
Monitoring with Data Automata

Klaus Havelund?

Jet Propulsion Laboratory
California Institute of Technology

California, USA

Abstract. We present a form of automaton, referred to as data au-
tomata, suited for monitoring sequences of data-carrying events, for ex-
ample emitted by an executing software system. This form of automata
allows states to be parameterized with data, forming named records,
which are stored in an efficiently indexed data structure, a form of
database. This very explicit approach differs from other automaton-based
monitoring approaches. Data automata are also characterized by allow-
ing transition conditions to refer to other parameterized states, and by
allowing transitions sequences. The presented automaton concept is in-
spired by rule-based systems, especially the Rete algorithm, which is
one of the well-established algorithms for executing rule-based systems.
We present an optimized external DSL for data automata, as well as a
comparable unoptimized internal DSL (API) in the Scala programming
language, in order to compare the two solutions. An evaluation compares
these two solutions to several other monitoring systems.

1 Introduction

Runtime verification (RV) is a sub-field of software reliability focused on how
to monitor the execution of software, checking that the behavior is as expected,
and if not, either produce error reports or modify the behavior of the software
as it executes. The executing software is instrumented to emit a sequence of
events in some formalized event language, which are then checked against a
temporal specification by the monitor. This can happen during test before de-
ployment, or during deployment in the field. Orthogonally, monitoring can occur
online, simultaneously with the running program, or offline by analyzing log files
produced by the running program. Many RV systems have appeared over the
last decade. The main challenges in building these systems consist of defining
expressive specification languages, which also makes specification writing attrac-
tive (simple properties should have simple formulations), as well as implement-
ing efficient monitors for such. A main problem is how to handle data-carrying
events efficiently in a temporal setting. Consider for example the following event
stream consisting of three grant(t, r) events (resource r is granted to task t):

? The work described in this publication was carried out at Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the National Aeronautics
and Space Administration.

〈grant(t1, a), grant(t2, b), grant(t3, a)〉, and consider the property that no re-
source should be granted to more than one task at a time. When receiving the
third event grant(t3, a), the monitor has to search the relevant history of seen
events, which, if one wants to avoid looking at the entire history, in the presence
of data ends up being a data indexing problem in some form or another.

RV systems are typically based on variations of state machines, regular ex-
pressions, temporal logics, grammars or rule-based systems. Some of the most
efficient RV systems tend to be have limited expressiveness [2], while very expres-
sive systems tend to not be competitive wrt. efficiency. Our earlier work includes
studies of rule-based systems, including Ruler [6] and LogFire [15]. As exam-
ple of a rule in a rule-based system, consider: Granted(t, r) ∧ grant(t′, r) ⇒
Error(t, t′, r). The state of a rule-system can abstractly be considered as con-
sisting of a set of facts, referred to as the fact memory, where a fact is a named
data record, a mapping from field names to values. A fact represents a piece
of observed information about the monitored system. A condition in a rule’s
left-hand side can check for the presence or absence of a particular fact, and
the action on the right-hand side of the rule can add or delete facts. Left-hand
side matching against the fact memory usually requires unification of variables
occurring in conditions. In case all conditions on a rule’s left-hand side match
(become true), the right-hand side action is executed. The rule above states that
if the fact memory contains a fact that matches Granted(t, r) for some task t and
resource r, and a grant(t′, r) event is observed, then a new fact Error(t, t′, r) is
added to the fact memory. A well-established algorithm for efficiently executing
rule-based systems is the Rete algorithm [12], which we implemented in the
LogFire system [15] as an internal DSL (API essentially) in the Scala pro-
gramming language, while adopting it for runtime verification (supporting event
processing in addition to fact processing), and by optimizing fact search using
an indexing approach.

While an interesting solution, the Rete algorithm is complex. Our goal is
to investigate a down-scaled version of Rete to an automaton-based formalism,
named data automata (Daut), specifically using the indexing approach imple-
mented in [15]. Two alternative solutions are presented and compared. First,
data automata are presented as a so-called external DSL, a stand-alone formal-
ism, with a parser and interpreter implemented in Scala. The formalism has
some resemblance to process algebraic notations, such as CSP and CCS. Sec-
ond, we present an unoptimized internal DSL (Dautint), an API in the Scala
programming language, with a very small implementation, an order of magni-
tude smaller compared to the external DSL (included in its entirety in Appendix
A). An internal DSL has the advantage of offering all the features of the host
programming language in addition to the features specific to the DSL itself. We
compare these two solutions with a collection of other monitoring systems.

The paper is organized as follows. Section 2 outlines related work. Section
3 presents data automata, as the external DSL named Daut, including their
pragmatics, syntax, and semantics. Section 4 presents an indexing approach
to obtain more efficient monitors for data automata. Section 5 presents the

alternative internal Scala DSL named Dautint, which also implements the data
automaton concept. Section 6 presents an evaluation, comparing performance
with other systems. Section 7 concludes the paper.

2 Related Work

The inspiration for this work has been our work on the rule-based LogFire
system [15], which again was inspired by the Ruler system [6]. The external DSL
is closely related to LogScope [4]. The internal Scala DSL is a modification of
the internal Scala DSL TraceContract [5]. As such this work can be seen
as presenting a reflection of these four pieces of work.

