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The Advanced Multi-Mission Operations Systems (AMMOS) is NASA’s premier space 
mission operations product line offering for use in deep-space robotic and astrophysics 
missions.  The general approach to AMMOS modernization over the course of its 29-year 
history exemplifies a continual, evolutionary approach with periods of sponsor investment 
peaks and valleys in between. Today, the Multimission Ground Systems and Services 
(MGSS) office—the program office that manages the AMMOS for NASA—actively pursues 
modernization initiatives and continues to evolve the AMMOS by incorporating enhanced 
capabilities and newer technologies into its end‐user tool and service offerings.  Despite the 
myriad of modernization investments that have been made over the evolutionary course of 
the AMMOS, pain points remain.  These pain points, based on interviews with numerous 
flight project mission operations personnel, can be classified principally into two major 
categories: 1) information-related issues, and 2) process-related issues.  By information-
related issues, we mean pain points associated with the management and flow of MOS data 
across the various system interfaces.  By process‐related issues, we mean pain points 
associated with the MOS activities performed by mission operators (i.e., humans) and 
supporting software infrastructure used in support of those activities.  In this paper, three 
foundational concepts—Timeline, Closed Loop Control, and Separation of Concerns—
collectively form the basis for expressing a set of core architectural tenets that provides a 
multifaceted approach to AMMOS system architecture modernization intended to address 
the information- and process-related issues.  Each of these architectural tenets will be 
further explored in this paper.  Ultimately, we envision the application of these core tenets 
resulting in a unified vision of a future-state architecture for the AMMOS—one that is 
intended to result in a highly adaptable, highly efficient, and highly cost-effective set of 
multimission MOS products and services. 

I. Introduction 
HIS paper describes a set of core architectural tenets that are intended to drive a future-state transformational 
system architecture for the AMMOS. Work has already initiated on a number of AMMOS modernization tasks 

that embody some of the core tenets described herein, and in fact serve as the primary source of input to this paper. 
The work products and artifacts associated with those modernizations initiatives are scattered in many different 
resources and workspaces and not easily accessible to the interested stakeholder.  These core tenets are intended to 
provide a unifying message for the MGSS program office to help articulate its vision of a future-state architecture 
for the AMMOS. 

II. The Evolvable AMMOS 
In this Section, we review describe the evolutionary approach to AMMOS modernization followed by 

identification of mission system customer pain points that remain.  These pain points are categorized as either 1) 
information-related issues or 2) process-related issues. 

                                                           
1 MGSS Chief Architect, Mission Systems Engineering Section, M/S 264-255. 
2 MGSS Chief Engineer, Mission Systems Engineering Section, M/S 264-255. 
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A. AMMOS Modernization to Date 
The general approach to AMMOS modernization over the course of its 29‐year history exemplifies a continual, 

evolutionary approach with periods of sponsor investment peaks and valleys in between. In more recent past—
starting with the formation of the Multimission Ground Systems and Services (MGSS) program office in FY2005—
an even more proactive approach to modernization has ensued under a programmatic mandate to “reinvigorate the 
AMMOS” following a period of a drop in modernization investment in the late 1990s and early 2000s1,2 Today, 
MGSS actively pursues modernization initiatives and continues to evolve the AMMOS by incorporating enhanced 
capabilities and newer technologies into its end‐user tool and service offerings. 

To the credit of recent NASA program executive sponsors and MGSS program office management, the 
evolutionary approach to modernization has addressed a number of pain points typically experienced by missions as 
part of their Project Mission Operations System (MOS). It is doing so by targeting investments in a number of key 
areas. These include, for example, replacing obsolete software‐intensive systems (some with a heritage from the 
1960s) by using modern programming languages and standards in the software applications and improving their 
operability, testability, and maintainability.* Remediation of dated hardware has occurred replacing aging and 
unreliable systems (workstations, routers, switches, etc.). Infusion of advanced technologies such as new instrument 
operations data processing techniques, opportunistic science capture, core and distributed automated planning, and 
advanced navigation and mission design techniques has greatly expanded the portfolio of fundamental capabilities 
the AMMOS can offer missions. More recently, modernization investments include revitalization of multimission 
operations teams and adaptable processes using a systems architecting and model‐based engineering approach that is 
part of an initiative known as Operations Revitalization or “Ops Revitalization” for short. There are also efforts to 
pro‐actively seek opportunities to extend the use and implementation of the AMMOS to a wider NASA community 
beyond its traditional charter of supporting robotic deep space and astrophysics missions to potentially include 
support for human‐robotic exploration missions as well as a broader set of Earth science missions all resulting in 
greater collaboration with other NASA Centers and industry partners2,4-7 

B. Pain Points Remain 
Despite the myriad of modernization investments that have been made over the evolutionary course of the 

AMMOS, pain points remain. These can be classified principally into two major categories: 1) information‐related 
issues, and 2) process‐related issues. By information‐related issues, we mean pain points associated with the 
management and flow of MOS data across the various system interfaces. By process‐related issues, we mean pain 
points associated with the MOS activities performed by mission operators (i.e., humans) and supporting software 
infrastructure used in support of those activities. 

