

American Institute of Aeronautics and Astronautics

1

Model-Based Systems engineering with the Architecture
Analysis and Design Language (AADL) applied to NASA

mission operations

Dr. Michela Michela Muñoz Fernández1
NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109

The potential of Model Model Systems Engineering (MBSE) using the Architecture

Analysis and Design Language (AADL) applied to space systems will be described. AADL
modeling is applicable to real-time embedded systems– the types of systems NASA builds. A
case study with the Juno mission to Jupiter showcases how this work would enable future
missions to benefit from using these models throughout their life cycle from design to flight
operations.

I. Introduction

HE use of Model-Based Systems Engineering (MBSE) techniques could enable more robust and complete
systems engineering and integrated analysis of complex System-of-Systems (SoS) problems. MBSE is the

formalized application of modeling to support system requirements, design, analysis, optimization, verification and
validation, beginning in the conceptual design phase, continuing throughout development and into later life cycle
phases including operations.1

New tools and technologies can be used in future space missions starting at early phases in order to reduce risk.
Avionics systems deployed on spacecraft are required to operate at increasing distances. These distances increase
the latency at which an undesirable operation can be detected and corrected from an Earth ground station, sometimes
more than an hour. When a mission critical event occurs, such as a planetary body insertion, lasting only minutes
and with long transmission latencies, it is necessary for the avionics system to be able to detect and handle faults
autonomously. As avionics systems are becoming more capable, the fault management, especially fault management
in software, becomes increasingly more complex. Characterizing and having confidence in the approach and
implementation to fault management can be challenging. Assurance of these fault management systems is almost
certainly necessary. The objective is to ensure that the system built will conform to requirements and increase
confidence that the system will achieve mission success. Assuming fault management is implemented in the
avionics software, demonstrating confidence in the ability of the avionics software system to properly detect and
respond to faults is paramount.2

II. The Architecture Analysis and Design Language (AADL)

 The SAE AS5506/Architecture Analysis & Design Language (AADL)3 is an architecture description language
for real-time, fault-tolerant, scalable, embedded, modular multiprocessor systems. AADL enables the development
of highly evolvable systems, early and quantitative analyses of a system's architecture, and evolution of an
architecture model for continued analysis throughout the lifecycle. The customers include system architects that

1 Principal Investigator/Systems Engineer, Mission Control Systems/Ground System Architecture and Systems
Engineering, 4800 Oak Grove Dr. M/S: 264-767, AIAA Senior Member.
© 2014 California Institute of Technology. Government sponsorship acknowledged.

T

American Institute of Aeronautics and Astronautics

2

would like to optimize the decision on system architectures and/or any engineer in general that would like to model
embedded systems.
 It is possible to create and analyze component-based models of a task and task interaction architectures of
embedded software, as well as perform predictive analyses of operational characteristics (meeting deadline, response
time, and throughput requirements). AADL models offer a way to make better decisions on system architectures
helping discovering system integration problems early in a development effort.

The following figures show the AADL components, the component interactions, and some standard properties:3,4

Figure. 2 shows some of AADL Standard Properties4:

Figure 2. Example of AADL standard properties4

AADL has both textual and graphical representation as it is described in Fig.3 representing the system

implementation including the subcomponents and connections.

Figure 1. AADL components4

Component Interactions

Connections (explicit declarations)

ports (data and events [control] transfer)
access (to data & bus components)
parameters (sequential subprogram calls)

Calls (explicit declarations & property associations)
subprogram

Bindings (property associations)
software -> execution platform

American Institute of Aeronautics and Astronautics

3

Traditionally
space systems software has been developed without characterizing performance of the real-time system being built
until integration, and at that point finding execution-related issues is costly.

AADL model shows execution interactions between high-level system components
– Enables early quality attribute analyses

AADL reduces possibility of doing rework later in the lifecycle
– Increases confidence at gate reviews, by providing independent, semantically accurate analyses

A. Comparison between AADL and SysML:

AADL7 was born as an avionics-focused domain-specific language and later on was revised to represent and
support a more general category of embedded real-time systems. SysML6 is an extension of the Unified Modeling
Language (UML) intended to support modeling system engineering applications. SysML focuses on the “big
picture” architectural views, whereas AADL addresses the more detailed platform-oriented and physical aspects of
such systems.