The first systems to handle parameterized events appeared around 2004,
and include such systems as Eagle [3] (a form of linear µ-calculus), Jlo [18]
(linear temporal logic), TraceMatches [1] (regular expressions), and Mop [16]
(allowing for multiple notations). Mop seems the most efficient of all systems.
The approach applied is referred to as parametric trace slicing. A trace of data
carrying events is, from a semantic point of view, sliced to a set of propositional
traces containing propositional events, not carrying data (one trace for each
binding of data parameters) which are then fed to propositional monitors. In
practice, however, the state of a monitor contains, simplified viewed, a mapping
from bindings of parameter values to propositional monitor states. This indexing
approach results in an impressive performance. However, this is at the price of
some lack of expressiveness in that properties cannot relate different slices, as
also pointed out in [2]. MopBox [10] is a modular Java library for monitoring,
implementing Mop’s algorithms.

Quantified Event Automata [2] is an automaton concept for monitoring pa-
rameterized events, which extends the parametric trace slicing approach used in
Mop by allowing event names to be associated with multiple different variable
lists (not allowed in Mop), by allowing non-quantified variables to vary during
monitoring, and by allowing existential quantification in addition to universal
quantification. This results in a strictly more expressive logic. This work arose
from an attempt to understand, reformulate and generalize parametric trace
slicing, and more generally from an attempt to explore the spectrum between
Mop and more expressive systems such as Eagle and Ruler, similar to what
is attempted in the here presented work. The work is also closely related to Or-
chids [13], which is a comprehensive state machine based monitoring framework
created for intrusion detection.

Several systems have appeared that monitor first order extensions of propo-
sitional linear temporal logic (LTL). A majority of these are inspired by the
classical rules (Gerth et. al) for rewriting LTL. These extensions include [17], an
extension of LTL with a binding operator, and implemented using alternating
automata; LTL-FO+ [14], for parameterized monitoring of Xml messages com-
municated between web-services; Mfotl [7], a metric first-order temporal logic
for monitoring, with time constraints as well as universal and existential quan-
tification over data; LTLFO [8], based on spawning automata; and [11], which

Listing 1.1: Monitor for requirements R1 and R2

monitor R1R2 {
init always Start {

grant(t , r) → Granted(t,r)
release (t , r) :: ¬Granted(t,r) → error

}

hot Granted(t,r) {
release (t , r) → ok
grant(,r) → error
}
}

uses a combination of classical monitoring of propositional temporal properties
and SMT solving.

3 The Daut Calculus

3.1 Illustration by Example

We shall introduce Daut by example. Consider a scenario where we have to
write a monitor that monitors sequences of grant(t, r) and release(t, r) events,
representing respectively granting a resource r to a task t, and task t releasing
resource r. Consider furthermore the two requirements R1: “a grant of a resource
to a task must be followed by a release of that resource by the same task, without
another grant of that resource in between (to the same task or any other task)”,
and R2: “a resource cannot be released by a task, which has not been granted the
resource”. These requirements can be formalized in Daut as shown in Listing
1.1. The monitor has the name R1R2. It contains two states Start and Granted,
the latter of which is parameterized with a task t and a resource r. The Start
state is the initial state indicated by the modifier init. Furthermore, it is an
always state, meaning that whenever a transition is taken out of the state, an
implicit self-loop keeps the state around to monitor further events. In the Start
state when a grant(t, r) event is observed, a Granted(t, r) state is created. When
a release(t, r) event is observed, and the condition occurring after :: is true,
namely that there is no Granted(t, r) state active, then it is an error. The state
Granted(t, r) is a so-called hot state, which essentially is a non-final state. It is
an error to remain in a hot state at the end of a log analysis for example. It
appears to us more natural to highlight non-final states than final states.

The formalism allows for various abbreviations. For example, it is possible
to write transitions at the top level, as a shorthand for introducing a state

Listing 1.2: Simplified monitor

monitor R1R2 {
grant(t , r) → Granted(t,r)
release (t , r) :: ¬Granted(t,r) → error

hot Granted(t,r) {
release (t , r) → ok
grant(,r) → error
}
}

Listing 1.3: Monitor for requirement R1

monitor R1 {
grant(t , r) → hot {

release (t , r) → ok
grant(,r) → error
}
}

with modifiers init and always. This is illustrated by the monitor in Listing
1.2, which is semantically equivalent to the monitor in Listing 1.1. Also, target
states can be “inlined”, making it possible to write sequences of transitions
without mentioning intermediate states. This is a shorthand for the longer form
where each intermediate state is named. As an example, requirement R1 can
be stated succinctly as shown in Listing 1.3. Such nesting can be arbitrarily
deep, corresponding to time lines. This makes it possible to write monitors that
resemble temporal logic, as also was possible in TraceContract [5].

In general, states can be parameterized with arbitrary values represented by
expressions in an expression language (not just identifiers as in some RV ap-
proaches, for example Mop). The formalism allows counting, as an example.
The right-hand sides of transitions can for brevity also be conditional expres-
sions, where conditions can refer to state and event parameters, as well as other
states. To summarize, this automaton concept supports parameterized events,
parameterized states, transition conditions involving state and event parameters
as well as other parameterized states, expressions as arguments to states, and
conjunction of conditional target states. What is not implemented from classical
rule-based systems is disjunction of target states (as in Ruler), variables and
general statements as actions, deletion of facts in general (only the state from

which a transition leads is deleted when taking the transition, except if it is an
always state), and general unification across conditions. A further extension of
this notation (not pursued in this work) could allow declaration of variables lo-
cal to a monitor, reference to such in conditions, as well as arbitrary statements
with side-effects on these variables in right-hand side actions. The internal Scala
DSL Dautint presented in Section 5 does support these extensions.

