

American Institute of Aeronautics and Astronautics

1

A Multifaceted Approach to Modernizing NASA’s
Advanced Multi-Mission Operations System (AMMOS)

System Architecture

Jeff A. Estefan1 and Brian J. Giovannoni2
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109

The Advanced Multi-Mission Operations Systems (AMMOS) is NASA’s premier space
mission operations product line offering for use in deep-space robotic and astrophysics
missions. The general approach to AMMOS modernization over the course of its 29-year
history exemplifies a continual, evolutionary approach with periods of sponsor investment
peaks and valleys in between. Today, the Multimission Ground Systems and Services
(MGSS) office—the program office that manages the AMMOS for NASA—actively pursues
modernization initiatives and continues to evolve the AMMOS by incorporating enhanced
capabilities and newer technologies into its end‐user tool and service offerings. Despite the
myriad of modernization investments that have been made over the evolutionary course of
the AMMOS, pain points remain. These pain points, based on interviews with numerous
flight project mission operations personnel, can be classified principally into two major
categories: 1) information-related issues, and 2) process-related issues. By information-
related issues, we mean pain points associated with the management and flow of MOS data
across the various system interfaces. By process‐related issues, we mean pain points
associated with the MOS activities performed by mission operators (i.e., humans) and
supporting software infrastructure used in support of those activities. In this paper, three
foundational concepts—Timeline, Closed Loop Control, and Separation of Concerns—
collectively form the basis for expressing a set of core architectural tenets that provides a
multifaceted approach to AMMOS system architecture modernization intended to address
the information- and process-related issues. Each of these architectural tenets will be
further explored in this paper. Ultimately, we envision the application of these core tenets
resulting in a unified vision of a future-state architecture for the AMMOS—one that is
intended to result in a highly adaptable, highly efficient, and highly cost-effective set of
multimission MOS products and services.

I. Introduction
HIS paper describes a set of core architectural tenets that are intended to drive a future-state transformational
system architecture for the AMMOS. Work has already initiated on a number of AMMOS modernization tasks

that embody some of the core tenets described herein, and in fact serve as the primary source of input to this paper.
The work products and artifacts associated with those modernizations initiatives are scattered in many different
resources and workspaces and not easily accessible to the interested stakeholder. These core tenets are intended to
provide a unifying message for the MGSS program office to help articulate its vision of a future-state architecture
for the AMMOS.

II. The Evolvable AMMOS
In this Section, we review describe the evolutionary approach to AMMOS modernization followed by

identification of mission system customer pain points that remain. These pain points are categorized as either 1)
information-related issues or 2) process-related issues.

1 MGSS Chief Architect, Mission Systems Engineering Section, M/S 264-255.
2 MGSS Chief Engineer, Mission Systems Engineering Section, M/S 264-255.

T

http://ammos.jpl.nasa.gov/

American Institute of Aeronautics and Astronautics

2

A. AMMOS Modernization to Date
The general approach to AMMOS modernization over the course of its 29‐year history exemplifies a continual,

evolutionary approach with periods of sponsor investment peaks and valleys in between. In more recent past—
starting with the formation of the Multimission Ground Systems and Services (MGSS) program office in FY2005—
an even more proactive approach to modernization has ensued under a programmatic mandate to “reinvigorate the
AMMOS” following a period of a drop in modernization investment in the late 1990s and early 2000s1,2 Today,
MGSS actively pursues modernization initiatives and continues to evolve the AMMOS by incorporating enhanced
capabilities and newer technologies into its end‐user tool and service offerings.

To the credit of recent NASA program executive sponsors and MGSS program office management, the
evolutionary approach to modernization has addressed a number of pain points typically experienced by missions as
part of their Project Mission Operations System (MOS). It is doing so by targeting investments in a number of key
areas. These include, for example, replacing obsolete software‐intensive systems (some with a heritage from the
1960s) by using modern programming languages and standards in the software applications and improving their
operability, testability, and maintainability.* Remediation of dated hardware has occurred replacing aging and
unreliable systems (workstations, routers, switches, etc.). Infusion of advanced technologies such as new instrument
operations data processing techniques, opportunistic science capture, core and distributed automated planning, and
advanced navigation and mission design techniques has greatly expanded the portfolio of fundamental capabilities
the AMMOS can offer missions. More recently, modernization investments include revitalization of multimission
operations teams and adaptable processes using a systems architecting and model‐based engineering approach that is
part of an initiative known as Operations Revitalization or “Ops Revitalization” for short. There are also efforts to
pro‐actively seek opportunities to extend the use and implementation of the AMMOS to a wider NASA community
beyond its traditional charter of supporting robotic deep space and astrophysics missions to potentially include
support for human‐robotic exploration missions as well as a broader set of Earth science missions all resulting in
greater collaboration with other NASA Centers and industry partners2,4-7

B. Pain Points Remain
Despite the myriad of modernization investments that have been made over the evolutionary course of the

AMMOS, pain points remain. These can be classified principally into two major categories: 1) information‐related
issues, and 2) process‐related issues. By information‐related issues, we mean pain points associated with the
management and flow of MOS data across the various system interfaces. By process‐related issues, we mean pain
points associated with the MOS activities performed by mission operators (i.e., humans) and supporting software
infrastructure used in support of those activities.