At the same time SysML and AADL are mutually complementary:
SysML: standarized language for systems engineering. Provides support for requirements engineering,

traceability, and precise modeling of diverse physical phenomena.
AADL: oriented towards the modeling of real-time embedded systems and includes a comprehensive catalogue

or hardware and software elements common in such systems and their characteristics, allowing relatively precise
and dependable analysis of different system properties such as performance, timing, or power consumption. The
Object Management Group (OMG)9 is working on SysML/MARTE (Modeling And Analysis Of Real-Time
Embedded Systems) alignment to facilitate using SysML with AADL.

SysML AADL

 SysML and AADL

Quantitative Analysis, Hardware-Software
Component Categories, Software to Hardware
Binding

Requirements, Traceability,
Parametric models,
Interactions

Modes/State Machines,
Components/System Blocks, Component
Interactions/Block Flows

Figure 3. Example of AADL textual and graphical representation

American Institute of Aeronautics and Astronautics

4

Figure 4 shows how high-level design blocks in SysML could be mapped into and actual architecture in
AADL5 :

Figure 4. SysML/AADL integrated process5

III. AADL modeling of space systems

8The NASA Exploration Technology Development Program develops long-range technologies to enable human

exploration beyond Earth orbit and also integrates and tests advanced exploration systems to reduce risks and
improve the affordability of future missions. More specificically the Autonomous Systems and Avionics develops
and demonstrates integrated autonomous systems capable of managing complex operations in space to reduce crew
workload and dependence on support from Earth, and technologies will address operations in extreme environments,
efficient ground-based and on-board avionics systems and operations, and cost-effective human-rated software
development

AADL capabilities could help real-time software more prevalent in avionics systems (unmanned aerial vehicles,
spacecraft), operation with limited human interaction or an increased latency in human response, and autonomous
fault detection and repair capabilities are required to respond to off nominal conditions that are encountered.

A. Examples of applications for space systems:

MBSE techniques applied to software quality assurance provide a rigorous framework for the verification and
validation of software systems through the systematic modeling and analysis of formal architecture representations.
This type of framework has been applied to several JPL missions: Mission Data System (MDS) reference
architecture, Soil Moisture Active Passive (SMAP), and Juno. These cases have been studied using AADL3 as a
Model-Based Engineering language for architectural analysis and specification of real-time embedded systems with
stringent performance requirements (e.g. fault-tolerance, security, safety-critical).

The AADL assurance practice framework and several AADL-based analyses were applied to the evaluation of
critical quality attributes of the different missions reference architecture. The results of previous case studies
demonstrate the utility of the practice framework and the AADL-based analyses in addressing the modeling of key
architectural themes and quality assurance with respect to performance, particularly flow latency.

American Institute of Aeronautics and Astronautics

5

As systems have become increasingly software-intensive, new faults and failures are occurring that are not being
addressed by traditional fault tolerance techniques. These failures and system instabilities stem from a lack of
understanding the impact of choices in the runtime architecture of embedded software systems.

The cause of these failures is frequently rooted in undocumented and mismatched assumptions, resulting from
resource sharing of a shared computing platform, and the increasing complexity of component interactions at the
functional and non-functional level. Problems of these types are often discovered during system integration and
operational test due to the lack of system-level quantitative analysis of the traditional practice of build first, then
integrate and test. MBSE techniques can provide predictability earlier in the development life cycle reducing risk
and cost.

Some examples of impacts of software integration include the following:

1) Units, range, delta, base value (Ariane 4/5)10: Ariane 5 was designed by the European Space Agency (ESA)
as a replacement for the successful Ariane 4 launcher. The intention was to create a reliable, high capacity,
launch vehicle for ESA that could be used to support their contribution to the International Space Station as
well as a range of other commercial and scientific launches. On June 4, 1996 the unmanned Ariane 5 rocket
exploded just forty seconds after its lift-off from Kourou, French Guiana. The rocket was on its first
voyage, after a decade of development costing $7 billion. The destroyed rocket and its cargo were valued at
$500 million. A board of inquiry investigated the causes of the explosion and in two weeks issued a report.
It turned out that the cause of the failure was a software error in the inertial reference system. Specifically a
64 bit floating point number relating to the horizontal velocity of the rocket with respect to the platform
was converted to a 16 bit signed integer. The number was larger than 32,767, the largest integer storeable in
a 16 bit signed integer, and thus the conversion failed.