3.2 Syntax

The presentation of data automata shall focus on the syntax of such, as used in
the specifications seen in the previous subsection. The full grammar for Daut
is shown in Figure 1, using extended BNF notation, where 〈N〉 denotes a non-
terminal, 〈N〉 ::= . . . defines the non-terminal 〈N〉, S∗ denotes zero or more
occurrences of S, S∗∗ denotes zero or more occurrences of S separated by commas
(’,’), S | T denotes the choice between S and T , dS edenotes optional S, bold
text represents a keyword, and finally ‘. . .’ denotes a terminal symbol.

〈Specification〉 ::= 〈Monitor〉*

〈Monitor〉 ::= monitor 〈Id〉 ‘{’ 〈Transition〉* 〈State〉* ‘}’

〈State〉 ::= 〈Modifier〉* 〈Id〉 d (〈Id〉**) e d ‘{’ 〈Transition〉* ‘}’ e

〈Modifier〉 ::= init | hot | always

〈Transition〉 ::= 〈Pattern〉 ‘::’ 〈Condition〉 ‘→’ 〈Action〉**

〈Pattern〉 ::= 〈Id〉 ‘(’〈Id〉**‘)’

〈Condition〉 ::= 〈Condition〉 ‘∧’ 〈Condition〉
| 〈Condition〉 ‘∨’ 〈Condition〉
| ‘¬’ 〈Condition〉
| ‘(’〈Condition〉‘)’
| 〈Expression〉 〈relop〉 〈Expression〉
| 〈Id〉 d ‘(’〈Expression〉**‘)’ e

〈Action〉 ::= ok
| error
| 〈Id〉 d ‘(’〈Expression〉**‘)’ e
| if ‘(’ 〈Condition〉 ‘)’ then 〈Action〉 else 〈Action〉
| 〈Modifier〉* ‘{’ 〈Transition〉* ‘}’

Fig. 1: Syntax of Daut

The syntax can briefly be explained as follows. A 〈Specification〉 consists
of a sequence of monitors, each representing a data automaton. A 〈Monitor〉

has a name represented by an identifier 〈Id〉, and a body enclosed by curly
brackets. The body contains a sequence of transitions and a sequence of states.
The transitions are short for an initial always state containing these transitions.
A 〈State〉 is prefixed with zero or more modifiers (init, always, or hot), has a
name, and an optional list of (untyped) formal parameters, and an optional body
of transitions leading out of the state. A 〈Transition〉 consists of a pattern that
can match (or not) an incoming event, where already bound formal parameters
must match the parameters of the event, followed by a condition. If the pattern
matches and the condition evaluates to true, the action is executed, leaving
the enclosing state unless it is an always state. A 〈Condition〉 conforms to
the standard Boolean format including relations over values of expressions. The
last alternative 〈Id〉 d ‘(′〈Expression〉∗∗‘)′e allows to write state expressions as
conditions. A state expression of the form id(exp1, . . . , expn) is true if there
is a state active with parameters equal to the value of the expressions. This
specifically allows to express past time properties. An 〈Action〉 is either ok,
meaning the transition is taken without further action (a skip), error, which
causes an error to be reported, the creation of a new state (target state), a
conditional action, useful in practice, or the derived form of a modifier-prefixed
block of transitions, avoiding to name the target state.

3.3 Semantics

Basic Concepts The semantics is defined as an operational semantics. We
first define some basic concepts. We shall assume a set Id of identifiers and a
set V of values. An environment env ∈ Env = Id

m→ V is a finite mapping from
identifiers to values. An event e ∈ Event = Id × V ∗ is a tuple consisting of an
event name and a list of values. We shall write an event (id, 〈v1, . . . , vn〉) as:
id(v1, . . . , vn). A trace σ ∈ Trace = Event∗ is a list of events. A state identifier
id is associated with a sequence of formal parameters id1, . . . , idn. A particular
state s ∈ State = id(v1, . . . , vn), for v1, . . . , vn ∈ V , represents an instantiation
of the formal parameters. For such a state we can extract the environment with
the following notation: s.env of type Env, formed from the binding of the formal
parameter ids to the values: s.env = [id1 7→ v1, . . . , idn 7→ vn].

The semantics of each single monitor in a specification is a labeled transition
system: LTS = (Config,Event,→, i, F). Here Config ⊆ State is the set of all
possible states (possibly infinite depending on the value domain). Event is a
set of parameterized events. → ⊆ Config× (Event× B)× Config is a transition
relation, which defines transitions from a configuration to another as a result of
an observed event, while “emitting” a Boolean flag being false iff. an error has
been detected. i ⊆ Config is the set of initial states, namely those with modifier
init (these cannot have arguments). Finally, F ⊆ Config is the set of final states
id(v1, . . . , vn) where id is not declared with modifier hot.

The operational semantics to be presented defines how a given configuration
con evolves to another configuration con′ on the observation of an event e. In
addition, since such a move can cause an error state to be entered, a Boolean
flag, the status flag, will indicate whether such an error state has been entered

in that particular transition. The result of transitions will hence be pairs of the
form (flag, con) ∈ Boolean × Config, also called results (res). Furthermore, we
shall use the value ⊥ to indicate that an evaluation has failed, for example if no
transitions are taken out of a state. Consequently we need to be able to compose
results, potentially being ⊥, where combination of two proper results is again
a result consisting of the conjunction of flags and union of configurations. We
define two operators, ⊕⊥ (for combining results that can potentially be ⊥), and
⊕ (for combining proper results):

res⊥ ⊕⊥ res′⊥ =
case (res⊥, res

′
⊥) of

(⊥, r)⇒ r
(r,⊥)⇒ r
(r1, r2)⇒ r1 ⊕ r2

(b1, con1)⊕ (b2, con2) =
(b1 ∧ b2, con1 ∪ con2)

Note that this semantics will yield a status (true or false) for each observed
event depending on whether an error state has been entered in that specific
transition. This status does not reflect whether an error state has been entered
so far from the beginning of the event stream. This form of non-monotonic result
computation allows the result to switch for example from false in one step to
true in the next, and is useful for online monitoring, where it is desirable to know
whether the current event causes an error. The result across the trace can simply
be computed as the conjunction over all emitted status flags. In case a 4-valued
logic is desired [9], this is easily calculated on the basis of the contents of the
current configuration (false: if error reached, and if not, true: if it contains no
states, possibly false: if it contains at least one non-final state, and possibly true:
if it contains only final states, one or more).