Starting with process-related issues, historically, many AMMOS multimission operations processes have been
optimized for a particular class of missions and spacecraft heritage (e.g., planetary orbiters and fly-bys using a single
spacecraft manufacturer). With the possible exception of the functions provided by the Navigation and Mission
Design element, this limits the potential to garner other so-called “high-usage” mission customers that are not in this
class.3 Organization and function of the AMMOS are convolved, which confuses responsibility with capability or
function. The Ground Data System (GDS) functional software applications impose limiting constraints on MOS
processes and operations responsiveness such that with the current system, it is difficult to reconcile plans and
predictions with observed data (aka “closing the loop”); again, with the exception of functions provided by the
Navigation and Mission Design element in which closing the loop is a routine part of the flight mechanics process.
More generally, and not necessarily unique to the AMMOS, there seems to be an overall lack of multimission
analysis support to address the difficulty and complexity of closing the loop to reconcile plans with observed
execution.10,11 Today, multimission processes are weak on analysis leaving missions to define their own processes
for analysis and closing the loop. In other words, multimission MOS architectures often represent data and
disciplines rather than closed-loop system level functionality.

As illustrated in Fig. 1, the fundamental Project MOS architecture lacks evidence of the principle of “separation
of concerns” in that behavior, information types and flow, organization, functionality, and interfaces are all
comingled. The functional pieces performed by specific teams all tie to most other functions. This leads to a
quadratic (the so-called “N-squared”) integration problem and exists for all missions large and small.11 Adding

*An interesting new area of academic research related to this topic is the field of Software Architecture Evolution.8,9

American Institute of Aeronautics and Astronautics

3

functionality only exacerbates the problem. Integration is laborious, costly, and not easily “trusted” by the missions
as it has historically required an extensive amount of testing need even for minor changes.†

Figure 1. Typical “Project MOS architecture” showing information flows among teams.

Information-related issues can also be gleaned from the typical Project MOS architecture depicted in Fig. 1.
Integration of MOS people and processes together with the software-intensive GDS largely remains point-to-point
using a style of architecture known as “pipe-and-filter” meaning that larger processing tasks are divided into a
sequence of smaller, independent processing steps (filters) that are connected by channels (pipes) some of these
stretching across functional areas.13,14 Further, the primary application integration strategy across functional areas is
largely based on a point-to-point file transfer integration style between applications.14 A very large number of file
types exist with multiple versions that duplicate information making it difficult to discern the authoritative or “gold
source” standard. A recent count of AMMOS subsystem-owned Software Interface Specifications (SISs) noted 64
file types across 9 different subsystems.15 The iterative nature of file creation such as in the planning area, for
example, makes versioning and configuration management pervasive concerns that require additional work.

These integration strategies translate to brittle interfaces in the presence of even minimal change such as a file
formatting change that can ripple to all producing and consuming applications. At present, no mediation layer exists
in the AMMOS integration architecture to decouple the producing and consuming applications from the file-based
interfaces and their structural content, further challenging even the most modest form of evolutionary changes of
file-based SISs between applications. An example of such a challenge can found in a recent effort within the
AMMOS to migrate from a subsystem-generated legacy custom ASCII-based file format to another ASCII-based
file format using an industry standard file structure; namely, an Extensible Markup Language (XML)-based
structure.16 Despite the fact that XML has been a de facto industry standard for specifying the structural content of
ASCII-based files for over fifteen years, support for migrating a relatively modest evolutionary change of file-based
SISs between applications turns into a disproportionately large systems engineering and software development
challenge.

The net result of these information- and process-related issues, which are summarized in Table 1, is that for a
mission which seeks to leverage the AMMOS as its core Project MOS capability, mission operations teams are left
with few alternatives but to develop a great deal of “glueware” (often in the form of informally-developed custom
scripts) in order to bridge interfaces and fill functionality gaps. These custom scripts end up being difficult to
update and maintain over the life of a mission, which, contributes to greater overall lifecycle Project MOS
development cost for that mission.

† This is a reflection of duplicative testing efforts that are performed both on the program side as well as the project side.

American Institute of Aeronautics and Astronautics

4

Table 1. Leading information- and process-related issues associated with today’s AMMOS.
Information-Related Issues

Large number of point-to-point interfaces
Integration is costly, laborious, and not easily “trusted”
Large number of file types
Many versions of files and different file types duplicate information

Process-Related Issues
Hard to reconcile plans and predictions with observed data in many cases
Traditional Project and MOS software impose limiting constraints on MOS processes and

operations responsiveness
Organization and function are tied together
Lack of multimission analysis support to address the difficulty and complexity of closing the

loop to reconcile plans with observed execution

C. Opportunities for Improvement
Each of the information- and process-related issues summarized in Table 1 present opportunities for

modernization of the underlying AMMOS architecture to help mitigate their impact on the overall cost, risk, and
technical delivery of a Project MOS to a mission. A brief statement of these opportunities and their potential impact
against each information and process-related issue is captured in Table 2 and Table 3.

Table 2. Information-related opportunities to modernize the AMMOS architecture against known
information-related issues and their potential impact on Project MOS cost, risk, and/or technical delivery.

Information-Related
Issue

Information-Related
Opportunity

Potential Impact/Benefit

Large number of point-to-point
interfaces

Reduce the numbers of point-to-
point interfaces

 Reduce cost to update, re-
engineer, and maintain
interfaces

Integration is costly, laborious
and not easily “trusted”

Improve the integration and test
approach

 Reduce cost of testing,
deployment, and simplify
updates for minor changes

Large number of file types Reduce the number of file types Reduce cost to develop and
maintain software and simplify
translations

Many versions of files and
different file types duplicate
information

Define a definitive source of
information

 Reduce cost to develop,
maintain, and operate file
version management functions
and procedures

 Eliminate ambiguity

Table 3. Process-related opportunities to modernize the AMMOS architecture against known process-
related issues and their potential impact on Project MOS cost, risk, and/or technical delivery.

Process-Related
Issue

Process-Related
Opportunity

Potential Impact/Benefit

Hard to reconcile plans and
predictions with observed data in
many cases

Improve the system’s ability to
reconcile plans and predictions with
observed data

 Reduce cost associated with
effort to “close the loop”

Traditional Project and MOS
software impose limiting
constraints on MOS processes and
operations responsiveness

Design software to be directly
responsive to operational processes
(“operationally-responsive
software”)

 Reduce the cost associated with
number of needed
“Workarounds” (e.g., custom
scripts, “glueware,” etc.)