2) Migration of embedded applications to different runtime architectures and hardware can result in unexpected
latency jitter that can lead to instability of control systems. There was a case for the F16, where the jitter
showed up as blurriness of target symbols on the cockpit display.

3) Mars Pathfinder, priority inversion was detected through system analysis as the root cause of system crashes.
Since the deployed system included support for priority ceiling protocols, the problem could be remotely
addressed and an otherwise failed mission completed successfully.

Potential applications in IV&V would include space flight and ground systems software assurance modeling for

the human exploration program where assurance is critical for the survival of the crew. As en example for EFT-1
(Exploration Flight Test 1-first planned uncrewed test flight of the Orion Multi-Purpose Crew Vehicle), AADL’s
capabilities would enable modeling of systems comprised of hardware and software subsystems connected to each
other via hardline and RF communications links that support the exchange of critical data such as Commands
(CMD), various forms of Telemetry (e.g., Operational, Developmental, Engineering), File Exchanges, Primary and
Dissimilar Voice, Video/Motion Imagery, Time.

Figure 5: Exploration Test Flight 1, EFT-1. Image credit: NASA.gov

American Institute of Aeronautics and Astronautics

6

B. Case study of an application to a flight mission -The Juno mission to Jupiter:

Figure 6. Juno Earth Fly-By, 2013

Figure 7. Juno spacecraft at LMSS. Image credit:
Caltech, NASA JPL/LMSS

The Juno11 spacecraft launched aboard an Atlas V-551 rocket from Cape Canaveral, Fla., on Aug. 5, 2011, and

will reach Jupiter in July 2016. Juno uses a spinning solar-powered spacecraft in a highly elliptical polar orbit that
avoids most of Jupiter's high radiation regions. The designs of the individual instruments are straightforward and the
mission does not require the development of any new technologies. Juno will improve our understanding of the
solar system's beginnings by revealing the origin and evolution of Jupiter. Underneath its dense cloud cover, Jupiter
safeguards secrets to the fundamental processes and conditions that governed our solar system during its formation.
As our primary example of a giant planet, Jupiter can also provide critical knowledge for understanding the
planetary systems being discovered around other stars. With its suite of science instruments, Juno will investigate
the existence of a solid planetary core, map Jupiter's intense magnetic field, measure the amount of water and
ammonia in the deep atmosphere, and observe the planet's auroras. Juno will let us take a giant step forward in our
understanding of how giant planets form and the role these titans played in putting together the rest of the solar
system. JPL manages the Juno mission, which is part of the New Frontiers Program managed at NASA's Marshall
Space Flight Center in Huntsville, Ala. Lockheed Martin Space Systems, Denver, built the spacecraft. Launch
management for the mission is the responsibility of NASA's Launch Services Program at the Kennedy Space Center
in Florida.

Juno's scientific payload includes the following instruments:

A gravity/radio science system (Gravity Science)
A six-wavelength microwave radiometer for atmospheric sounding and composition (MWR)
A vector magnetometer (MAG)
Plasma and energetic particle detectors (JADE and JEDI)
A radio/plasma wave experiment (Waves)
An ultraviolet imager/spectrometer (UVS)
An infrared imager/spectrometer (JIRAM)
The spacecraft also carries a color camera, called JunoCam, to provide the public with the first detailed glimpse of
Jupiter's poles.

An AADL model of the Juno flight system was performed using AADL. The model captures the

telecommunications, science, C&DH, and flight software systems. Having an AADL model in place at earlier
phases of the mission helps support the mission teams from the beginning and during development, especially in
preparation for science operations by acquiring deep understanding of operational needs for the instruments, ground
systems interface for ATLO (Assembly Test and Launch Operations) tests, especially downlink data flow, support at
Cape Canaveral for instrument activities and launch campaign.