Starting with process-related issues, historically, many AMMOS multimission operations processes have been 
optimized for a particular class of missions and spacecraft heritage (e.g., planetary orbiters and fly-bys using a single 
spacecraft manufacturer).  With the possible exception of the functions provided by the Navigation and Mission 
Design element, this limits the potential to garner other so-called “high-usage” mission customers that are not in this 
class.3 Organization and function of the AMMOS are convolved, which confuses responsibility with capability or 
function.  The Ground Data System (GDS) functional software applications impose limiting constraints on MOS 
processes and operations responsiveness such that with the current system, it is difficult to reconcile plans and 
predictions with observed data (aka “closing the loop”); again, with the exception of functions provided by the 
Navigation and Mission Design element in which closing the loop is a routine part of the flight mechanics process.  
More generally, and not necessarily unique to the AMMOS, there seems to be an overall lack of multimission 
analysis support to address the difficulty and complexity of closing the loop to reconcile plans with observed 
execution.10,11 Today, multimission processes are weak on analysis leaving missions to define their own processes 
for analysis and closing the loop.   In other words, multimission MOS architectures often represent data and 
disciplines rather than closed-loop system level functionality. 

As illustrated in Fig. 1, the fundamental Project MOS architecture lacks evidence of the principle of “separation 
of concerns” in that behavior, information types and flow, organization, functionality, and interfaces are all 
comingled.  The functional pieces performed by specific teams all tie to most other functions.  This leads to a 
quadratic (the so-called “N-squared”) integration problem and exists for all missions large and small.11 Adding 

                                                           
*An interesting new area of academic research related to this topic is the field of Software Architecture Evolution.8,9 
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functionality only exacerbates the problem.  Integration is laborious, costly, and not easily “trusted” by the missions 
as it has historically required an extensive amount of testing need even for minor changes.† 

 

 
Figure 1.  Typical “Project MOS architecture” showing information flows among teams. 

Information-related issues can also be gleaned from the typical Project MOS architecture depicted in Fig. 1. 
Integration of MOS people and processes together with the software-intensive GDS largely remains point-to-point 
using a style of architecture known as “pipe-and-filter” meaning that larger processing tasks are divided into a 
sequence of smaller, independent processing steps (filters) that are connected by channels (pipes) some of these 
stretching across functional areas.13,14  Further, the primary application integration strategy across functional areas is 
largely based on a point-to-point file transfer integration style between applications.14  A very large number of file 
types exist with multiple versions that duplicate information making it difficult to discern the authoritative or “gold 
source” standard.  A recent count of AMMOS subsystem-owned Software Interface Specifications (SISs) noted 64 
file types across 9 different subsystems.15 The iterative nature of file creation such as in the planning area, for 
example, makes versioning and configuration management pervasive concerns that require additional work. 

These integration strategies translate to brittle interfaces in the presence of even minimal change such as a file 
formatting change that can ripple to all producing and consuming applications.  At present, no mediation layer exists 
in the AMMOS integration architecture to decouple the producing and consuming applications from the file-based 
interfaces and their structural content, further challenging even the most modest form of evolutionary changes of 
file-based SISs between applications.  An example of such a challenge can found in a recent effort within the 
AMMOS to migrate from a subsystem-generated legacy custom ASCII-based file format to another ASCII-based 
file format using an industry standard file structure; namely, an Extensible Markup Language (XML)-based 
structure.16 Despite the fact that XML has been a de facto industry standard for specifying the structural content of 
ASCII-based files for over fifteen years, support for migrating a relatively modest evolutionary change of file-based 
SISs between applications turns into a disproportionately large systems engineering and software development 
challenge. 

The net result of these information- and process-related issues, which are summarized in Table 1, is that for a 
mission which seeks to leverage the AMMOS as its core Project MOS capability, mission operations teams are left 
with few alternatives but to develop a great deal of “glueware” (often in the form of informally-developed custom 
scripts) in order to bridge interfaces and fill functionality gaps.  These custom scripts end up being difficult to 
update and maintain over the life of a mission, which, contributes to greater overall lifecycle Project MOS 
development cost for that mission. 

