
Autocoding and
Dictionaries on SMAP
and MSL

Ed Benowitz
MSL/SMAP FSW Developer

Chris Swan
SMAP System Engineer

NASA/Jet Propulsion Laboratory
Caltech

Copyright 2014 California Institute of Technology. Government
sponsorship acknowledged.

http://smap.jpl.nasa.gov/
http://mars.jpl.nasa.gov/msl/

2

Agenda

• Summary
• Mission Overview / Dictionary Overview
• MSL Dictionary/Autocoding Process

– Commands/IPC Messages
– Engineering Health and Accountability (EHA)
– Event Record (EVR)
– Data Products (DP)
– Parameters

• MSL Lessons Learned
• SMAP Dictionary/Autocoding Process

– Commands/EHA
– EVR
– Data Products
– Parameters

• SMAP Lessons Learned
• MSL/SMAP compare contrast

3

Executive Summary

• Both SMAP and MSL
– Used XML dictionaries for commands, telemetry and data products.

• The MSL and SMAP missions made extensive use of autocoding
– Autocoding

• Generating flight C code from XML
• MSL

– Developers wrote the autocoder input XML by hand
• SMAP

– Leveraged lessons learned from the MSL
– Streamlined requirement sources

• Used XML dictionaries for more types of specification
– Used a web/database tool called Dictionary Management System (DMS) to:

• Specify dictionary elements
• Generate XML

– Dictionaries
– Autocoder’s XML inputs

4

Mission Scope/Overview

• MSL Overview
– Latest Mars rover mission
– Three mission phases

• Cruise
• Entry, Descent, and Landing
• Surface

– Highly redundant hardware
– 10 instruments
– Mobility system with autonomy
– Drill
– Robotic arm
– Cameras

• SMAP Overview
– Earth orbiter
– Mostly single string with a few redundant devices
– 2 instruments
– Rotating spun section
– Complex mechanical deployment

• Same flight software architecture for both missions
– Written in C
– Operating system: VxWorks
– Architecture: Message passing via Inter-Process Communication

(IPC)

5

Dictionary Overview

• Dictionary:
– A machine-readable file that describes commands and telemetry formats
– Allows ground tools to

• Encode commands
• Decode telemetry and data products

– Is consistent between flight software and ground software
– Contains human-readable command and telemetry descriptions

6

Code / Dictionary Comparisons

MSL SMAP

Commands 4000 400

EHA 19,600 3400

EVR 26,000 4200

Data
Products 600 30

MSL Raw KLOC Physical KLOC Logical KLOC

Handwritten C 1,323 788 470

Handwritten XML 409 368 277

Autogenerated C 4,049 2,563 1,101

Autogenerated XML 1,846 1,649 1,258

Total (XML and C) 7,629 5,369 3,107

SMAP Raw KLOC Physical KLOC Logical KLOC

Handwritten C 490 252 155

Autogenerated C 142 117 95

Autogenerated XML 157 152 118

Total (XML and C) 790 522 368

7

MSL Dictionary Process

• Systems Engineering “owns” the dictionary
– Can make dictionary updates that do not affect FSW

• Requirements Sources
– Command/EHA dictionary specified via spreadsheet by Systems Engineering

• Converted to XML
– Functional Description Document

• Word document detailing behavior specification
• Included requirements and command/telemetry specifications

– Requirements
• Via DOORS Database
• Included requirements for specific dictionary elements

– All sources are effectively incomplete (scope, level of detail)
– FSW could self generate commands/telemetry independent of requirements sources

• All data stored and managed as flat files (Word, Excel, Text, XML)
– Distributed among a large team

• FSW Change management
– Items checked into Configuration Management (CM)

• All autocoder inputs
• All autocoder tools
• All handwritten code

– All autogenerated code was NOT checked into CM
• Much developer time was spent regenerating code

11

MSL Autocoder: Data Products

• A data product is a structured binary file onboard the spacecraft
• Given a dictionary, the ground tool can decode any data product into a human readable text form
• To accomplish this on flight and test platforms with difference endian-ness and compilers