American Institute of Aeronautics and Astronautics

7

Figure 8. Juno spacecraft and its instruments

In this case, the model was developed after the initial Juno instrument checkouts. It was observed that during
some of the instrument checkouts there were command errors. One of the questions to be answered by modeling the
Juno spacecraft was how to avoid or minimize Juno command errors. By modeling the Juno spacecraft and applying
new tools, errors would have been revealed in real time as it was demonstrated by performing AADL modeling with
regards to the following analyses:

End to end data flow: data latency analysis-> revealed scenarios where commanding errors can occur.
Data generation and memory analysis revealed the scenario when data overflow would occur- could have
prevented loss of science data.

Figure 9 captures part of the Juno science system showing two of the instruments and their connections:

American Institute of Aeronautics and Astronautics

8

Figure 9. Caption of part of the science system for the Juno AADL model

B.1. Software Architecture Modeling and Assurance with AADL for the JPL Juno Project-data latency
analysis (proof of concept):

JADE Mass Memory Overflow during High Voltage Checkout (ISA 50603, criticality 3)

During the activities to close out the day on 11/17, the configuration for the JADE instrument was changed from
LVENG to HVENG after discussion with the Mission Manager: the jad_hveng_hvenable.log sequence was sent at
04:13, which put JADE in a mode which produced telemetry at approximately 18 kbps. This filled their 541 Mbits
soft partition (SP07) at approximately 12:43 UTC. The question of data rate production rate in the new configuration
was asked, but was not answered or not answered properly. The new configuration produced data which overfilled
the instruments memory partition leading to remaining data being discarded.

• Immediate fix: Start of activities on day 5 was delayed for 75 minutes while the memory partition emptied
enough to proceed with commanding, and a determination was made that the JADE instrument and
spacecraft were in an state to proceed with the day’s activity. The error triggered a separate anomaly, which
added to the delay, but was found to not interfere with continuing checkout (ISA 50604 Discarded Frames
and Data Volume for SP07 Much Greater than Production Rate).

• Proximate cause: Command Product content not fully understood/communicated for use at different time.

Running the model would have helped in making the right decision regarding changing the data production rate
during JADE high voltage checkout. The data latency reliability plugin could have been run in real time and it
would have revealed the data overflow that was going to happen 8hr 20min 55sec later (before the next downlink
could occur) as it is shown in Fig. 10 below.

Beginning and end of track for day 322:

• DOY BOT (UTC) EOT(UTC)
• 322 17:30 04:20

JADE command error could have been avoided preventing loss of science return. Figure 10 shows the instance with
the Juno model after running the data latency analysis:

American Institute of Aeronautics and Astronautics

9

Figure 10. Juno data latency analysis

Future work int his area would include refining the Juno model and provide it to the instrument teams (IOTs)

with a GUI in order for them to run it with different scenarios before the plan to make a change in a sequence that
for example would change the data rate or any other parameter of relevance to the specific science mode used. The
AADL model would be a tool that would allow the principal investigators and engineers an additional way to
ensure that the instruments will be safe as well as help prevent any loss of science date during once Juno reaches
Jupiter in 2016.

C. The AADL Error annex:

AADL has been extended to model fault management behavior through the AADL Error Annex3,7, also an SAE
standard. The Architecture Analysis and Design Language and the AADL Error Annex can be used to assure
dependability in the software fault management system in an avionics, real-time embedded systems. It enables
modeling of different types of faults, fault behavior of individual system components, modeling of fault propagation
affecting related components in terms of peer to peer interactions and deployment relationships between software
components and their execution platform, modeling of aggregation of fault behavior and propagation in terms of the
component hierarchy, as well as specification of fault tolerance strategies expected in the actual system architecture
Supports qualitative and quantitative assessments of system dependability, i.e., reliability, availability, integrity
(safety, security), and survivability, as well as compliance of the system to the specified fault tolerance strategies
from an annotated architecture model of the embedded software, computer platform, and physical system.

 The “Fault Coverage” analysis3,7 can help uncover any missing propagation. Using the “Fault Coverage” tool2,
it can be determined if the software system is not handling the appropriate propagations.

The Error Annex was used to perform some analyses on the instance of the Juno model, the figure below lists a
subset of the information provided in the detailed output generated by the “Fault Coverage” :

American Institute of Aeronautics and Astronautics

10

Table 1 - Actual Error Propagations in Juno case study

Table 1 lists a subset of the information provided in the detailed output generated by the “Fault Coverage” tool.