Operations Semantics The LTS denoted by a monitor is defined by the oper-
ational semantics presented in Figure 2. The semantics is defined for the kernel
language not including (i) always states, (ii) transitions at the outermost level,
and (iii) inlined states (all states have to be explicitly named).

Rule E (Evaluate) is the top-level rule, and reads as follows. A configuration

con evolves (
e,b−→ below the line) to a configuration con′ on observation of an

event e, while emitting a status flag b, if (
e
↪→ above the line): con, con, where the

second con functions as an iterator, yields the status b and resulting configuration
con′.

Rule E-ss1 (Evaluate set of states) defines how the state iterator set is tra-

versed (
e
↪→), here in the situation where the state iterator set has become empty.

Rule E-ss2 defines the evaluation in the case where the state iterator is not empty,
by selecting a state s, which then is evaluated using

e7−→, and then evaluating

the remaining states ss recursively with
e
↪→.

Rule E-s1 (Evaluate state) defines the evaluation of a state (
e7−→) by evalu-

ating (
e

=⇒) its transitions t.ts in the configuration and in the environment t.env

E
con, con

e
↪→ b, con′

con
e,b−→ con′

E-ss1
con, {} e

↪→ (true, {}) E-ss2

con, s
e7−→ res

con, ss
e
↪→ res′

con, s ∪ ss
e
↪→ res⊕ res′

E-s1
con, s.env, s.ts

e
=⇒⊥

con, s
e7−→ true, {s}

E-s2
con, s.env, s.ts

e
=⇒ res

con, s
e7−→ res

E-ts1
con, env,Nil

e
=⇒⊥ E-ts2

con, env, t
e
⇀ res⊥

con, env, ts
e

=⇒ res′⊥

con, env, t :: ts
e

=⇒ res⊥ ⊕⊥ res′⊥

E-t1

t is ‘pat :: cond→ rhs′

[[pat]]P env e =⊥
con, env, t

e
⇀⊥ E-t2

t is ‘pat :: cond→ rhs′

[[pat]]P env e = env′

[[cond]]Ccon env′ = false

con, env, t
e
⇀⊥

E-t3

t is ‘pat :: cond→ rhs′

[[pat]]P env e = env′

[[cond]]Ccon env′ = true

[[rhs]]Rcon env′ = res

con, env, t
e
⇀ res

Fig. 2: Operational semantics of Daut

associated with the state. Here in the situation where none of the transitions
fire, represented above the line by the result of

e
=⇒ being the value ⊥. Rule E-s2

defines the evaluation in the situation where at least one of the transitions fire.
Rule E-ts1 (Evaluate transitions) defines the evaluation (

e
=⇒) of a list of

transitions in the environment of the current state being evaluated. Here in the
situation where this list is empty. In this case ⊥ is returned to indicate that no
transitions fired. Rule E-ts2 defines the evaluation in the case where there is at
least one transition t to be evaluated using

e
⇀ to a result, potentially ⊥, and

then evaluating the remaining transitions ts recursively with
e

=⇒.
Finally, rule E-t1 (Evaluate transition) defines the evaluation (

e
⇀) of a mon-

itor transition t, which has the syntactic format: pat :: cond → rhs, in the
environment of the current state being evaluated. Recall that a transition con-
sists of a pattern pat against which an observed event is matched. If successfully
matched, the condition cond is evaluated, and if true, the right-hand side ac-
tion rhs is executed. Rule E-t1 defines the evaluation in the situation where the
pattern pat does not match the event, either because the event names differ or
because the actual parameters of the event do not match the assignments to
the formal parameters defined by env. In this case ⊥ is returned to indicate
that no transitions fired. The semantics of patterns is defined by the evaluator
[[]]P in Figure 3. Rule E-t2 defines the evaluation in the case where the pattern
does match, but where the condition, evaluated by [[]]C in Figure 3, evaluates to
false. Rule E-t3 defines the evaluation in the case where the pattern matches and
the condition evaluates to true. In this case the right-hand side rhs is evaluated
with [[]]R in Figure 4.

Semantic Functions The semantic functions used in the operational semantics
in Figure 2 are defined in Figures 3 and 4. The semantics of expressions is
the obvious one and is not spelled out. The semantics of conditions is also the
obvious one for all cases, except for the semantics of state predicates of the
form id(exp1, . . . , expn): the expression arguments are evaluated and the result
is true if and only if the resulting state is contained in the configuration con1.
The semantics of the right-hand side, a comma separated list of actions of type
Action∗∗, is obtained by evaluating each action to a result, and then ‘and’ (∧)
the flags together and ‘union’ (∪) the configurations together. The semantics of
an action is a pair consisting of a status flag and a configuration, the flag being
false if the action is error.

4 Optimization

The operational semantics presented in Figure 2 in the previous section is based
on iterating through the configuration, a set of states, (rules E-ss1 and E-ss2),

1 The actually implemented semantics is a little more complicated by allowing selected
arguments to the state predicate to be the “don’t” care value ‘ ’, meaning that the
search will not care about the values in these positions. However, the automaton
concept is meaningful without this additional feature.