– The encoding, alignment, and endian-ness of all data products is fully specified in a machine-readable consistent
way

• Data products can contain multiple Data Product Objects (DPO)
– Did NOT specify or restrict what DPOs might be in a given data product

• DPOs allow specification of
– Primitive types
– Fixed size multidimensional arrays
– C-like structs
– Top level variable-sized arrays
– Strings

• Data product autocoder
– FSW developers specify data products and DPOs in XML
– The DP autocoder generates C code to marshal C data structures to data products

• Performs packing, byte swapping across platforms
• XML representation

– All data products names/ids are merged into one XML
– Each DPO is kept separately in its own XML file in the final dictionary

14

MSL Lessons Learned

• ID Assignment and Locking
– Late requirement
– FSW autocoder tools had responsibility

• IDs were tracked across XML and text files
– Added implementation overhead in earlier versions of FSW

• Translation in flight code of locked ids to FSW enumerations
– Consider tools outside of FSW to track IDs in the future missions

• When to autocode
– Autocode flight/ground interfaces when

• The generated code is well defined, repetitive
• There is a need to synchronize definitions between flight and ground

• Running all the tools to build the dictionary is labor intensive
• Parameters

– There is no centralized parameter dictionary
• Caused additional burdens for ground tools tracking parameters over time

• Keeping FSW and Systems in sync on definitions was a challenge
• Requirements sources

– Requirements in Doors, requirements in Excel, systems command definitions in Excel, FDD word documents
– Too many sources for the same information (or subsets of the information)

• Overhead
– Running autocode tools for every checkouts increased build times dramatically

15

SMAP: Dictionary Process

• Systems Engineering “owns” the dictionary
– Can make dictionary updates that do not affect FSW

• All data stored in a centralized database and exported as XML
– SMAP Dictionary process is focused around a web application called DMS (Dictionary

Management System).
• DMS collects input from FSW and Systems engineering, validates, merges, and tracks it.
• DMS also managed unique IDs of all dictionary elements

– SMAP elected to incorporate Parameters and Fault Protection Monitors and Responses into the
dictionary.

• This was driven by their interrelation with other dictionary elements and a desire to reduce
requirements sources.

• Requirements Sources
– To streamline requirement sources the SMAP project opted to treat the dictionary as

requirements and to centralize them via DMS.
• FSW Change management

– Items checked into CM
• All autocoder inputs
• All autocoder tools
• All handwritten and autogenerated code

16

Dictionary Interconnectivity

FP MON XBAND OVERTEMP

X-Band A
Temperature

X-Band A Power
State

Monitor
Threshold

Monitor
Persistence

Monitor Mask
State

RESPONSE XBAND FAILURE

Response
Mask

Response
Timeout

Commands to
Change Monitor

Persistence

Commands to
Change Monitor

Thresholds

Commands to
Change Monitor

Mask State

Commands to
Change Response

Mask State

Commands to
Change Response

Timeout

Command to
Telemeter all
Parameters

Fault Protection
Parameter Dump File

State of MonitorCurrent
Persistence

OverTemp
Occurring

Response
Starting/Ending

Monitor Mask
States

Response Mask
States

Response Timeout
States

X-Band Over Temp
Mask State

X-Band Failure
Mask State

X-Band Failure
Timeout

All Communication
FP monitor status

Thermal Alarm

Thermal Alarm

SFP Alarm

SFP Alarm

SFP Alarm

Ground Derived Channel Ground Alarm

Channel

EVR

Command

Data Product

Parameter

FP Monitor

FP Response

Note that this response executes two general
responses which are not shown here.

