPS’s needs, the MPS manager, the system engineer
and the test engineer attended a Scrum Master Certification course. The instructor specializes in training people to
be Scrum Masters and Product Owners. The instructor made several suggestions for the MPS situation. He
suggested that the team only be tasked at a percentage of their time to account for the fact that they could be
interrupted by mission needs. In this way the Sprint would not have to be interrupted. In addition, he indicated that
Scrum was meant to be flexible to meet the needs of those using it. He also suggested that the team tailor Scrum to
meet the MPS needs, but to try to stick to the basic tenants of Scrum including the roles of a Scrum Master, a
Product Owner and the team along with the prescribed meetings (the Planning Meeting, the Retrospective, and the
Standup) and the concept of the Sprint. Everything else could be tailored.

American Institute of Aeronautics and Astronautics

5

Figure 4. The process categories and components placement in the categories.

MPS began to experiment with Scrum. The MPS Core System Engineer who meets with all the end users

became the Product Owner and one of the Test Engineers became the Scrum Master. MPS uses Jira, a commercial
issue tracking software, to track the MPS issues. Initially the Jira issues chosen for the Sprint were transcribed onto
3x5 cards and placed on a cork board. The cork board was divided into three columns (“In Progress”, “Dev
Complete” and “Done”). Jira contains the backlog. MPS started with two week Sprints. For the planning meeting the
Jira issues were displayed and the cognizant software engineer for each product chose the issues with the highest
priority that would be able to be completed in the two weeks. Figure 5 is the original cork board (minus the tasks).
MPS also decided to use the burn down chart from Greenhopper, a commercial tool that is implemented by
Atlassian, the company that produces Jira. Figure 6 is an early Greenhopper burn down chart.

Figure 5. The original cork board used for Standups.

 Planning

Command
Simulation/
Execution

Command
Packaging

Editing
Viewing
Utilities

Automatic Sequence Checker
Client/Server, MPS Editor

Event Viewer, Uplink Summary
Event Sorter, Command Translation Communication

Science, Engineering and Navigation Planning

Command Simulation
Ground Sequence Engine Execution
Flight Sequence Execution Engine

Command Translation
Command Packaging
Sequence Compiler

Categories: Components:

American Institute of Aeronautics and Astronautics

6

 Figure 6. A picture of an early burn down chart by hour.

At the end of the Sprint, a demonstration of the work completed in the Sprint is to be scheduled. Since all of the

components are in maintenance the changes to the software are typically quite small. Often the tasks are bug fixes.
The demonstrations are held after an accumulation of work that can be demonstrated. In addition,
engineering/evaluation deliveries to mission customers occur frequently usually varying from one month to three
months based on need and interest. Finally, larger modifications are demonstrated to the system engineer and the test
engineers by the end of the Sprint.

At the retrospective at the end of each Sprint, the team goes over the Sprint activities to keep, the ones to change
and the ones to work. The team has changed many aspects from how each sprint is named to how each sprint is
documented. By the second retrospective, the decision to move to longer four week Sprints was made. Within the
first two months the standup categories were changed to “To Do”, “In Progress” and “Done”. Later tasks became
stories as long as there were multiple sub-tasks to be implemented. If the task is a “bug”, then the bug issue is the
story. All coding tasks require a “verify” test sub-task. The definition of this task is to create the automatic test that
is used to verify that the coding task is correct. The verification of the software changes occurs during various
testing periods. JPL works a 9-80 work week so that every other Friday is considered a day off. It has been decided
to eliminate standups on Fridays. Some teams don’t have sprints during the system test cycle before a delivery. MPS
has decided to keep standups during the test cycle so that everyone on the team knows of any difficulties that have
occurred during test and everyone knows what components are in the official test cycle. However, it was decided to
only meet on Mondays and Wednesdays during the test cycle. Because of the volatile nature of needing to support
missions, it was determined that tasks could be added to the Sprint as long as it is determined that the new task can
be completed within the current sprint as well as the original tasks or a task of similar duration must be removed.
This last item has caused some difficulties, but has worked out in many cases. The burn-down charts have been
changed from tracking hours to tracking issues. Figure 7 shows a burn down chart where additions have created
chaos during the sprint. The second chart (Figure 8) shows a much better outcome. Also within the first few months
Greenhopper started to be used for standups instead of the 3x5 cards on the corkboard.