[[]]P : Pattern→ Env → Event→ Env⊥
[[pat]]P env id(v1, . . . , vn) =

case pat of
“ ”⇒ env // don’t care pattern matches all
id(id1, . . . , idn)⇒ // event names match

let env′ = {id1 7→ v1, . . . , idn 7→ vn} in
if (∀id ∈ (dom(env) ∩ dom(env′)) • env(id) = env′(id)))

then env ⊕ env′

else ⊥ // bindings do not match
id′(. . .) where id 6= id′ ⇒⊥ // event names do not match

[[]]C : Cond→ Config → Env → B
[[cond]]Ccon env =

case cond of
...
id(exp1, . . . , expn)⇒ id([[exp1]]env, . . . , [[expn]]env)) ∈ con

[[]]E : Exp→ Env → B
...

Fig. 3: Semantics of patterns, conditions and expressions

[[]]R : Action∗∗ → Config → Env → Result

[[act1, . . . , actn]]Rcon env =
let

results = {[[acti]]con env | i ∈ 1..n}
status =

∧
{b | (b, con′) ∈ results}

con′′ =
⋃
{con′ | (b, con′) ∈ results}

in
(status, con′′)

[[]]A : Action→ Config → Env → Result

[[act]]Acon env =
case act of

ok⇒ (true, {})
error⇒ (false, {})
id(exp1, . . . , expn)⇒ (true, {id([[exp1]]env, . . . , [[expn]]env))}
if (cond) then act1 else act2 ⇒

if ([[cond]]con env)then [[act1]]con env else [[act2]]con env

Fig. 4: Semantics of transition right-hand sides

state by state, evaluating the event against each state. This is obviously costly.
A better approach is to arrange the configuration as an indexed structure which
makes it efficient for a given event to extract exactly those states that have
transitions labeled with event patterns where the event name is the same, and
where the formal parameters are bound to values (in the state’s environment env)
that match those in the corresponding positions in the incoming event. We here
ignore “don’t care” patterns, which match any event (the actually implemented
algorithm deal with these as well). In the following we highlight some of the
classes implementing such an optimization in the Scala programming language.
First the top-level Monitor class:

class Monitor(automaton: Automaton) {
val config = new Config(automaton)
...
def verify (event: Event) {
var statesToRem: Set[State] = {}
var statesToAdd: Set[State] = {}
for (state ∈ config .getStates(event)) { // efficient search for states
val (rem, add) = execute(state, event)
statesToRem ++= rem
statesToAdd ++= add
}
statesToRem foreach config.removeState
statesToAdd foreach config.addState
}
}

The monitor (parameterized with the abstract syntax tree, automaton, repre-
senting the monitor) contains a instantiation of the Configuration class. The
verify method is called for each event. It maintains two sets, one containing
states to be removed from the configuration as a result of taking transitions,
and one for containing states to be added. These sets are used to update the
configuration at the end of the method. The essential part of this method is the
expression: config.getStates(event), which extracts only the relevant states for a
given event.

The Configuration class is defined next. The core idea is to maintain two
kinds of nodes: state nodes and event nodes. There is one state node for each
named state. It contains at any point in time an index of all the states with that
name, only distinguished by their parameters. Likewise, there is one event node
for each transition, representing the event pattern on that transition. The event
node is linked to the source state of the transition. The state nodes and event
nodes are mapped to by their names. Since an event name can occur on several
transitions, an event name is mapped to a list of event nodes:

class Config(automaton: Automaton) {

var stateNodes: Map[String, StateNode] = Map()
var eventNodes: Map[String, List[EventNode]] = Map()
...
def getStates(event: Event): Set[State] = {
val (eventName, values) = event
var result : Set[State] = Set()
eventNodes.get(eventName) match {
case None ⇒
case Some(eventNodeList) ⇒
for (eventNode ∈ eventNodeList) {

result ++= eventNode.getRelevantStates(event)
}

}
result

}
}

The method getStates returns the set of states relevant for a given event. It does
this by first looking up all the event nodes for that event (those with the same
name), each corresponding to a particular transition, and for each of these it
retrieves the relevant states in the corresponding state node. The details of how
this works is given by the classes EventNode and StateNode, where sets and maps
are mutable (updated point wise for efficiency reasons). The class EventNode is
as follows:

case class EventNode(stateNode: StateNode,
eventIds: List [Int] , stateIds : List [String]) {
...
def getRelevantStates(event: Event): Set[State] = {
val (, values) = event
stateNode.get(

stateIds ,
for (eventId ∈ eventIds) yield values(eventId)

)
}
}

An event node contains a reference to the state node it is connected to (the
source state of the transition the event pattern occurs on), a list of parameter
positions in the event that are relevant for the search of relevant states, and a list
of the formal parameter names in the associated state these parameter positions
correspond to. To calculate the states relevant for an event, the state node’s get
method is called with two arguments: the list of formal state parameters that
are relevant, and the list of values they have in the observed event. The state
node is as follows:

Listing 1.4: A monitor with a cancel option

monitor R3 {
grant(t , r) → Granted(t,r)

hot Granted(t,r) {
release (t , r) → ok
cancel(r) → ok
}
}

case class StateNode(stateName: String, paramIdList: List[String]) {
var index: Map[List[String], Map[List[Value], Set[State]]] = Map()
...
def get(paramIdList: List[String] , valueList : List [Value]): Set[State] =
{

index(paramIdList).get(valueList) match {
case None ⇒ emptySet
case Some(stateSet) ⇒ stateSet
}
}
}

A state node defines the name of the state, as well as its parameter identifier
list (formal parameters). It contains an index, which maps a projection of the
parameter identifier yet a map, which maps lists of values for these parameters
to states which bind exactly those values to those parameters. A similar put
method is defined, which inserts a state in the appropriate slot.