 Reduce risk of command-
related errors

 Allow for parallel and
collaborative processes
unconstrained by serialized

American Institute of Aeronautics and Astronautics

5

Process-Related
Issue

Process-Related
Opportunity

Potential Impact/Benefit

software applications in critical
path

Organization and function are
tied together

Improve integration of process
flows across the MOS

 Tasks and roles (expertise)
needed to perform them are
considered first, then assigned
to Teams (i.e., missions can
organize as needed, without
affecting Ops processes)

Lack of multimission analysis
support to address the difficulty
and complexity of closing the loop
to reconcile plans with observed
execution

Closing the loop becomes one of
the unifying tenets of the MOS

 Paradigm shift (in terms of
AMMOS support perspective,
not projects/missions): MOS
performs more than “Uplink”
and “Downlink,” in other
words, an essential focus of the
MOS function is to fly a
spacecraft under positive
(closed-loop) control

While some of these opportunities to modernize the AMMOS architecture seem relatively straightforward and

evolutionary in nature, many are not. Many are quite transformational and require a significant paradigm shift both
in thinking about the AMMOS in light of supporting a future-state vision for the MOS as well as requiring novel
technical solutions to address the challenging problems at hand.

This forms the basis and motivation for what is described next in Section III where we introduce the concept of
the “Transformational AMMOS.” We fully recognize the fact that any AMMOS architecture modernization effort
of any substantial scope must be balanced against available programmatic and sponsor resources and the need to
support legacy ground systems and mission customers currently using the AMMOS as part of their Project MOS,
both today and for the future. We are also not naïve to the fact that there will never be enough resources in terms of
people, time, and sponsor funding to support a “big bang” approach to architecture modernization. That would be
more akin to a revolutionary approach to modernization versus the transformational approach that we are
proposing.‡

Despite these challenges and constraints, it is felt that a new approach to architecture modernization is needed to
truly address the core information- and process-related issues associated with today’s Evolvable AMMOS.
Fortunately, we are well on our way by virtue of a tremendous amount of collaboration across the programmatic
elements within the MGSS program office and novel solution approaches being offered by the technical community
supporting currently funded AMMOS modernization initiatives.

III. The Transformational AMMOS
In this Section, we introduce the foundational concepts of Timeline, Closed-Loop Control, and Separation of

Concerns (SoC) that collectively serve as the basis for expressing three core architectural tenets for the future-state
Transformational AMMOS. Each of these core tenets is designed to address the major information- and process-
related issues associated with the current Evolvable AMMOS as summarized in Table 1 of Section II.B and is
described and detailed in Sections III.A through III.C.

A. Timeline as the Foundational Data Structure of our Domain
It is well recognized that the “lifeblood” of an MOS is time-varying information.17 For example, activities have

start times and durations, sequences have to be developed by a certain time, spacecraft have to arrive at a target by
some specific time, Principal Investigators (PIs) expect their data after a certain time. In today’s AMMOS,
however, this time-varying information for the MOS is scattered among various non-standard file formats as defined
by a myriad of AMMOS Software Interface Specifications (SISs).

‡Transformational as used in this context is intended to be characterized as implementing and operating with carefully chosen

paradigm changes that can be incrementally incorporated into the AMMOS over time. These include information-related
changes as well as process-related changes.

American Institute of Aeronautics and Astronautics

6

What is proposed for the Transformational AMMOS is the introduction of the concept of “Timeline” as the
unifying canonical (common/standardized) information model for the storage and communication of MOS time-
varying information. The perceived benefit is that through use of a unifying representation of MOS data as
timelines, the method of integration between the functional software applications will decrease adaption cost. In
addition, operations efficiency will increase because historically segregated elements will be more easily integrated
so that there will be fewer gaps in the operations processes that must currently be closed (if they are closed at all) by
costly and inefficient means.18,19 This will also serve as a basis to help address end-to-end data accountability
throughout the MOS. Of course, it is recognized that some data types will remain outside of the timeline domain for
a considerable period of time.

1. Introduction to the Concept of Timeline
The concept of “Timeline” has long lineage to the advanced planning and scheduling community, particularly

with respect to automation, and has a formal mathematical basis in the fields of temporal constraint networks,
constraint programming, and predicate logic.21,22 Generally speaking, a timeline can be defined (informally) as some
representation of time-varying information; more specifically, a representation of a set of values with associated
times. A value can be a numeric or a non-numeric quantity. The time domain of a timeline may be discrete or
continuous. A discrete timeline represents a set of values of discrete instances of time while a continuous timeline
represents a set of values over a continuous interval of time.

As suggested earlier, for purposes of our domain, most MOS data can be well-represented as a time-ordered
sequence of events (i.e., timelines). For example, a planned activity or sequence over time, a planned instrument
command over time, a predicted instrument state over time, actual science data or power usage over time as captured
in various telemetry channels, and estimated instrument or heater states over time. Examples of such timeline
representations of time-varying data in the MOS domain are illustrated in Fig. 2.24-26 Although not the case for
today’s Evolutionary AMMOS in which time-varying information is scattered in various file-based SISs, it is natural
to use timelines as a basis for a canonical (common/standardized) information model for our domain of MOS
although this is not the case today.

Figure 2. Example timelines for representing time-varying MOS data.

More formally, timelines are aggregations of events (and temporal constraints among those events) that are
ordered by a specific native temporal reference. In fact, a formal mathematical basis for timeline is described in an
AIAA SpaceOps 2012 paper by S. Chung and D. Bindschadler, which characterizes a timeline as a triple comprised
of variables, temporal constraints, and events.27 It is in fact this formal mathematical representation on which the
unified timeline information model for the Transformational AMMOS is based and is currently being captured in
both a formal system-level object model as well as a formal ontology.§

Where formalism is required for precise modeling of timeline information semantics, we refer to the unified
timeline information model using the mathematical basis cited in Ref. 27 as our foundation. For purposes of general
discussion, we utilize the informal notion of timeline as a representation of a set of values with associated times.

