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Overview

* Basic approach using model to deduce internal dynamics from external
measurement

* Model development

* Two DOF illustration of parametric influence of model parameters
* Demonstration and correlation with test data

* Conclusions and future development
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Motivation

* Accurately estimate random vibration test response of PWBs when
only external measurements are available

— Current approximation methods such as use of Miles equation can result in
significant over- or under-estimation (do not account for coupled response)

* During testing — Indirect observability of unit internal PWB dynamics
from external test measurement

* After testing — Forensic interpretation of test data
— Anomaly resolution
— Design validation

* Design stage — Quick prototyping of electronics unit dynamics for early
design

— This approach would supplement but not replace a detailed finite element
model (FEM)
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Basic Approach

Test Measured Chassis Response
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* Spectral shape of chassis response is a unique signature from dynamic
coupling with mounted oscillators

* Lumped parameter model of chassis and PWBs created by tuning
model parameters to approximate chassis test response signature
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Basic Approach

PWB responses

* Assumptions m, | om [ me |
. .y PWB A ] pwBB [~..| PWB_
— Fixed base excitation normal to PWBs LR, | GER.| RE R
— PWBSs independently supported by chassis $ T ? T ? T
— Damping assigned to discrete elements Chm1 _ | Px,
assIs

— Model elements approximate c.o0.q. response

of structural elements in fundamental mode
* Limitations
— Approximates only fundamental modal response
of structural element
— Restricted to linear response

— Ambiguity in correlating chassis spectral feature to
response of specific PWB

— Methodology still under development

constant
acceleration

* Needs more rigorously defined implementation rules and parameters
* Needs further correlation with test data and finite element models
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Representation of Element Effective and Residual Mass

m, = a,M, _sz my = oM, _TX3 my = oMy _TXN
Element Total mass M, PWB A PWBEB |, .. _PWB_
gy
Element Effective
modal mass = @ 44 Zm _T X4
m, = ca,M, ChaSSIS
Dynamically participating in
proportion to mode shape K, R, I+
Residual mass L] 1 x,
M Z‘m mresidual :MO _Zmn
res — Mynij¢ = 1
Moves along with input in _ :
rigid body motion (M, = total unit mass)

* a, = Modal mass patticipation factor for element n

* Adapted from Bamford, Wada (1971)

— Differs: model DOF correspond to discrete structural elements (chassis, PWBSs)
rather than modes
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Model Development: Parameter Assignment

Model DOF  Structural Mass Effective Fundamental
Element Modal Mass  Frequency
N
1 Chassis MIZMO_Z_;mn m;=o; M; fi
2 PWB 1 M, my = a; M, S
3 PWB 2 M; msz = o3 M3 f3
N PWB N-/ My my = oy My N

* Model parameters m,, f,, Q, initial value assignments based on
— Available unit information (actual measurements, structural analysis

documentation)
— Best estimates
— Reasonable values based on experience
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N-dimensional Linear System of Equations

1—a1<w>—niynan<w) ra,(0) 7o)
(@) @) 0
a3(a)) 0 1—a3(a))
a, (o) 0 0
an(w)=j$N+(“;vj =

?/NaN(a))

l-a, (a))

Solutions z,(w) = normalized frequency response functions for DOF
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2 DOF Parametric Studies

e 2 DOF =Chassis + 1 PWB

* Coupled response studies
1. Ratio of uncoupled resonance frequencies f,/f, for mym,=1/10 (small unit)

2. Ratio of uncoupled resonance frequencies f/f, for my/m,=1/30 (medium sized
unit)
3. PWB Q value

PWB:Chassis fn Ratio = 0.5

10 foosdddl
m Chassis [
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I'|'I £ o
] /i)
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\ AN
K1 R1 J_ 10" \ \
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0 acceleration Frequency
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Study 1: PWB/Chassis f, Ratio Spectral Influence
Relatively small unit — PWB/Chassis mass ratio = 1/10

Linear Magnitude

Linear Magnitude
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Study 2: PWB/Chassis f, Ratio Spectral Influence

Medium-sized unit — PWB/Chassis mass ratio = 1/30

PWB:Chassis f Ratio = 0.5 PWB:Chassis f Ratio = 0.8
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Study 3: PWB Q Value Spectral Influence
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Demonstration Using Test Data

* Test article
— 28 1b. (12.7 kg) electronics unit with 8 full-span PWBs
— Random vibration test (force limited) performed in 2008

— Accelerometer instrumentation N\ |
* 1 PWB (D) near center of board -'J!,;
* Chassis at approximate c.0.g. height |

Frame Weight CCA Weight PWB Weight FEM modal
Ibs (kg) Ibs (kg) Ibs (kg) frequency (Hz)

A 1.10 (0.50) 1.70 (0.77) 2.80 (1.27) 218

B 0.94 (0.43) 1.39 (0.63) 2.33 (1.06) 228

C 0.50 (0.23) 1.00 (0.45) 1.50 (0.68) 223

D 0.50 (0.23) 1.00 (0.45) 1.50 (0.68) 213

E (copy of D) 0.50 (0.23) 1.00 (0.45) 1.50 (0.68) 213
F 0.50 (0.23) 1.00 (0.45) 1.50 (0.68) 213

G 0.50 (0.23) 0.90 (0.41) 1.40 (0.64) 228

H (spare) 0.59 (0.27) 0.78 (0.35) 1.36 (0.62) NA

Data obtained from unit structural analysis documentation

Michael.B.VanDyke@jpl.nasa.gov
Dynamics Environments & Aerospace Nuclear Safety Engineering
Spacecraft Mechanical Section