                                                           
† This is a reflection of duplicative testing efforts that are performed both on the program side as well as the project side. 
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Table 1.  Leading information- and process-related issues associated with today’s AMMOS. 
Information-Related Issues 

Large number of point-to-point interfaces 
Integration is costly, laborious, and not easily “trusted” 
Large number of file types 
Many versions of files and different file types duplicate information 

Process-Related Issues 
Hard to reconcile plans and predictions with observed data in many cases 
Traditional Project and MOS software impose limiting constraints on MOS processes and 

operations responsiveness 
Organization and function are tied together 
Lack of multimission analysis support to address the difficulty and complexity of closing the 

loop to reconcile plans with observed execution 

C. Opportunities for Improvement 
Each of the information- and process-related issues summarized in Table 1 present opportunities for 

modernization of the underlying AMMOS architecture to help mitigate their impact on the overall cost, risk, and 
technical delivery of a Project MOS to a mission.  A brief statement of these opportunities and their potential impact 
against each information and process-related issue is captured in Table 2 and Table 3. 

Table 2. Information-related opportunities to modernize the AMMOS architecture against known 
information-related issues and their potential impact on Project MOS cost, risk, and/or technical delivery. 

Information-Related 
Issue 

Information-Related 
Opportunity 

Potential Impact/Benefit 

Large number of point-to-point 
interfaces 

Reduce the numbers of point-to-
point interfaces 

 Reduce cost to update, re-
engineer, and maintain 
interfaces 

Integration is costly, laborious 
and not easily “trusted” 

Improve the integration and test 
approach 

 Reduce cost of testing, 
deployment, and simplify 
updates for minor changes 

Large number of file types Reduce the number of file types  Reduce cost to develop and 
maintain software and simplify 
translations 

Many versions of files and 
different file types duplicate 
information 

Define a definitive source of 
information 

 Reduce cost to develop, 
maintain, and operate file 
version management functions 
and procedures 

 Eliminate ambiguity 

Table 3.  Process-related opportunities to modernize the AMMOS architecture against known process-
related issues and their potential impact on Project MOS cost, risk, and/or technical delivery. 

Process-Related 
Issue 

Process-Related 
Opportunity 

Potential Impact/Benefit 

Hard to reconcile plans and 
predictions with observed data in 
many cases 

Improve the system’s ability to 
reconcile plans and predictions with 
observed data 

 Reduce cost associated with 
effort to “close the loop” 

Traditional Project and MOS 
software impose limiting 
constraints on MOS processes and 
operations responsiveness 

Design software to be directly 
responsive to operational processes 
(“operationally-responsive 
software”) 

 Reduce the cost associated with 
number of needed 
“Workarounds” (e.g., custom 
scripts, “glueware,” etc.) 

 Reduce risk of command-
related errors 

 Allow for parallel and 
collaborative processes 
unconstrained by serialized 
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Process-Related 
Issue 

Process-Related 
Opportunity 

Potential Impact/Benefit 

software applications in critical 
path 

Organization and function are 
tied together 

Improve integration of process 
flows across the MOS 

 Tasks and roles (expertise) 
needed to perform them are 
considered first, then assigned 
to Teams (i.e., missions can 
organize as needed, without 
affecting Ops processes) 

Lack of multimission analysis 
support to address the difficulty 
and complexity of closing the loop 
to reconcile plans with observed 
execution 

Closing the loop becomes one of 
the unifying tenets of the MOS 

 

 Paradigm shift (in terms of 
AMMOS support perspective, 
not projects/missions):  MOS 
performs more than “Uplink” 
and “Downlink,” in other 
words, an essential focus of the 
MOS function is to fly a 
spacecraft under positive 
(closed-loop) control 

 
While some of these opportunities to modernize the AMMOS architecture seem relatively straightforward and 

evolutionary in nature, many are not.  Many are quite transformational and require a significant paradigm shift both 
in thinking about the AMMOS in light of supporting a future-state vision for the MOS as well as requiring novel 
technical solutions to address the challenging problems at hand. 