§An ontology is a set of unifying concepts, axioms, and relationships within a particular problem domain.

American Institute of Aeronautics and Astronautics

7

This distinction between a formal or informal definition of timeline is not particularly important to dwell upon
for purposes of this introduction to the concept. What is important is that timelines provide a powerful way to
model the temporal evolution of a system as they provide an abstraction of the changing state of that system, which
can be manipulated and reasoned about.

2. Practical Implementation of Timelines
In order to realize the potential benefit of using timelines as the foundational data structure for the future-state

Transformational AMMOS, a practical means of defining the syntax (structure) and semantics (meaning) of
timelines in underlying infrastructure support software such as a relational database is needed. Timelines need to be
rigorously versioned and each version needs to be immutable (i.e., absolute and irreversible) such that a versioned
timeline name forever represents exactly the same contents.18-20 Consequently, the name is as good as the contents.
This alleviates the need to keep files of contents for communicating between functional software applications as
well as operations processes (or for associating several timelines or even values on those timelines, or for keeping a
record of past values).18

The key concepts used to support the practical implementation of timelines to be stored and managed in
application platform infrastructure software such as a Relational Database Management System (RDBMS) and are
characterized in greater detail in Refs. 18-20 and thus will not be repeated here.

3. Timeline Integration Patterns and Components
The key architectural concept that we are proposing for the Transformational AMMOS is that timelines become

the common representation of time-varying MOS information, and future-state AMMOS components read and write
timelines from a centrally accessible timeline information store (see Fig. 3).26

Figure 3. Notional depiction of components that read and write timelines.

A component in this context is a piece of software that read and writes timelines.¶ The power of this model is in
having a common, centrally accessible representation for all MOS temporal information instead of having MOS
information scattered across several applications and in many different, non-standard file formats.26 Components can
focus on one set of tightly focused concerns, making them easier to develop and maintain than large monolithic
systems.

In this new architecture, the components themselves will not be permitted to make direct access to the timeline
store (e.g., timeline database (TLDB)) but rather access will be provided through the TLDB published interface that
will be offered as a common (shared) software service.18 In addition to simply reading and writing timelines, this
service will provide versioning and querying capability (e.g., “give me the heater timeline between 5pm and 10pm
on Sol 27”).26 A companion utility service is also envisioned for the new architecture that will be used to provide
additional functions such as discovery (“what timelines are there, what you can tell about them”), determining
relationships between timelines, and management of timeline metadata.

Components can be organized into a few categories such as elaborators, predictors, checkers, viewers/reporters,
and converters. A few of these component types were illustrated in Fig. 3 but are depicted in Fig. 4 in a conceptual
context relative to the notion of a central timeline service with an orchestrator component suggested as the primary
“controller” component that could coordinate the execution of the other components.

¶ Such components can be thought of as candidate mathematical operations that can be performed on a set of time-dependent

functions, in this case, timelines.

American Institute of Aeronautics and Astronautics

8

Figure 4. Conceptual depiction of components and their interactions with a central timeline service.

A brief description of each of the primary components for operating on timelines and coordinating their
interaction is summarized in Table 4.

Table 4. Description of the basic software component types that interact with a central timeline service.

Component Type Component Type Description
Elaborator An elaborator component expands higher-level activity timelines into lower-level

activity or command timelines with more details.
Predictor A predictor component predicts values on a set of timelines based on activities or

commands on other timelines.
Checker A checker component checks a set of timelines for undesired or missing values.
Converter A convertor component converts information from a timeline format to another

format or from another format to a timeline format.
Derivator A derivator component mathematically derives a new timeline from one or more

existing timelines.
Orchestrator An orchestrator component provides an interface to a user for invoking

elaborators, predictors, checkers, convertors, and derivators.

These basic components can be abstracted to a set of timeline integration patterns for the Transformational

AMMOS.# In fact, each of these components could be describe as integration component patterns in an analogous
manner to the set of Enterprise Integration Patterns from G. Hohpe and B. Woolf that are widely cited in industry for
application integration (see http://www.eaipatterns.com/).14 Additional patterns and supporting components can be
specified as needed.

The core architecture tenet of Timeline as the Foundational Data Structure of our Domain serves to address
three of the information-related issues and two of the process-related issues of the current Evolvable AMMOS as
noted in Table 5.

#A pattern is essentially a description to a known recurring problem and its solution in a particular context, and to

communicate this knowledge to others.29,30 Each pattern represents a decision that must be made and the decisions that go into
that decision. A pattern language then is a web of related patterns where each pattern relates to others, guiding one through the
decision-making process.14,30

http://www.eaipatterns.com/

American Institute of Aeronautics and Astronautics

10

Figure 6. Idealized MOS closed-loop control [behavioral] pattern.

This fundamental MOS control loop pattern provides an explicit functional specification for how any deep space
MOS ought to behave.23,28 It effectively clarifies and formalizes a unifying concept of operations in which all
elements “know” their parts in achieving overall goals. Models that follow this pattern still permit views that show
other important aspects of the system such as uplink or downlink; the key addition is the (closed) prediction-
reconciliation loop. This loop explicitly requires that any of the three functions of PEA of an MOS be supported by
the other two, given their input-output dependencies and its facilitation of the key tasks of reconciliation (e.g., plans
against results, predicts against actuals). Again, while these common control functions have always been a part of
the MOS, the level of formality has varied and closed loop reconciliation has been difficult to achieve across the full
scope of the AMMOS.