There are four total out propagations occurring in the system, taking into account the binary relationship defined by
the AADL Error Annex dependency rules. The “Propagation” column in Table 1 lists all the out propagations by
name, found in the error model. The propagations in red indicate that they are not handled by the destination. The
first row shows the only binary pair in this listing where the propagation is unhandled. With the issue uncovered, a
solution can be implemented. A mechanism is required to handle the incoming propagation “corrupt_seq.” Simply,
an in propagation of the same name must be declared in the appropriate error model and applied to a transition.
Executing the “Fault Coverage” tool a final time produces the desired result. The percent of actual propagations
becomes unhandled by the destination becomes 0%.

Error propagation with AADL:

Errors can propagate between software components and execution platform components they are bound to. The

keywords processor, bus, virtual processor, virtual bus, memory, and device are used to identify the binding point of
a software component with the execution platform component it is bound to. The keyword binding is used for
connections and virtual buses to identify their binding to execution platform components. The keyword bindings is
used in execution platform components to identify the binding point of components bound to them.

IV. Conclusion
It has been shown how AADL can be applied to space missions and a case study was described with the Juno

mission to Jupiter. Information flow model and data latency analyses were performed. The particular value of this
analysis to Juno was to help model the science collection and data downlink rate. Furthermore, analysis results show
how some Juno command errors could have been avoided if the AADL model had been in place before the Juno
instruments checkout activities. By modeling the Juno spacecraft and applying new tools, some errors could have
been revealed in real time. Some of the analyses that were performed for the Juno mission included: end-to-end data
flow and data latency that revealed where command errors can occur. Data generation and memory analysis revealed
the scenario when data overflow would occur which could have prevented loss of science data. Analysis results
show the potential that AADL has in order to model flight and ground systems architecture applied to space
operations. This work could be extended to model missions such as Mars2020 or Europa.

Acknowledgments
The work described in this presentation was carried out by the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space Administration. This work was funded under
the NASA Office of Safety and Mission Assurance (OSMA) Software Assurance Research Program (SARP).

Source	
 Rule	
 Destination	
 Propagation	

Jno telecom.sdst.sdst_a
(device) D14	
 Jno bus1553 (bus)

corrupt_seq

(Missing In)
Jno
cdh_a.FSW.io.mmm_mgr
(thread) D16	

Jno cdh_a.FSW.payload.jade_io
(thread) corrupt_cmd

Jno cdh_b.FSW.io.ms1553
(thread) D16	

Jno cdh_b.FSW.payload.junocam_cmd
(thread) 	
 corrupt_cmd	

Jno cdh_b.FSW.io.ms1553
(thread) D16	

Jno cdh_b.FSW.payload.mwr_cmd
(thread) 	
 corrupt_cmd	

American Institute of Aeronautics and Astronautics

11

Special thanks to Allen Nikora and Lisa Montgomery for their management and support of the SARP program at
JPL.

References
1INCOSE Systems Engineering Vision 2020. INCOSE-TP-2004-004-02. September 2007.
2Evensen, Kenneth D., Michela Muñoz Fernández. “Assuring Software Fault Management with the Architecture
Analysis and Design Language.” AIAA Infotech@Aerospace. 19 - 21 June 2012. Garden Grove, CA.
3Model-Based Engineering with AADL, Peter H. Feiler, and David P. Gluch. SEI, Carnegie Mellon. 2013.
4Dave Gluch, Model-Based Software Assurance with the SAE Architecture Analysis & Design Language
(AADL), September 2008.
5SysML and AADL, patterns for integrated use. J. Hugues, P. de Saqui-Sannes, ISAE.
6SysML, http://www.sysml.org
7AADL, http://www.aadl.info/aadl.currentsite/
8 NASA Ground Systems Development and Operations Program. http://go.nasa.gov/groundsystems.
9OMG. http://www.omg.org
10Ariane 5 Software problem. http://www.vuw.ac.nz/staff/stephen_marshall/SE/Failures/SE_Ariane.html
11NASA Juno website: http://www.nasa.gov/mission_pages/juno/multimedia, Juno mission status updates:
http://missionjuno.swri.edu/news