This forms the basis and motivation for what is described next in Section III where we introduce the concept of 
the “Transformational AMMOS.”  We fully recognize the fact that any AMMOS architecture modernization effort 
of any substantial scope must be balanced against available programmatic and sponsor resources and the need to 
support legacy ground systems and mission customers currently using the AMMOS as part of their Project MOS, 
both today and for the future.  We are also not naïve to the fact that there will never be enough resources in terms of 
people, time, and sponsor funding to support a “big bang” approach to architecture modernization.  That would be 
more akin to a revolutionary approach to modernization versus the transformational approach that we are 
proposing.‡ 

Despite these challenges and constraints, it is felt that a new approach to architecture modernization is needed to 
truly address the core information- and process-related issues associated with today’s Evolvable AMMOS.  
Fortunately, we are well on our way by virtue of a tremendous amount of collaboration across the programmatic 
elements within the MGSS program office and novel solution approaches being offered by the technical community 
supporting currently funded AMMOS modernization initiatives. 

III. The Transformational AMMOS 
In this Section, we introduce the foundational concepts of Timeline, Closed-Loop Control, and Separation of 

Concerns (SoC) that collectively serve as the basis for expressing three core architectural tenets for the future-state 
Transformational AMMOS.  Each of these core tenets is designed to address the major information- and process-
related issues associated with the current Evolvable AMMOS as summarized in Table 1 of Section II.B and is 
described and detailed in Sections III.A through III.C. 

A. Timeline as the Foundational Data Structure of our Domain 
It is well recognized that the “lifeblood” of an MOS is time-varying information.17 For example, activities have 

start times and durations, sequences have to be developed by a certain time, spacecraft have to arrive at a target by 
some specific time, Principal Investigators (PIs) expect their data after a certain time.  In today’s AMMOS, 
however, this time-varying information for the MOS is scattered among various non-standard file formats as defined 
by a myriad of AMMOS Software Interface Specifications (SISs). 

 
                                                           
‡Transformational as used in this context is intended to be characterized as implementing and operating with carefully chosen 

paradigm changes that can be incrementally incorporated into the AMMOS over time.  These include information-related 
changes as well as process-related changes. 



 
American Institute of Aeronautics and Astronautics 

 
 

6 

What is proposed for the Transformational AMMOS is the introduction of the concept of “Timeline” as the 
unifying canonical (common/standardized) information model for the storage and communication of MOS time-
varying information.  The perceived benefit is that through use of a unifying representation of MOS data as 
timelines, the method of integration between the functional software applications will decrease adaption cost.  In 
addition, operations efficiency will increase because historically segregated elements will be more easily integrated 
so that there will be fewer gaps in the operations processes that must currently be closed (if they are closed at all) by 
costly and inefficient means.18,19 This will also serve as a basis to help address end-to-end data accountability 
throughout the MOS.  Of course, it is recognized that some data types will remain outside of the timeline domain for 
a considerable period of time. 

1.  Introduction to the Concept of Timeline 
The concept of “Timeline” has long lineage to the advanced planning and scheduling community, particularly 

with respect to automation, and has a formal mathematical basis in the fields of temporal constraint networks, 
constraint programming, and predicate logic.21,22 Generally speaking, a timeline can be defined (informally) as some 
representation of time-varying information; more specifically, a representation of a set of values with associated 
times.  A value can be a numeric or a non-numeric quantity.  The time domain of a timeline may be discrete or 
continuous.  A discrete timeline represents a set of values of discrete instances of time while a continuous timeline 
represents a set of values over a continuous interval of time. 

As suggested earlier, for purposes of our domain, most MOS data can be well-represented as a time-ordered 
sequence of events (i.e., timelines).  For example, a planned activity or sequence over time, a planned instrument 
command over time, a predicted instrument state over time, actual science data or power usage over time as captured 
in various telemetry channels, and estimated instrument or heater states over time.  Examples of such timeline 
representations of time-varying data in the MOS domain are illustrated in Fig. 2.24-26 Although not the case for 
today’s Evolutionary AMMOS in which time-varying information is scattered in various file-based SISs, it is natural 
to use timelines as a basis for a canonical (common/standardized) information model for our domain of MOS 
although this is not the case today. 

 

 
Figure 2.  Example timelines for representing time-varying MOS data. 

More formally, timelines are aggregations of events (and temporal constraints among those events) that are 
ordered by a specific native temporal reference.  In fact, a formal mathematical basis for timeline is described in an 
AIAA SpaceOps 2012 paper by S. Chung and D. Bindschadler, which characterizes a timeline as a triple comprised 
of variables, temporal constraints, and events.27 It is in fact this formal mathematical representation on which the 
unified timeline information model for the Transformational AMMOS is based and is currently being captured in 
both a formal system-level object model as well as a formal ontology.§ 

Where formalism is required for precise modeling of timeline information semantics, we refer to the unified 
timeline information model using the mathematical basis cited in Ref. 27 as our foundation.  For purposes of general 
discussion, we utilize the informal notion of timeline as a representation of a set of values with associated times. 