1. Timeline-Based Closed Loop Architecture
By adopting timelines as unifying information model as was described in Section III.A, we capture the necessary

behaviors, states, and constraints needed for the MOS to simplify and unify generation of products to command and
control mission assets. This basic framework provides specialization options that can span the transition from the
current file-based AMMOS information products to sophisticated information products that fully support a fully
reconciled MOS.23,28

As an example, we can overlay the primary functions of the MOS PEA control loop pattern (Plan, Execute,
Analyze) with a set of timelines for the mission as illustrated in Fig. 7. The Planning function produces a collection
of timelines that capture all of the intended states for a future uplink opportunity. The Execution function records
the results and observations as timelines, and the Analysis function retrieves them along with the predicted timelines
(from the Plan function). The Analysis function reconciles the predicted timelines with the observed timelines and
updates the known states of the spacecraft for a future planning cycle.

http://en.wikipedia.org/wiki/Separation_of_concerns

American Institute of Aeronautics and Astronautics

13

Figure 8. Architectural layering depicting a logical separation of concerns (SoC) between major

Operations and GDS elements of the Transformational AMMOS. Note that this is not intended to impose
strict hierarchy between layers as some lower layers may be used by multiple upper layers as seen through
the dependency relationships (labeled dashed arrows).

The Business Process Layer depicted at the top of the layer diagram in Fig. 8 correspond to future-state,
multimission Mission Services, which are being specified in a formal model-based context as part of the Ops
Revitalization initiative described in Ref. 28.†† This layer provides the primary interface to Project elements that are
external to the MOS. It also provides the interfaces between MOS internal functions and software, and between
individual services.

Each discipline-based Mission Service has responsibility for managing sets of mission information. These
services provide the capabilities (or functions) need to operate a mission.3,17,23,28,31

Note: “Services” as defined here represent a slice through the full stack of architectural layers as we are
defining here and as depicted in Fig. 8. We also recognize the fact that the generalized concept a service is
inherently hierarchical and fractal in nature and thus we see still see architectural layering a very relevant pattern
and extremely important in our efforts to institutionalize the practice of SoC. One can think of it as applying the
metaphor of “peeling the onion.”

The Software Application Layer represents AMMOS functional software applications for various subsystems
and/or assemblies that correspond to the classical AMMOS functional areas of Planning & Sequencing, Downlink,
Navigation & Mission Design, GDS Integration, Test, Deployment, and Support, and Operations Engineering as
traditionally depicted in Fig. 9. These functional software applications are available to prospective mission
customers as either AMMOS “Tool” or “Service” offerings, which are described in the online AMMOS Tools and
Services catalog and available to missions via coordination with the MGSS Mission Interface Office.‡‡ Functional
software applications offered as tools can be adapted to a project per the mission’s specific requirements.

Some of the functional applications shown as examples for various functional areas and subsystems within those
areas as depicted in the architecture layer diagram of Fig. 8 correspond to newer applications that have been
developed either in recent past such as the AMMOS Mission data Processing & Control System (AMPCS) or are

††Generally speaking, a service can be thought of as a capability offered according to an agreement, where capability is the

ability to do something (perform a task, activity, or function or set of tasks, activities, or functions) based on expertise and
capacity.

‡‡AMMOS Catalog (see https://ammos.jpl.nasa.gov/AMMOS_Catalog/index.cfm).

https://ammos.jpl.nasa.gov/AMMOS_Catalog/index.cfm

American Institute of Aeronautics and Astronautics

14

currently under development such as Sequence Revitalization (SEQR). Some applications are being proposed for
future development such as Integrated Spacecraft Analysis (ISCA). Still others represent existing functional
software applications available to missions today such as the instrument data processing Automated, Multimission
Instrument Task Invocation (MATIS) tool and the Navigation and Ancillary Information (NAIF) SPICE Toolkit. It
should be noted that the functional software applications shown in Fig. 8 are representative of only a small subset of
the available software capabilities from the AMMOS Tools and Services catalog or that will be available as future
capabilities.

Figure 9. Classical representation of AMMOS functional capabilities.

Where we envision a transformational shift that is different from traditional evolutionary modernization efforts
of the AMMOS in the past is that newly minted and/or modernized functional software capabilities exhibit the
characteristic that they are responsive to multimission MOS business processes—what we like to refer to as
“operationally-responsive software.” This is similar in vision to industry trends in the aerospace industry such as the
U.S. Defense Department’s Operationally Responsive Space (ORS) and 2008 Ground System Architecture
Workshop (GSAW) theme of “Operationally Responsive Ground Systems.”§§,¶¶ What this requires is the
decomposition of monolithic software applications into distributed modular software components or “agents” that
map to multimission MOS operations processes as well as the potential automation of those business processes.

One example of a functional application within the Planning & Sequencing area that is being architected as an
operationally-responsive software offering is the Sequence Revitalization (SEQR) application, currently being
developed as part of the SEQR initiative within the Mission Planning and Sequencing (MPS) program element. As
of the time of this writing, there is active dialog between key SEQR and Ops Revitalization initiative management
and engineering staff to help ensure the new SEQR functional software application is readily adaptable (i.e.,
responsive) to mission operations processes and any changes in those processes. This collaborative process is
intended to serve as a model for modernization of existing software applications as well as development of new
applications across the MGSS program elements and functional areas and subsystems within those elements.