As an example, consider the monitor in Listing 1.4, where a depletable re-
source (can be assigned simultaneously to more than one task) either can get
released by the task that it was granted to, or it can be canceled for all tasks that
currently hold it. Suppose we observe the events 〈grant(T1, R), grant(T2, R)〉.
Then the index for the state node for Granted will look as follows:

〈t, r〉 7→ [〈T1, R〉 7→ {Granted(T1, R)}, 〈T2, R〉 7→ {Granted(T2, R)}]
〈r〉 7→ [〈R〉 7→ {Granted(T1, R), Granted(T2, R)}]

5 Internal DSL

The internal DSL, Dautint, is defined as an API in Scala. Scala offers various
features which can can make an API look and feel like a DSL. These include
implicit functions, possibility to omit dots and parentheses in calls of methods

Listing 1.5: Events (Dautint)� �
trait Event
case class grant(task: String, resource: String) extends Event
case class release (task: String, resource: String) extends Event
� �

on objects (although not used here), partial functions, pattern matching, and
case classes. Dautint is a variation of TraceContract, presented in [5], which
explains in more detail how to use Scala for defining a domain specific language
for monitoring. TraceContract is a larger DSL, also including an embedding
of linear temporal logic. However, it does in its pure form not support specifica-
tion of past time properties (additional rule-based constructs had to be added to
support this). Dautint is much simpler, just focusing on data automata, and it
supports specification of past time properties by allowing transition conditions
to refer to other parameterized states. This is achieved by defining states as case
classes. A main advantage of an internal DSL is the ability to mix the DSL with
code. Although not shown here, monitors can freely mix DSL constructs and pro-
gramming constructs, such as variable declarations and assignment statements.
For example, the right-hand side of a transition can include execution of Scala
statements.

The complete implementation of Dautint is shown in Appendix A. As shown
in Section 6, this simple DSL is surprisingly efficient compared to many other
systems (except for Mop), which is interesting considering that it is very few
lines of code. We shall not here explain the details, and refer to [5] for the general
principles of implementing a similar DSL. Instead we shall illustrate what the
Daut monitors presented in Section 3 look like in Dautint. First we need to
define the events of interest, see Listing 1.5. This is done by introducing the
trait (similar to an abstract class) of events Event and then defining each type
of event as a case class subclassing Event. In contrast to classes, case classes
allows pattern matching over objects of the class, including its parameters. The
monitors in listings 1.2 and 1.3 can now be programmed as shown in Listing 1.6.

Note the similarity with the corresponding Daut monitors. A monitor ex-
tends the Monitor class, which is parameterized with the event type. The method
whenever takes a partial function as argument and creates an initial always
state from it. A partial function can in Scala be defined with a sequence of
case statements using pattern matching over the events, defining the domain
of the partial function. A state is modeled as a class that subclasses one of the
pre-defined classes: state, hot, or always, defining respectively normal final states,
non-final states, and final states with self-loops. The transitions in a state are
declared with the when method which, just as the whenever method, takes a
partial function representing the transitions as argument. Note that in order to

Listing 1.6: Monitors (Dautint)� �
class R1R2 extends Monitor[Event] {

whenever {
case grant(t, r) ⇒ Granted(t, r)
case release(t , r) if !Granted(t, r) ⇒ error
}

case class Granted(t: String, r : String) extends hot {
when {
case release (‘ t ‘, ‘ r ‘) ⇒ ok
case grant(, ‘r ‘) ⇒ error
}
}
}

class R1 extends Monitor[Event] {
whenever {
case grant(t, r) ⇒ hot {
case release (‘ t ‘, ‘ r ‘) ⇒ ok
case grant(, ‘r ‘) ⇒ error
}
}
}
� �

Listing 1.7: Applying a monitor (Dautint)� �
object Main {
def main(args: Array[String]) {
val obs = new R1R2

obs. verify (grant("t1", "A"))
obs. verify (release ("t1", "A"))

obs.end()
}
}
� �

enforce a pattern to match on values bound to an identifier, the identifier has to
be quoted, as in ‘t‘.

Finally, Dautint allows to combine monitors in a hierarchical manner, for
the purpose of grouping monitors together. A monitor can be applied as shown
in Listing 1.7, creating an instance and subsequently submitting events to it.

6 Evaluation

This section describes the benchmarking performed to evaluate Daut, the ab-
stract operational semantics Dautsos, and the internal DSL, Dautint. The sys-
tems are evaluated against seven other RV systems, also evaluated in [15], which
also explains the evaluation setup in details. The experiments focus on analysis
of logs (offline analysis), since this has been the focus of our application of RV.
The evaluation was carried out on an Apple Mac Pro, 2×2.93 GHz 6-Core Intel
Xeon, 32GB of memory, running Mac OS X Lion 10.7.5. Applications were run
in Eclipse JUNO 4.2.2, running Scala IDE version 3.0.0/2.10 and Java 1.6.0.
The systems compared are explained in [15]. All monitors check requirements
R1 and R2 (page 4), formalized in Daut in Listing 1.2 and in Dautint in Listing
1.6 (first monitor). Logs can abstractly be seen as sequences of events grant(t, r)
and release(t, r), where t and r are integer values. The logs are represented as
CSV files, and parsed with a CSV-parsing script.