                                                           
§An ontology is a set of unifying concepts, axioms, and relationships within a particular problem domain. 
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This distinction between a formal or informal definition of timeline is not particularly important to dwell upon 
for purposes of this introduction to the concept.  What is important is that timelines provide a powerful way to 
model the temporal evolution of a system as they provide an abstraction of the changing state of that system, which 
can be manipulated and reasoned about. 

2.  Practical Implementation of Timelines 
In order to realize the potential benefit of using timelines as the foundational data structure for the future-state 

Transformational AMMOS, a practical means of defining the syntax (structure) and semantics (meaning) of 
timelines in underlying infrastructure support software such as a relational database is needed.  Timelines need to be 
rigorously versioned and each version needs to be immutable (i.e., absolute and irreversible) such that a versioned 
timeline name forever represents exactly the same contents.18-20 Consequently, the name is as good as the contents.  
This alleviates the need to keep files of contents for communicating between functional software applications as 
well as operations processes (or for associating several timelines or even values on those timelines, or for keeping a 
record of past values).18 

The key concepts used to support the practical implementation of timelines to be stored and managed in 
application platform infrastructure software such as a Relational Database Management System (RDBMS) and are 
characterized in greater detail in Refs. 18-20 and thus will not be repeated here. 

3.  Timeline Integration Patterns and Components 
The key architectural concept that we are proposing for the Transformational AMMOS is that timelines become 

the common representation of time-varying MOS information, and future-state AMMOS components read and write 
timelines from a centrally accessible timeline information store (see Fig. 3).26 

 
 

 
Figure 3.  Notional depiction of components that read and write timelines. 

A component in this context is a piece of software that read and writes timelines.¶ The power of this model is in 
having a common, centrally accessible representation for all MOS temporal information instead of having MOS 
information scattered across several applications and in many different, non-standard file formats.26 Components can 
focus on one set of tightly focused concerns, making them easier to develop and maintain than large monolithic 
systems. 

In this new architecture, the components themselves will not be permitted to make direct access to the timeline 
store (e.g., timeline database (TLDB)) but rather access will be provided through the TLDB published interface that 
will be offered as a common (shared) software service.18 In addition to simply reading and writing timelines, this 
service will provide versioning and querying capability (e.g., “give me the heater timeline between 5pm and 10pm 
on Sol 27”).26 A companion utility service is also envisioned for the new architecture that will be used to provide 
additional functions such as discovery (“what timelines are there, what you can tell about them”), determining 
relationships between timelines, and management of timeline metadata. 

Components can be organized into a few categories such as elaborators, predictors, checkers, viewers/reporters, 
and converters.  A few of these component types were illustrated in Fig. 3 but are depicted in Fig. 4 in a conceptual 
context relative to the notion of a central timeline service with an orchestrator component suggested as the primary 
“controller” component that could coordinate the execution of the other components. 

                                                           
¶ Such components can be thought of as candidate mathematical operations that can be performed on a set of time-dependent 

functions, in this case, timelines. 
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Figure 4.  Conceptual depiction of components and their interactions with a central timeline service. 

A brief description of each of the primary components for operating on timelines and coordinating their 
interaction is summarized in Table 4.  

Table 4.  Description of the basic software component types that interact with a central timeline service. 

Component Type Component Type Description 
Elaborator An elaborator component expands higher-level activity timelines into lower-level 

activity or command timelines with more details. 
Predictor A predictor component predicts values on a set of timelines based on activities or 

commands on other timelines. 
Checker A checker component checks a set of timelines for undesired or missing values. 
Converter A convertor component converts information from a timeline format to another 

format or from another format to a timeline format. 
Derivator A derivator component mathematically derives a new timeline from one or more 

existing timelines. 
Orchestrator An orchestrator component provides an interface to a user for invoking 

elaborators, predictors, checkers, convertors, and derivators. 
 
These basic components can be abstracted to a set of timeline integration patterns for the Transformational 

AMMOS.# In fact, each of these components could be describe as integration component patterns in an analogous 
manner to the set of Enterprise Integration Patterns from G. Hohpe and B. Woolf that are widely cited in industry for 
application integration (see http://www.eaipatterns.com/).14 Additional patterns and supporting components can be 
specified as needed. 

The core architecture tenet of Timeline as the Foundational Data Structure of our Domain serves to address 
three of the information-related issues and two of the process-related issues of the current Evolvable AMMOS as 
noted in Table 5. 