American Institute of Aeronautics and Astronautics

7

 Figure 7. A Burn Down Chart for a Sprint that had too many additions to be able to complete the

original set of tasks. The blue line at the bottom of the picture shows the tasks that were added to the Sprint.

Figure 8. A Burn Down Chart for Sprint that has had tasks added, but all the tasks were completed

within the Sprint.

American Institute of Aeronautics and Astronautics

8

A set of wiki pages has been created to track each Sprint. On the wiki pages, the dates of the Sprint, the final
burn down chart, the Jira issues being resolved in the Sprint and the Sprint retrospective results are listed. The
documentation of each sprint has helped to keep track of the changes that have been made in the Sprints and the
Stand ups as well as identifying how much work has been accomplished. The burn down chart lets MPS know how
well (or not) the work went and enables the team to correct elements in the planning that go awry. Figure 9 shows
the initial state of the wiki page for the first sprint of 2014. The task list identifies the task, the assignee and the
status of the task. Even with the modifications Scrum has worked well for MPS.

Figure 9. An initial wiki page for a Sprint.

IV. Current MPS Scrum Process
 The current MPS Scrum Process contains the key aspects of the Scrum Methodology including the roles, the

concept of the Sprints and set of meetings including Standups. However, other elements such as the team’s
scheduling of tasks is different due to the nature of the application. The team members schedule themselves at 50%
so that any mission needs can be addressed without aborting the Sprint. Because of the team member’s time
allocation, software engineers are allowed to add tasks from the backlog if they finish their current set of tasks. Even
with the reduced scheduling there are times that tasks need to be added to the Sprint (another adjustment to Scrum)
because of mission needs. At the time the task is added it is determined if another task has to be removed. Another
change is that the retrospective meeting occurs at the beginning of the planning meeting and is time-boxed to 20
minutes. Scrum often deals in terms of tasks being a given point value. MPS uses issues and time estimates per issue
instead of the point system. The team is more accustomed to assessing tasks in that way. In addition, the process has
moved to an electronic tracking of the tasks with Jira and Greenhopper. Every task is a Jira issue. Some of the tasks
are stories because they have multiple sub-tasks. All coding tasks have at least one testing sub-task associated with
it. The testing sub-task builds the automatic test that verifies the coding task has been implemented correctly. Each
task is assigned to a Sprint or the backlog. Greenhopper is used to display the planning board (all tasks for a given
Sprint) and the task board (the tasks for a given team member). Greenhopper also displays the chart board (see
Figures 7 and 8). Figure 10 displays the Greenhopper planning board, the Greenhopper task board and the MPS
Standup room.

American Institute of Aeronautics and Astronautics

9

Figure 10. Greenhopper planning board, Greenhopper task board and MPS Standup Room.

V. Conclusion
In many aspects MPS doesn’t fit the typical scenario of those using Scrum, however, the flexibility of Scrum has

allowed MPS to tailor it to fit their needs. MPS utilizes the standard set of meetings and keeps the roles, but
modifies the areas where there is built-in flexibility. In general using Scrum has been helpful in the following ways:

1. The estimations of the team on what can be done are better
2. The communication and understanding of the tasks among the team members is better
3. The communication and understanding of the tasks with the system engineer and the test engineers is better
4. Scheduling the work has been easier
5. Adding test tasks has allowed the component automatic tests to be built during development and not at the

end of development.
6. Identifying problems earlier in the cycle so that they can be fixed earlier.

American Institute of Aeronautics and Astronautics

10

7. Allowing customers to know the status of the capabilities to be delivered and to take advantage of early
releases in the form of engineering/evaluation versions.

The MPS Core team has always been and continues to be incredibly professional and productive. Scrum has always
been an experiment and continues to be an experiment – so far a successful one.

Acknowledgments
 The work described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space Administration. This work is funded by
Multi-Mission Ground Systems and Services (MGSS).

	Using Modern Methodologies with Maintenance Software
	I. Introduction
	II. Scrum Methodology
	III. MPS Scrum
	IV. Current MPS Scrum Process
	V. Conclusion
	Acknowledgments