 The Shared Software Services Layer represents the common software services that are to be “shared” for use
by any or all of the functional software applications in the Software Application Layer. In some cases, the

§§ Operationally Responsive Space (see http://ors.csd.disa.mil/).
¶¶ GSAW2008 (see http://sunset.usc.edu/gsaw/gsaw2008/agenda08.html).

http://ors.csd.disa.mil/
http://sunset.usc.edu/gsaw/gsaw2008/agenda08.html

American Institute of Aeronautics and Astronautics

15

multimission Mission Services in the Business Process Layer may use these shared software offerings; for example,
a Common Business Process Management (BPM)/Workflow Service (CWS) in support of automated multimission
operations business processes. These shared software offerings provide common utility functions that are highly
cross-cutting in nature and by which all AMMOS applications at the functional level will be encouraged to use
rather than the highly cost ineffective approach of standing up or provisioning these separately and independently
for each functional area.34 The objective of utilizing shared software offerings that provide common utility functions
is to reap the benefit of economies of scale that can be achieved when using a common set of application
programming interfaces (APIs), training, industry standards, best practices, and system administration.

Often these shared software offerings will require the provision of a set of (preferably) industry-standard
capabilities that are implemented using Off-The-Shelf (OTS) components, whether Commercial-Off-The-Shelf
(COTS), Government-Off-The-Shelf (GOTS), Modified-Off-The-Shelf (MOTS), or Open Source Software (OSS).
For solutions where high reliability, availability, and scalability are needed, a COTS offering will most likely need
to be provisioned to support such capability. One example would be a robust, commercial-grade Relational Database
Management System (RDBMS) to support ultra-high transaction rates that need the assurance of referential integrity
and concurrency control. The assessment and provision of a candidate COTS offering can be an expensive
undertaking. This, together with the previously cited opportunity for gaining economies of scale, are some of the key
reasons why in this new era of the Transformational AMMOS we cannot permit each functional application area to
choose its own set of cross-cutting utility software without first addressing AMMOS system-wide concerns.

Another example of such a shared software capability that provides cross-cutting utility functions and identified
in the third layer of Fig. 8 includes the Common Security Services (CSS) (e.g., access management, key
management & cryptography), currently being developed and offered within the Computing, Communications, and
Configuration (CCC) program element. This offering is in the process of providing application-level security
functions of authentication, authorization, and auditing.35,36 With respect to scope, the authorization function offered
by the CSS is also intended to provide support for common management of security policy.

Other shared software capabilities that are currently being architected and developed to support the
Transformational AMMOS includes a set of so-called “Common Information Exchange (CIE)” services, which
comprises the Timeline Management Service (TMS), the Relationship Management Service (RMS), and the File
Management Service (FMS). The TMS is a new, shared software capability that provides a means to store and
manage definitive sources of operations data that is based on timelines. (Recall timeline is one of the three
foundational concepts for the Transformational AMMOS that we described in Section III.A.) The RMS is also a new
service, which is being architected and designed as a means to store and manage definitive sources of operations
metadata and data relationships.37 Discovery services such as registry-repository capabilities are example utility
functions that will be supported by the RMS. The FMS, also a new service, provides a means to store and manage
definitive sources of non-timeline operations data (e.g., command and telemetry dictionaries, data products, etc.).##

By no means an exhaustive list but additional shared software offerings such as the common notification
services, enterprise systems management services, logging services, etc. are being considered and will be prioritized
based on anticipated future need to support the Transformational AMMOS for future infusion targets (e.g., mission
deliveries, engineering releases, etc.).

Finally, the Shared Infrastructure Services Layer represents a common scalable compute platform that is to be
“shared” for the deployment of the functional software applications in the Functional Software Application Layer
and the common software services in the Shared Software Services Layer. This layer includes Application Platform
Infrastructure and Institutional Infrastructure. Application Platform Infrastructure is intended to represent the
collection of all third-party application platform support software such as application server middleware on which
distributed components of the functional software applications and the shared software services are deployed as well
as other third-party support software such as Access Managers (AMs), Database Management Systems (DBMSs),
and Business Process Management Suites (BPMSs) to name a few. Some of these offerings such as enterprise-class
application servers provide native support for additional runtime qualities of service including workload
management (i.e., load balancing and failover management), native security capabilities, auditing and logging, and
systems management. Ideally, these capabilities would be capable of transparent integration with support
infrastructure capabilities offered by a hosting institution.

Within the AMMOS context, the core collection of Off-The-Shelf (OTS) support software together the approved
set of baseline Operating System (OS) software is officially referred to “Third-Party Software (TPS).”38 It is

The term “File” in File Management Service (FMS) is a bit of a misnomer in that it does not necessarily imply that non-

time ordered (i.e., non-timeline) operations will be managed by a file system. It just means MOS information that has been
traditionally file-based.

American Institute of Aeronautics and Astronautics

17

address a multifaceted approach to AMMOS system architecture modernization intended to address information-
and process-related issues as expressed by flight project mission customers. These foundational concepts and
associated tenets form a basis for articulating a unified vision for a future-state AMMOS system architecture—one
that is intended to result in a highly adaptable, highly efficient, and highly cost-effective set of multimission MOS
products and services.

Acronyms and Abbreviations
AM Access Manager
AMMOS Advanced Multi-Mission Operations System
AMPCS Advanced Mission Data Processing and Control System
API Application Programming Interface
BPMS Business Process Management Service (or System or Suite)
CCC Computing, Communications, and Configuration
CSS Common Security Service
COTS Commercial-Off-The-Shelf
DISA Deep Space Information Systems Architecture
DM&A Data Management & Accountability
DSN Deep Space Network
GDS Ground Data System
GOTS Government-Off-The-Shelf
GSAW Ground System Architecture Workshop
HW Hardware
IMS Information Management Service
ISCA Integrated Spacecraft Analysis
ITAR International Traffic in Arms
M2D2 MOS 2.0 Design and Development
MATIS Automated, Multimission Instrument Task Invocation
MDAS Mission Control, Data Management, and Spacecraft Analysis
MDS Mission Data System
MGSS Multimission Ground System and Services
MOS Mission Operations System
MOTS Modified-Off-The-Shelf
MPS Mission Planning and Sequencing
NAIF Navigation Ancillary Information Facility
NCI Network Communications and Infrastructure
NS Notification Service
ORS Operationally Responsive Space
OS Operating System
OSS Open Source Software
OTS Off-The-Shelf
PEA Planning, Execution, and Analysis
PI Principal Investigator
RDBMS Relational Database Management System
SEQR Sequence Revitalization
SoC Separation of Concerns
SIS Software Interface Specification
TL Timeline
TMS Timeline Management Service
TPS Third Party Software
VM Virtual Machine
WG Working Group
XML Extensible Markup Language