                                                           
#A pattern is essentially a description to a known recurring problem and its solution in a particular context, and to 

communicate this knowledge to others.29,30 Each pattern represents a decision that must be made and the decisions that go into 
that decision.  A pattern language then is a web of related patterns where each pattern relates to others, guiding one through the 
decision-making process.14,30 

http://www.eaipatterns.com/
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Figure 6.  Idealized MOS closed-loop control [behavioral] pattern. 

This fundamental MOS control loop pattern provides an explicit functional specification for how any deep space 
MOS ought to behave.23,28 It effectively clarifies and formalizes a unifying concept of operations in which all 
elements “know” their parts in achieving overall goals.  Models that follow this pattern still permit views that show 
other important aspects of the system such as uplink or downlink; the key addition is the (closed) prediction-
reconciliation loop.  This loop explicitly requires that any of the three functions of PEA of an MOS be supported by 
the other two, given their input-output dependencies and its facilitation of the key tasks of reconciliation (e.g., plans 
against results, predicts against actuals).  Again, while these common control functions have always been a part of 
the MOS, the level of formality has varied and closed loop reconciliation has been difficult to achieve across the full 
scope of the AMMOS. 

1.  Timeline-Based Closed Loop Architecture 
By adopting timelines as unifying information model as was described in Section III.A, we capture the necessary 

behaviors, states, and constraints needed for the MOS to simplify and unify generation of products to command and 
control mission assets.  This basic framework provides specialization options that can span the transition from the 
current file-based AMMOS information products to sophisticated information products that fully support a fully 
reconciled MOS.23,28 

As an example, we can overlay the primary functions of the MOS PEA control loop pattern (Plan, Execute, 
Analyze) with a set of timelines for the mission as illustrated in Fig. 7.  The Planning function produces a collection 
of timelines that capture all of the intended states for a future uplink opportunity.  The Execution function records 
the results and observations as timelines, and the Analysis function retrieves them along with the predicted timelines 
(from the Plan function).  The Analysis function reconciles the predicted timelines with the observed timelines and 
updates the known states of the spacecraft for a future planning cycle. 

 





http://en.wikipedia.org/wiki/Separation_of_concerns
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Figure 8.  Architectural layering depicting a logical separation of concerns (SoC) between major 

Operations and GDS elements of the Transformational AMMOS.  Note that this is not intended to impose 
strict hierarchy between layers as some lower layers may be used by multiple upper layers as seen through 
the dependency relationships (labeled dashed arrows). 

The Business Process Layer depicted at the top of the layer diagram in Fig. 8 correspond to future-state, 
multimission Mission Services, which are being specified in a formal model-based context as part of the Ops 
Revitalization initiative described in Ref. 28.†† This layer provides the primary interface to Project elements that are 
external to the MOS.  It also provides the interfaces between MOS internal functions and software, and between 
individual services. 

Each discipline-based Mission Service has responsibility for managing sets of mission information.  These 
services provide the capabilities (or functions) need to operate a mission.3,17,23,28,31 

Note:  “Services” as defined here represent a slice through the full stack of architectural layers as we are 
defining here and as depicted in Fig. 8.  We also recognize the fact that the generalized concept a service is 
inherently hierarchical and fractal in nature and thus we see still see architectural layering a very relevant pattern 
and extremely important in our efforts to institutionalize the practice of SoC.  One can think of it as applying the 
metaphor of “peeling the onion.” 

The Software Application Layer represents AMMOS functional software applications for various subsystems 
and/or assemblies that correspond to the classical AMMOS functional areas of Planning & Sequencing, Downlink, 
Navigation & Mission Design, GDS Integration, Test, Deployment, and Support, and Operations Engineering as 
traditionally depicted in Fig. 9.  These functional software applications are available to prospective mission 
customers as either AMMOS “Tool” or “Service” offerings, which are described in the online AMMOS Tools and 
Services catalog and available to missions via coordination with the MGSS Mission Interface Office.‡‡ Functional 
software applications offered as tools can be adapted to a project per the mission’s specific requirements. 

Some of the functional applications shown as examples for various functional areas and subsystems within those 
areas as depicted in the architecture layer diagram of Fig. 8 correspond to newer applications that have been 
developed either in recent past such as the AMMOS Mission data Processing & Control System (AMPCS) or are 

                                                           
††Generally speaking, a service can be thought of as a capability offered according to an agreement, where capability is the 

ability to do something (perform a task, activity, or function or set of tasks, activities, or functions) based on expertise and 
capacity. 