28 Aerospace Testing Seminar

March 25-27, 2014

APU



9 DOF Model Approximation

910DZOF Lumped Parameter Model Response Predictions vs Test Data Model Uncoup|ed Parameters
: Chassis 6.94 grms Mass Uncoupled
1 [| —— PWBD16.4 grms Model Weight Particc Resonance
10 . ITne;:tChaSS's 576 grms Element lbs(kg) Factora_n f_n (Hz) o]
| Chassis * 0.45 595 6.0
10° A PWBA [ 2.80 (1.27) 0.30 358 15.0
’,' i PWB B 2.33 (1.06) 0.30 358 15.0
N / PWBC | 1.50 (0.68) 0.42 358 17.0
T / i PWBD | 1.50 (0.68) 0.42 358 17.0
o S A PWBE | 1.50 (0.68) 0.42 358 17.0
, = PWBF | 1.50 (0.68) 0.42 358 17.0
10 Emen PWBG | 1.40 (0.64) 0.42 358 17.0
PWB H 1.36 (0.62) 0.42 358 17.0
10°
Chassis response:
y Measured = 5.76 g, s
10 e Predicted =6.94 g,
Frequency

* Test external chassis response (red)
— Low level (-6 dB) test run used for model correlation

— Test data normalized to nominal input spectrum to eliminate spectral noise
* Predicted random vibe responses = |z,(®)|? x Input PSD (interpolated)
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10 DOF Model Approximation

10 DOF Lumped Parameter Model Response Predictions vs Test Data

Model Uncoupled Parameters

10 .
| ——— Chassis 6.63 grms Mass UncouPIEd
] PWB D 15.1 grms Model Weight Partic. Resonance
10 & Undetermined 17.5 grms £ty Element |bs(kg) Factora_ n f n(Hz) Q
- ITne;thhass's 576 grms /' \ “\\ Chassis * 0.45 595 6.0
10 '\ PWB A 2.80 (1.27) 0.30 358 15.0
e PWB B 2.33 (1.06) 0.30 358 15.0
N A ] \ PWB C 1.50 (0.68) 0.42 358 17.0
s 10" 5 /A ok A PWB D 1.50 (0.68) 0.42 358 17.0
o e X PWB E 1.50 (0.68) 0.42 358 17.0
5 e o PWB F 1.50 (0.68) 0.42 358 17.0
10 Fuggr il BA PWB G 1.40 (0.64) 0.42 358 17.0
f - fxsm PWBH |1.36 (0.62) 0.42 358 17.0
3 R VAN Undetermined| 2.50 (1.13) 0.40 260 14.0
10 i e-
\h'ﬁ\ “ )
10 M N Chassis response:
102 10° Measured = 5.76 g,
Frequency Predicted =6.63 g,

* Notch in chassis response at 260 Hz
predicted with undetermined structural
element of 2.5 Ibs., Q =14
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PWB Response: 10 DOF Model vs. Test Measurement

10 DOF Lumped Parameter Model Response Predictions vs Test Data Model Uncoupled Parameters
10 .
& Chassis 6.63 grms Mass  Uncoupled
o B PWB D 15.1 grms Model Weight Partic. Resonance
E: Test Board 13.2 grms _
2 Test Chassis 5.76 grms I Element Ibs (kg) Factora_n f_n (Hz) Q
[l === Input { Chassis * 0.45 595 6.0
10° I PWBA |2.80 (1.27) 0.30 358 15.0
/"\//" i“\\ PWB B 2.33 (1.06) 0.30 358 15.0
E § /7\,,’ ’ML\\ i PWB C 1.50 (0.68) 0.42 358 17.0
Z 10 S il PWBD [1.50 (0.68) 0.42 358 17.0
o> L VNG %‘ 3 RV — PWB E 1.50 (0.68) 0.42 358 17.0
2 T 94 A PWB F 1.50 (0.68) 0.42 358 17.0
10 e ; i B PWB G 1.40 (0.64) 0.42 358 17.0
f AT PWB H 1.36 (0.62) 0.42 358 17.0
10° i A/ IL' Undetermined|2.50 (1.13) 0.40 260 14.0
&
N
10” m A “‘t
102 10° Chassis response:
Frequency Measured = 5.76 g,
Predicted =6.63 g,,¢
PWB D response
Measured = 15.1 g, s
Predicted =13.2 g,¢
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Conclusions

* Lumped parameter modeling is a viable approach for deducing internal
board random vibration test responses given only external chassis
response measurement
— Reasonable correlation of model predictions with test data
— Model can be rapidly developed and tuned to provide quick results
— Due attention must be made to assumptions and limitations
— More development needed to ensure reduce uncertainties in application

* Empirical alternative to application of crude approximation methods such
as application of Miles Equation
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Future Development

* Additional correlation of approach with test data and finite element
models

* |Incorporate test force measurements along with chassis response as test
data observables of internal dynamics

* Explore extension to transient response for application to shock test
response predictions for electronic units

— Limited to spectral range dominated by structural response (typically <1000Hz)

* Develop similar modeling approaches for broader range of application
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RMS: Coupled PWB Response Based on 2 DOF Model

Ratio of PWB RMS: Coupled 2 DOF/SDOF Miles Eq Ratio of PWB RMS: Coupled 2 DOF/SDOF Miles Eq

: . 35 T
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* Coupled relative RMS response of first bending mode (whether g’s or
mils) can be significantly greater than a simple SDOF Miles Equation
would predict

» Degree of amplification dependent on relative mass ratio, fO ratio, Q
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