American Institute of Aeronautics and Astronautics

18

Acknowledgements
In addition to MGSS program and element managers, Jeff Estefan and Brian Giovannoni would like to thank the

following members of the early MOS 2.0 Design and Development Working Group (M2D2 WG) and Operations
Revitalization Team for providing valuable input and feedback to this deliverable (listed alphabetically by last
name): Louise Anderson (formerly at JPL), Bob Barry (retired), Duane Bindschadler, Carlos Carrion (formerly at
JPL), Seung Cheung, Chris Delp, Elyse Fosse, Brian Giovannoni, Daniel Hurley, Adans Ko, Doris Lam, Scott
Lewicki, Michelle McCullar (formerly at JPL), John McKinney (retired), Kenny Meyer (retired), Dave Noble
(formerly at JPL), Mike Pajevski, Kirk Reinholtz, George Rinker, Dave Santo, Marc Sarrel, Ben Smith, and Rob
Smith. Each of these individuals has contributed significantly to the content contained in this architecture vision
document and many are actively working to help realize such a vision for the future‐state Transformational
AMMOS.

This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space Administration.

References
1Green, W. B., “Multimission Ground Data System Support of NASA’S Planetary Program,” Acta Astronautica, vol. 27, pp.

407‐415, 1995.
2Gunn, J. and E. Basilio, “Strategic Context,” presentation slides (internal document), NASA AMMOS Working Group

Meeting, Jet Propulsion Laboratory, California Institute of Technology, Nov. 15, 2011.
3Bindschadler, D. L., Boyles, C. A., Carrion, C., and C. L. Delp, “MOS 2.0: The Next Generation in Mission Operations

Systems,” Paper AIAA 2010-1953, SpaceOps 2010, Huntsville, Alabama, Apr. 25-30, 2010.
4Meyer, K. “MDAS Introduction,” presentation slides (internal document), NASA AMMOS Working Group Meeting, Jet

Propulsion Laboratory, California Institute of Technology, Nov. 15, 2011.
5Smith, D. “MDAS-0: Information Architecture Standards,” presentation slides (internal document), NASA AMMOS

Working Group Meeting, Jet Propulsion Laboratory, California Institute of Technology, Nov. 15, 2011.
6Best, S. “MDAS-2: HOSC Interoperability Prototype,” presentation slides (internal document), NASA AMMOS Working

Group Meeting, Jet Propulsion Laboratory, California Institute of Technology, Nov. 15, 2011.
7Trimble, J. “MDAS-4: Telemetry & Command Display,” presentation slides (internal document), NASA AMMOS Working

Group Meeting, Jet Propulsion Laboratory, California Institute of Technology, Nov. 15, 2011.
8Garlan, D., Barnes, J. M., Schmerl B., and O. Celiku, “Evolution Styles: Foundations and Tool Support for Software

Architecture Evolution,” in Proc. WICSA/ECSA’09, pp. 131–140, 2009.
9Barnes, J., M., “NASA’s Advanced Multimission Operations System: A Case Study in Software Architecture Evolution”

(internal report), Jet Propulsion Laboratory, California Institute of Technology, Oct. 24, 2011.
10Giovannoni, B. “NASA AMMOS System Context: A primer for the NASA AMMOS WG,” presentation slides (internal

document), NASA AMMOS Working Group, Jet Propulsion Laboratory, California Institute of Technology, Nov. 15, 2011.
11Bindschadler, D. “Operations Revitalization Update,” presentation slides (internal document), NASA AMMOS Working

Group, Jet Propulsion Laboratory, California Institute of Technology, Nov. 15, 2011.
12Bindschadler, D. “Architectural Considerations for Next-Gen Mission Operations System,” (presentation slides), Fourth

IEEE International Conference on Space Mission Challenges for Information Technology 2011 (SMC-IT 2011) Conference,
Aug. 3, 2011.

13Garlan, D. and M. Shaw, “An Introduction to Software Architecture,” CMU-CS-94-166 Report, School of Computer
Science, Carnegie Mellon University, Pittsburgh, PA, Jan. 1994.

14Hohpe, G. and B. Woolf, Enterprise Integration Patterns: Designing, Building, and Deploying Messaging Solutions,
Addison-Wesley Professional, Pearson Education, Inc., Boston, MA, 2003.

15Ko, A. Y., Maldague, P. F., Bui, T., Lam, D. T., and J. C. McKinney, “The Evolvable Advanced Multi-Mission Operations
System: (AMMOS): Making Systems Interoperable,” paper AIAA 2010-2303, SpaceOps 2010 Conference, Huntsville,
Alabama, American Institute of Aeronautics and Astronautics, Inc., Apr. 25-30, 2010.

16Attiyah, A. A., Berry, D. S., and V. N. Legerton, “Conversion from Text to XML Format:
One-Way Light Time File (LTF) SIS NAV-003,” presentation slides (internal document), Jet Propulsion Laboratory, California
Institute of Technology, Jul. 14, 2011.

17Carrion, C., Sarrel, M., Smith, R., and M. McCullar, “OpsRev Sect 318 Briefing,” presentation slides (internal document),
Jet Propulsion Laboratory, California Institute of Technology, Dec. 7, 2011.

18Reinholtz, K., “Timeline Central Concepts,” JPL D-71055 (internal document), Jet Propulsion Laboratory, California
Institute of Technology, Aug. 24, 2011.