‡‡AMMOS Catalog (see https://ammos.jpl.nasa.gov/AMMOS_Catalog/index.cfm). 

https://ammos.jpl.nasa.gov/AMMOS_Catalog/index.cfm
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currently under development such as Sequence Revitalization (SEQR). Some applications are being proposed for 
future development such as Integrated Spacecraft Analysis (ISCA). Still others represent existing functional 
software applications available to missions today such as the instrument data processing Automated, Multimission 
Instrument Task Invocation (MATIS) tool and the Navigation and Ancillary Information (NAIF) SPICE Toolkit.  It 
should be noted that the functional software applications shown in Fig. 8 are representative of only a small subset of 
the available software capabilities from the AMMOS Tools and Services catalog or that will be available as future 
capabilities. 

 
Figure 9.  Classical representation of AMMOS functional capabilities. 

Where we envision a transformational shift that is different from traditional evolutionary modernization efforts 
of the AMMOS in the past is that newly minted and/or modernized functional software capabilities exhibit the 
characteristic that they are responsive to multimission MOS business processes—what we like to refer to as 
“operationally-responsive software.” This is similar in vision to industry trends in the aerospace industry such as the 
U.S. Defense Department’s Operationally Responsive Space (ORS) and 2008 Ground System Architecture 
Workshop (GSAW) theme of “Operationally Responsive Ground Systems.”§§,¶¶ What this requires is the 
decomposition of monolithic software applications into distributed modular software components or “agents” that 
map to multimission MOS operations processes as well as the potential automation of those business processes. 

One example of a functional application within the Planning & Sequencing area that is being architected as an 
operationally-responsive software offering is the Sequence Revitalization (SEQR) application, currently being 
developed as part of the SEQR initiative within the Mission Planning and Sequencing (MPS) program element.  As 
of the time of this writing, there is active dialog between key SEQR and Ops Revitalization initiative management 
and engineering staff to help ensure the new SEQR functional software application is readily adaptable (i.e., 
responsive) to mission operations processes and any changes in those processes. This collaborative process is 
intended to serve as a model for modernization of existing software applications as well as development of new 
applications across the MGSS program elements and functional areas and subsystems within those elements.  

 The Shared Software Services Layer represents the common software services that are to be “shared” for use 
by any or all of the functional software applications in the Software Application Layer. In some cases, the 

                                                           
§§ Operationally Responsive Space (see http://ors.csd.disa.mil/). 
¶¶ GSAW2008 (see http://sunset.usc.edu/gsaw/gsaw2008/agenda08.html). 

http://ors.csd.disa.mil/
http://sunset.usc.edu/gsaw/gsaw2008/agenda08.html
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multimission Mission Services in the Business Process Layer may use these shared software offerings; for example, 
a Common Business Process Management (BPM)/Workflow Service (CWS) in support of automated multimission 
operations business processes. These shared software offerings provide common utility functions that are highly 
cross-cutting in nature and by which all AMMOS applications at the functional level will be encouraged to use 
rather than the highly cost ineffective approach of standing up or provisioning these separately and independently 
for each functional area.34 The objective of utilizing shared software offerings that provide common utility functions 
is to reap the benefit of economies of scale that can be achieved when using a common set of application 
programming interfaces (APIs), training, industry standards, best practices, and system administration. 

Often these shared software offerings will require the provision of a set of (preferably) industry-standard 
capabilities that are implemented using Off-The-Shelf (OTS) components, whether Commercial-Off-The-Shelf 
(COTS), Government-Off-The-Shelf (GOTS), Modified-Off-The-Shelf (MOTS), or Open Source Software (OSS).  
For solutions where high reliability, availability, and scalability are needed, a COTS offering will most likely need 
to be provisioned to support such capability. One example would be a robust, commercial-grade Relational Database 
Management System (RDBMS) to support ultra-high transaction rates that need the assurance of referential integrity 
and concurrency control. The assessment and provision of a candidate COTS offering can be an expensive 
undertaking. This, together with the previously cited opportunity for gaining economies of scale, are some of the key 
reasons why in this new era of the Transformational AMMOS we cannot permit each functional application area to 
choose its own set of cross-cutting utility software without first addressing AMMOS system-wide concerns. 

Another example of such a shared software capability that provides cross-cutting utility functions and identified 
in the third layer of Fig. 8 includes the Common Security Services (CSS) (e.g., access management, key 
management & cryptography), currently being developed and offered within the Computing, Communications, and 
Configuration (CCC) program element. This offering is in the process of providing application-level security 
functions of authentication, authorization, and auditing.35,36 With respect to scope, the authorization function offered 
by the CSS is also intended to provide support for common management of security policy. 