The experiment consists of analyzing seven different logs: one log, numbered
1, generated from the Mars Curiosity rover during 99 (Mars) days of operation
on Mars, together with six artificially generated logs, numbered 2-7, that are
supposed to stress test the algorithms for their ability to handle particular sit-
uations requiring fast indexing. The MSL log contains a little over 2.4 million
events, of which 30.933 are relevant grant and release events, which are extracted
before analysis. The shape of this log is a sequence of paired grant and release
events, where a resource is released in the step immediately following the grant
event (after all other events have been filtered out). In this case we say that the
required memory is 1: only one (task, resource) association needs to be remem-
bered at any point in time. In this sense there is no need for indexing since only
one resource is held at any time. This might be a very realistic scenario in many
cases. The artificially generated logs experiment with various levels of memory
amongst the values: {1, 5, 30, 100, 500, 5000}. As an example, a memory value of
500 means that the log contains 500 grant(t, r) events for all different values of
(t, r), before any resources are released, resulting a memory of size 500, which
then has to be indexed. The results are shown in Table 1.

The table shows that Mop outperforms all other systems by orders of magni-
tude. This fundamentally illustrates that the indexing approach used, although
leading to limited expressiveness, has major advantages when it comes to ef-
ficiency. A more surprising result, however, is that the internal DSL Dautint

outperforms all other tools, except Mop, for lower memory values. Furthermore,
as a positive result, the optimized Daut presented in this paper performs better
than the other systems (again except Mop) for high memory values.

Table 1: Results of tests 1-7. For each test is shown the memory of the test, length
of the trace, and time taken to parse the log (subtracted in the following numbers).
For each tool two numbers are provided - above line: number of events processed
by the monitor per millisecond, and below line: time consumed monitoring (min-
utes:seconds:milliseconds, with minutes and seconds left out if 0). DNF stands for
‘Did Not Finish’.

trace nr. 1 2 3 4 5 6 7

memory 1 1 5 30 100 500 5000
length 30.933 2.000.002 2.100.010 2.000.060 2.000.200 2.001.000 1.010.000
parsing 3 sec 45 sec 47 sec 46 sec 46 sec 46 sec 24 sec

LogFire
26

1:190
42

47:900
41

50:996
34

58:391
23

1:27:488
8

3:55:696
1

15:54:769

Rete/UL
38
816

109
18:428

75
28:141

41
48:524

14
2:26:983

4
8:25:867

0.4
43:33:366

Drools
10
3:97

8
4:1:758

9
3:47:535

9
3:34:648

8
4:14:497

7
4:36:608

3
5:4:505

Ruler
95
326

138
14:441

78
27:77

8
4:5:593

0.8
41:39:750

0.034
977:20:636 DNF

LogScope
17

1:842
15

2:11:908
7

4:54:605
2

21:42:389
0.4

76:17:341
0.09

369:25:312
0.01

2074:43:470

TraceContract
48
645

69
28:851

37
57:428

6
5:58:497

0.9
36:29:594

0.036
919:5:134 DNF

Daut
49
631

84
23:847

86
24:338

89
22:432

90
22:298

86
23:287

80
12:612

Dautsos 102
302

192
10:435

79
26:438

24
1:22:727

8
4:19:697

2
16:27:990

0.18
92:2:26

Dautint 233
133

1715
1:166

770
2:729

373
5:368

195
10:236

54
36:929

5
3:6:560

Mop
595
52

1381
1:448

1559
347

1341
1:491

7143
280

7096
282

847
1:193

7 Conclusion

We have presented data automata, their syntax, semantics and efficient imple-
mentation. We consider data automata as providing a natural solution to the
monitoring problem. The formalism and indexing algorithm have been motivated
based on our experiences with rule-based systems, hence exploring the space be-
tween standard propositional automata and fully general rule-based systems.
The algorithm is much less complex than the Rete algorithm, often used in
rule-based systems, and appears to be more efficient. However, the implementa-
tion is not as efficient as the state-of-the-art RV system Mop. On the other hand,
the notation is more expressive. We have shown an implementation in Scala of
an internal DSL which models data automata, but with the additional advan-
tage of providing all of Scala’s features. The implementation is very simple,
but moderately competitive wrt. efficiency.

References

1. C. Allan, P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins, O. Lhoták,
O. de Moor, D. Sereni, G. Sittamplan, and J. Tibble. Adding trace matching with

free variables to AspectJ. In OOPSLA’05. ACM Press, 2005.
2. H. Barringer, Y. Falcone, K. Havelund, G. Reger, and D. Rydeheard. Quantified

Event Automata - towards expressive and efficient runtime monitors. In 18th
International Symposium on Formal Methods (FM’12), Paris, France, August 27-
31, 2012. Proceedings, volume 7436 of LNCS. Springer, 2012.

3. H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-based runtime verifi-
cation. In VMCAI, volume 2937 of LNCS, pages 44–57. Springer, 2004.

4. H. Barringer, A. Groce, K. Havelund, and M. Smith. Formal analysis of log files. J.
of Aerospace Computing, Information, and Communication, 7(11):365–390, 2010.

5. H. Barringer and K. Havelund. TraceContract: A Scala DSL for trace analysis.
In 17th International Symposium on Formal Methods (FM’11), Limerick, Ireland,
June 20-24, 2011. Proceedings, volume 6664 of LNCS, pages 57–72. Springer, 2011.

6. H. Barringer, D. E. Rydeheard, and K. Havelund. Rule systems for run-time
monitoring: from Eagle to RuleR. J. Log. Comput., 20(3):675–706, 2010.