DMS validates all interconnectivity
(on input and for every release)

and makes it transparent to the team

20

SMAP Autocoder: Data Product Process

• Like MSL, given a dictionary, the ground tool can decode any data product into a human
readable text form

• To accomplish this on flight and test platforms with difference endian-ness and compilers
– The encoding, alignment, and endian-ness of all data products is fully specified in a

machine-readable consistent way
• SMAP allows nesting and repetition

– Primitive types
– C-like structs
– Arrays
– But there are redundant ways to specify nested structures in XML

• Unlike MSL, SMAP fully specifies data product contents
– No DPOs

• XML representation
– All data products names/ids are merged into one XML
– Each Data Product’s contents is kept separately in its own self-contained XML file

• SMAP does not have a data product autocoder
– Developers manually write code for

• Data product ids
• Marshal and byte swap data products

23

SMAP: Lessons Learned

• Single Source = Big Win
– Migrating to a single source for all dictionary specification was major improvement.
– Dramatically reduced mechanical effort required of collecting/merging/analyzing individual files

(also reduced error)
– Enabled the validation of inputs across dictionaries and enhanced rule based validation on inputs

(beyond the limits of XML schema)
– Allowed for rich metadata to follow dictionary elements (including test history)
– Reduced Systems / FSW dictionary inconsistencies

• Accessibility and Ease of Change brought challenges
– Configuration Control

• SMAP dictionaries followed standard JPL project CM/CC which is primarily a paper
process.

• Sync’ing up the paper for a given change with the digital change code could be challenge
– Work Flow

• During development inputs would often stream in over multiple weeks
– What was ready for FSW?

• Users want more focused view of their work
• Management wanted to be able to track the work better
• Systems wanted to know what they could test

• Auto generated code checked in (not regenerated) saved on build time.

24

Compare Contrast MSL and SMAP

• Single Source (DMS) of information was a major improvement
– Addressed ID assignment issues, FSW/System Sync Issues
– Combined with the web application this saved multiple FTE per year
– Made development progress transparent and helped forecast work to go
– Enabled easy access to rich meta data (V&V history, cognizant engineer)
– Validation of input helped improve resulting dictionary (and underlying FSW code)
– Collapsed several disparate tools into a single tool

• Dictionary as requirements
– Forced the dictionary to be better (FSW codes to it)
– Supported the single source

• Autocoding
– IPC autocoder was useful on MSL, might have been beneficial on SMAP.
– Data Product autocoder was not needed on SMAP but that was due to scope and number of

data products.
• MSL parameters went overboard

– This had ripple effects across the dictionary (commands, data products, etc)
– Lack of an up front dictionary resulted in problems tracking them

• Traceability and visibility issues regarding the default values
• MSL top level Data Product structure was not specified

– Resulted in difficulty understanding what a given product would contain

BACKUP

26

MSL Autocoder:
Alarms and Ground Derived Channels

• Channel information independent of flight software
– Alarms

• When a channel goes out of range, alert the ops team
– Derived Channels

• System engineers specify in a spreadsheet
• Autocoder converts alarm, channel spreadsheets into XML for use by the

ground system
– This also needed to validate that the alarm was valid

28

Lines of Code

• Raw
– Count every line once, regardless of its content

• Physical
– Raw minus blank and comment only lines

• Logical
– The number of executable statements, as computed by JPL’s SLIC program counter

29

MSL Autocoder: Commands and IPC Process

• System engineers describe commands in a spreadsheet
– Specify command restrictions and ranges
– A systems autocoder converts systems inputs from Excel to XML

• The FSW developer creates XML describing the following per module
– Commands

• Opcode
• Arguments
• Argument ranges

– IPC Messages
– IPC Queues

• The IPC/command autocoder (per module)
– Generates

• C Code for decoding commands
• C Code for sending and receiving IPC messages
• A module level output command XML

– Tracks and preserves command opcodes across builds
• The FSW command merge tool concatenates all module command XML,

creating the command dictionary

30

MSL Autocoder: EHA Process

• System engineers describe EHA in a spreadsheet
– Assign ids and descriptions
– Create derived channels

• For the ground, not used by FSW
• The FSW developer creates XML describing the following per module

– Channel id
– Data type

• The EHA autocoder combines FSW module XML and system input XML to
produce

– C Code for pushing channels
• The FSW EHA merge tool concatenates all module EHA XML, creating the