Other shared software capabilities that are currently being architected and developed to support the 
Transformational AMMOS includes a set of so-called “Common Information Exchange (CIE)” services, which 
comprises the Timeline Management Service (TMS), the Relationship Management Service (RMS), and the File 
Management Service (FMS). The TMS is a new, shared software capability that provides a means to store and 
manage definitive sources of operations data that is based on timelines. (Recall timeline is one of the three 
foundational concepts for the Transformational AMMOS that we described in Section III.A.) The RMS is also a new 
service, which is being architected and designed as a means to store and manage definitive sources of operations 
metadata and data relationships.37 Discovery services such as registry-repository capabilities are example utility 
functions that will be supported by the RMS. The FMS, also a new service, provides a means to store and manage 
definitive sources of non-timeline operations data (e.g., command and telemetry dictionaries, data products, etc.).##  

By no means an exhaustive list but additional shared software offerings such as the common notification 
services, enterprise systems management services, logging services, etc. are being considered and will be prioritized 
based on anticipated future need to support the Transformational AMMOS for future infusion targets (e.g., mission 
deliveries, engineering releases, etc.). 

Finally, the Shared Infrastructure Services Layer represents a common scalable compute platform that is to be 
“shared” for the deployment of the functional software applications in the Functional Software Application Layer 
and the common software services in the Shared Software Services Layer. This layer includes Application Platform 
Infrastructure and Institutional Infrastructure. Application Platform Infrastructure is intended to represent the 
collection of all third-party application platform support software such as application server middleware on which 
distributed components of the functional software applications and the shared software services are deployed as well 
as other third-party support software such as Access Managers (AMs), Database Management Systems (DBMSs), 
and Business Process Management Suites (BPMSs) to name a few. Some of these offerings such as enterprise-class 
application servers provide native support for additional runtime qualities of service including workload 
management (i.e., load balancing and failover management), native security capabilities, auditing and logging, and 
systems management. Ideally, these capabilities would be capable of transparent integration with support 
infrastructure capabilities offered by a hosting institution. 

Within the AMMOS context, the core collection of Off-The-Shelf (OTS) support software together the approved 
set of baseline Operating System (OS) software is officially referred to “Third-Party Software (TPS).”38 It is 

                                                           
## The term “File” in File Management Service (FMS) is a bit of a misnomer in that it does not necessarily imply that non-

time ordered (i.e., non-timeline) operations will be managed by a file system.  It just means MOS information that has been 
traditionally file-based. 
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address a multifaceted approach to AMMOS system architecture modernization intended to address information- 
and process-related issues as expressed by flight project mission customers. These foundational concepts and 
associated tenets form a basis for articulating a unified vision for a future-state AMMOS system architecture—one 
that is intended to result in a highly adaptable, highly efficient, and highly cost-effective set of multimission MOS 
products and services. 

Acronyms and Abbreviations 
AM Access Manager 
AMMOS Advanced Multi-Mission Operations System 
AMPCS Advanced Mission Data Processing and Control System 
API Application Programming Interface 
BPMS Business Process Management Service (or System or Suite) 
CCC Computing, Communications, and Configuration 
CSS Common Security Service 
COTS Commercial-Off-The-Shelf 
DISA Deep Space Information Systems Architecture 
DM&A Data Management & Accountability 
DSN Deep Space Network 
GDS Ground Data System 
GOTS Government-Off-The-Shelf 
GSAW Ground System Architecture Workshop 
HW Hardware 
IMS Information Management Service 
ISCA Integrated Spacecraft Analysis 
ITAR International Traffic in Arms 
M2D2 MOS 2.0 Design and Development 
MATIS Automated, Multimission Instrument Task Invocation 
MDAS Mission Control, Data Management, and Spacecraft Analysis 
MDS Mission Data System 
MGSS Multimission Ground System and Services 
MOS Mission Operations System 
MOTS Modified-Off-The-Shelf 
MPS Mission Planning and Sequencing 
NAIF Navigation Ancillary Information Facility 
NCI Network Communications and Infrastructure 
NS Notification Service 
ORS Operationally Responsive Space 
OS Operating System 
OSS Open Source Software 
OTS Off-The-Shelf 
PEA Planning, Execution, and Analysis 
PI Principal Investigator 
RDBMS Relational Database Management System 
SEQR Sequence Revitalization 
SoC Separation of Concerns 
SIS Software Interface Specification 
TL Timeline 
TMS Timeline Management Service 
TPS Third Party Software 
VM Virtual Machine 
WG Working Group 
XML Extensible Markup Language 
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