7. D. A. Basin, F. Klaedtke, and S. Müller. Policy monitoring in first-order temporal
logic. In T. Touili, B. Cook, and P. Jackson, editors, Computer Aided Verification,
22nd International Conference, CAV 2010, Edinburgh, UK, July 15-19, Proceed-
ings, volume 6174 of LNCS, pages 1–18. Springer, 2010.

8. A. Bauer, J.-C. Küster, and G. Vegliach. From propositional to first-order mon-
itoring. In Runtime Verification - 4th Int. Conference, RV’13, Rennes, France,
September 24-27, 2013, volume 8174 of LNCS, pages 59–75. Springer, 2013.

9. A. Bauer, M. Leucker, and C. Schallhart. The good, the bad, and the ugly, but how
ugly is ugly? In Proc. of the 7th Int. Workshop on Runtime Verification (RV’07),
volume 4839 of LNCS, pages 126–138, Vancouver, Canada, 2007. Springer.

10. E. Bodden. MOPBox: A library approach to runtime verification. In Runtime
Verification - 2nd Int. Conference, RV’11, San Francisco, USA, September 27-30,
2011. Proceedings, volume 7186 of LNCS, pages 365–369. Springer, 2011.

11. N. Decker, M. Leucker, and D. Thoma. Monitoring modulo theories. In E. Ábrahám
and K. Havelund, editors, Tools and Algorithms for the Construction and Analysis
of Systems - 20th International Conference, TACAS 2014, Grenoble, France, April
7-11, 2014. Proceedings, volume 8413 of LNCS, pages 341–356. Springer, 2014.

12. C. Forgy. Rete: A fast algorithm for the many pattern/many object pattern match
problem. Artificial Intelligence, 19:17–37, 1982.

13. J. Goubault-Larrecq and J. Olivain. A smell of ORCHIDS. In Proc. of the 8th Int.
Workshop on Runtime Verification (RV’08), volume 5289 of LNCS, pages 1–20,
Budapest, Hungary, 2008. Springer.

14. S. Hallé and R. Villemaire. Runtime enforcement of web service message contracts
with data. IEEE Transactions on Services Computing, 5(2):192–206, 2012.

15. K. Havelund. Rule-based runtime verification revisited. Software Tools for Tech-
nology Transfer (STTT), April 2014. Published online.

16. P. Meredith, D. Jin, D. Griffith, F. Chen, and G. Roşu. An overview of the MOP
runtime verification framework. Software Tools for Technology Transfer (STTT),
14(3):249–289, 2012.

17. V. Stolz. Temporal assertions with parameterized propositions. In Proc. of the
7th Int. Workshop on Runtime Verification (RV’07), volume 4839 of LNCS, pages
176–187, Vancouver, Canada, 2007. Springer.

18. V. Stolz and E. Bodden. Temporal assertions using AspectJ. In Proc. of the 5th
Int. Workshop on Runtime Verification (RV’05), volume 144(4) of ENTCS, pages
109–124. Elsevier, 2006.

A The Internal Scala DSL Dautint

class Monitor[E <: AnyRef] {
val monitorName =

this.getClass ().getSimpleName()

var monitors: List[Monitor[E]] = List()
var states : Set[state] = Set()

var statesToAdd: Set[state] = Set()
var statesToRemove: Set[state] = Set()

def monitor(monitors: Monitor[E]∗) {
this.monitors ++= monitors
}

type Transitions =
PartialFunction[E, Set[state]]

def noTransitions: Transitions =
{

case if false ⇒ null
}

class state {
var transitions : Transitions =

noTransitions

def when(ts: Transitions) {
this. transitions = ts
}

def apply(event: E): Option[Set[state]] =
if (transitions .isDefinedAt(event))

Some(transitions(event)) else None
}

class always extends state
class hot extends state
case object error extends state
case object ok extends state

def stateExists(
pred: PartialFunction[state , Boolean]):

Boolean =
{

states exists (pred orElse {
case ⇒ false })

}

def state(ts : Transitions): state =
{

val e = new state
e.when(ts)
e
}

def always(ts: Transitions): state =
{

val e = new always
e.when(ts)
e
}

def hot(ts: Transitions): state =
{

val e = new hot
e.when(ts)
e
}

def error(msg: String): state =
{

println("\n*** " + msg + "\n")
error
}

def whenever(ts: Transitions) {
states += always(ts)
}

implicit def stateToBoolean(s: state): Boolean =
states contains s

implicit def unitToSet(u: Unit): Set[state] =
Set(ok)

implicit def stateToSet(s: state): Set[state] =
Set(s)

implicit def statePairToSet(
ss : (state , state)): Set[state] =

Set(ss . 1, ss . 2)

implicit def stateTripleToSet(
ss : (state , state , state)): Set[state] =

Set(ss . 1, ss . 2, ss . 3)

def verify (event: E) {
for (s ∈ states) {

s(event) match {
case None ⇒
case Some(stateSet) ⇒

if (stateSet contains error) {
println("\n*** error!\n")
} else {

for (state ∈ stateSet) {
if (state != ok) {

statesToAdd += state
}
}
}
if (! s .isInstanceOf[always]) {

statesToRemove += s
}

}
}
states −−= statesToRemove
states ++= statesToAdd
statesToAdd = Set()
statesToRemove = Set()
for (monitor ∈ monitors) {

monitor.verify(event)
}
}

def end() {
val hotStates =

states filter (.isInstanceOf[hot])
if (!hotStates.isEmpty) {

println("*** hot states in " + monitorName)
hotStates foreach println
}
for (monitor ∈ monitors) {

monitor.end()
}
}
}