EHA dictionary
– Checks that FSW implemented all channels systems requested

• Using the systems EHA XML input

31

MSL Autocoder: EVR Process

• Developers write EVRs in their C Code
– An EVR works similarly to a printf

• To specify enumerations
– Developers map by hand in XML C-enumerations data types to EVR arguments
– This is the EVR XML file

• The EVR autocoder
– Extracts EVRs from the C code

• Data types based on the format specifier
– Assigns EVR ids
– Generates a header file with all EVR ids
– Extracts enumerations and matches them to EVR arguments based on the EVR

XML
– Outputs the module EVR XML file

• An EVR XML merge tool
– Merges all module level EVR XML files into one large XML file

33

SMAP Autocoder: Command & EHA Process

• Command process
– System engineers specify commands in DMS
– FSW developers export their module commands from DMS as XML
– The SMAP command autocoder generates code containing command arguments

and opcodes only
• Code is generated per module
• Module XMLs are merged into a command dictionary usable in sandboxes

during development
– The FSW developer manually writes IPC code

• EHA Process
– System engineers describe EHA in DMS
– FSW developers export their module EHA from DMS as XML
– The SMAP EHA autocoder generates code for pushing EHA

34

SMAP Autocoder: EVR Process

• Developers write EVRs in their C Code
– An EVR works similarly to a printf

• To specify enumerations
– Unlike MSL, the SMAP autocoder is able to fully extract enumerations by

determining the enum types of all EVR arguments automatically
• The EVR autocoder

– Extracts EVRs from the C code
– Unlike MSL, the developer manually specifies an EVR ID

• EVRs are imported into DMS

35

MSL Autocoder: Parameter Process

• Parameters are
– Saved onboard settings that can be changed by command

• Parameters are specified in structured text file
– Containing: Name, Data type, Range, Default value
– One level of C-like structs and arrays are allowed
– For large sets of default values, the user can use a .csv file as input

• Every parameters has
– A set of generated commands for

• Change the parameter value
– in RAM or in non-volatile storage

• Dump the parameter to a data product
– Non-volatile storage

• The parameter autocoder generates
– Code to save and read from non-volatile storage
– XML command definitions for input to the command and data product autocoders
– Command implementations

• Typical parameter commands change a group of parameters at once

37

SMAP Autocoder: Parameter Process

• Unlike MSL, SMAP does not have a parameter autocoder
• Parameters are specified by system engineers in DMS

– Associated commands are specified in DMS
• FSW developers manually write code that

– Saves and retrieves parameters from non-volatile storage
• Uses the specified default value if the parameter cannot be retrieved

– Implements parameter commands
– Shows parameter state to the ground

• Via EVRs when possible
• With data products otherwise

– Checks parameter ranges
• DMS exports a parameter dictionary as XML

	Slide Number 1
	Agenda
	Executive Summary
	Mission Scope/Overview
	Dictionary Overview
	Code / Dictionary Comparisons
	MSL Dictionary Process
	MSL Autocoder: Command Process
	MSL Autocoder: EHA Process
	MSL Autocoder: EVR Process
	MSL Autocoder: Data Products
	MSL Autocoder: Data Product Process
	MSL Autocoder: Parameter Process
	MSL Lessons Learned
	SMAP: Dictionary Process
	Dictionary Interconnectivity
	SMAP Autocoder: Command Process
	SMAP Autocoder: EHA Process
	SMAP Autocoder: EVR Process
	SMAP Autocoder: Data Product Process
	SMAP Autocoder: Data Product Process
	SMAP Autocoder: Parameter Process
	SMAP: Lessons Learned
	Compare Contrast MSL and SMAP
	BACKUP
	MSL Autocoder: �Alarms and Ground Derived Channels
	MSL Autocoder: Fault Protection
	Lines of Code
	MSL Autocoder: Commands and IPC Process
	MSL Autocoder: EHA Process
	MSL Autocoder: EVR Process
	MSL Autocoder: Statecharts
	SMAP Autocoder: Command & EHA Process
	SMAP Autocoder: EVR Process
	MSL Autocoder: Parameter Process
	SMAP Autocoder: Statecharts
	SMAP Autocoder: Parameter Process