19Reinholtz, K., “Time-Synchronized Display of Timelines on Multiple Display Terminals,” Working Draft (internal
document), Jet Propulsion Laboratory, California Institute of Technology, Aug. 2011.

20Reinholtz, K., “Timelines as Unifying Concept for Spacecraft Operations,” Paper No. 1274906, SpaceOps 2012,
Stockholm, Sweden, Jun. 11-15, 2012

American Institute of Aeronautics and Astronautics

19

21Dechter, R., Meiri, I., and J. Pearl, “Temporal Constraint Networks,” Artificial Intelligence, vol. 49, no. 1, pp. 61-95, Sep.
1991.

22Knight, R. L., G. Rabideau, and S. Chien, “Extending the Representational Power of Model-Based Systems Using
Generalized Timelines,” in Proc. Of Sixth International Symposium on Artificial Intelligence, Robotics, and Automation in Space,
Montreal, Canada, Jun. 18-22, 2001.

23Delp, C. L, Bindschadler, D., Wollaeger, R., Carrion, C., McCullar, M., Jackson, M., Sarrel, M., Anderson, L., and Lam,
D., “MOS 2.0 – Modeling the Next Revolutionary Mission Operations System,” IEEEAC paper #1512, Ver. 2, IEEE/AIAA
Aerospace Conference, Big Sky, MT, Institute of Electrical and Electronics Engineers (IEEE)/American Institute for Aeronautics
and Astronautics (AIAA), Jan. 10, 2011.

24Cheung, S., Smith, B., Bui, T., Maldauge, P., O’Reily, T., and K. Reinholtz, “Sequence Revitalization Concept for the
Proposed Systems,” presentation slides (internal document), Jet Propulsion Laboratory, California Institute of Technology, Jan.
13, 2011.

25Cheung, S., Smith, B., Bui, T., Maldauge, P., O’Reily, T., and K. Reinholtz, “Sequence Revitalization Operational
Scenarios,” presentation slides (internal document), Jet Propulsion Laboratory, California Institute of Technology, Jan. 13, 2011.

26Cheung, S., “Sequence Revitalization Concept of Operations,” MGSS Doc. No. DOC-000615 (internal document),
Multimission Ground System and Services (MGSS) Office, Jet Propulsion Laboratory, California Institute of Technology, Mar.
18, 2011.

27Cheung, S. and D. Bindschadler, “Timeline-based Mission Operations Architecture: An Overview,” Paper No. 1269750,
SpaceOps 2012, American Institute of Aeronautics and Astronautics, Stockholm, Sweden, Jun. 11-15, 2012.

28Bindschadler, D., Delp, C. and M. McCullar, “Principles to Products: Toward Realizing MOS 2.0,” Paper No. 1261336,
SpaceOps 2012, American Institute of Aeronautics and Astronautics, Stockholm, Sweden, Jun. 11-15, 2012.

29Alexander, C., The Timeless Way of Building, Oxford University Press: New York, NY, 1979.
30Alexander, C., Ishikawa, S., Silverstein, M. and M. Jacobson, A Pattern Language, Oxford University Press: New York,

NY, 1977.
31Ingham, M. D., Rasmussen, R. D., Bennett, M. B., and A. C. Moncada, “Generating Requirements for Complex Embedded

Systems Using State Analysis,” Acta Astronautica, 58, Iss. 12, pp. 648-661, Jun. 2006.
32Chien, S. Rabideau, G., Knight, R., Sherwood, R., Engelhardt, B., Mutz, D., Estlin, T., Smith, B., Fisher, F., Barrett, T.,

Stebbins, G., and D. Tran, “ASPEN – Automating Space Mission Operations using Automated Planning and Scheduling,”
International Conference on Space Operations 2000 (SpaceOps 2000), Toulouse, France. Jun. 2000.

33Carlos C., Delp, C. L., Illsley, J., and O. Liepack, “Use of Operational Scenarios in Architecting MOS 2.0,” International
Conference on Space Operations 2010 (SpaceOps 2010), Huntsville, AL, Apr. 2010.

34McVittie, T., “DSMS Software Architecture Overview: Web-based GDS,” Working Draft (internal document), Jet
Propulsion Laboratory, California Institute of Technology, Sep. 14, 2004.

35Pajevski, M., “DISA Security Service Software Interface Specification,” MGSS Doc. No. DOC-000645 DRAFT (internal
document), Multimission Ground System and Services (MGSS) Office, Jet Propulsion Laboratory, California Institute of
Technology, Nov. 9, 2011.

36Pajevski, M., “DISA Security Service Software Description Document,” MGSS Doc. No. DOC-000023 DRAFT (internal
document), Multimission Ground System and Services (MGSS) Office, Jet Propulsion Laboratory, California Institute of
Technology, Nov. 11, 2011.

37Santo, D., “Revised DM&A Requirements,” Working Draft Spreadsheet (internal document), Jet Propulsion Laboratory,
California Institute of Technology, Oct. 14, 2011.

38Monson, E., “MGSS Common Software Environment, Third Party Software (TPS) V18.0.1, Work Implementation Plan
(WIP),” MGSS Doc. No. DOC-000770 (internal document), Multimission Ground System and Services (MGSS) Office, Jet
Propulsion Laboratory, California Institute of Technology, Jan. 3, 2012.

39Soderstrom/Shams SMC-IT 2012 talk, “Beyond the Pervasive Cloud: Lessons and the Future for Space Organizations,”
(presentation slides and panel discussion), Fourth IEEE International Conference on Space Mission Challenges for Information
Technology 2011 (SMC-IT 2011) Conference, Aug. 4, 2011.

40Blakley, B., Reeves, F., and C. Howard, “Defining Cloud Computing,” Burton In-Depth Research Management Briefing,
Ver. 1.0, Burton Group (now Gartner, Inc.), Mar. 25, 2010.

