
The Curiosity Mars Rover’s Fault Protection Engine

Ed Benowitz
Jet Propulsion Laboratory, California Institute of Technology

La Cañada Flintridge, CA
eddieb@jpl.nasa.gov

Abstract—The Curiosity Rover, currently operating on Mars,
contains flight software onboard to autonomously handle aspects
of system fault protection. Over 1000 monitors and 39 responses
are present in the flight software. Orchestrating these behaviors
is the flight software’s fault protection engine. In this paper, we
discuss the engine’s design, responsibilities, and present some
lessons learned for future missions.

Keywords—fault protection; MSL; Curiosity Rover; Mars
Science Laboratory; flight software; mars rover

I. INTRODUCTION
The flight software on the Mars Science Laboratory

mission (MSL) [1] is active during launch during, the cruise to
Mars, during Mars entry, and while the Curiosity rover roams
Mars. Throughout all of these phases, if a fault occurs, flight
software must autonomously take appropriate action. The
portion of flight software that checks for faults and decides
what action to take in response is called the fault protection
engine.

In this paper, we will discuss the MSL fault protection
engine. We will begin by discussing prior work on similar
missions. We then provide background overview of the MSL
mission itself. We then discuss the interfaces between the fault
protection engine and other parts of flight software, namely
monitors and responses. We then delve deeper into the engine
itself, discussing details on how the engine chooses what
actions to take. Finally, we discuss some lessons learned and
future directions.

II. PRIOR WORK
Deep Impact [2, 3] had a centralized fault protection

engine. It mapped from symptoms to faults, and then from
faults to responses. Its engine used a queue to ensure that
faults are serviced in a first-come-first-serve basis. Only a
single response could run at a time. Some responses were
interruptible. After a response completes, during a designated
recovery time, their engine is free to service another response
triggered by a different monitor.

The fault protection engine on MER [4] provided a
resource arbitration scheme in the event of a resource conflict
between multiple fault responses.

An alternative architecture [5] suggests integrating systems
fault protection through the entire system design, and not
necessarily having a centralized fault protection engine.
Functions should be preserved, not just protected. Fault

protection should not be separated from the nominal operation
of the same functions. The emphasis is on modeling and
obtaining state knowledge, and then closing the loop around
state.

III. MISSION AND FLIGHT SOFTWARE OVERVIEW

A. Mission Overview
The Curiosity rover has the goal of exploring the

habitability of Mars [1]. The mission was launched on
November 26, 2011, and landed on Mars on August 6, 2012.
The mission goes through 3 main phases, each of which uses a
subset of the hardware. Note that the fault protection behaviors
needed for each phase are different.

During the cruise phase, the spacecraft travels from Earth
to Mars. During cruise, trajectory correction maneuvers are
performed, refining the trajectory. As the spacecraft nears
Mars, the cruise stage hardware is then discarded.

Next is the Entry Descent and Landing (EDL) phase, which
lands the rover on Mars. During this phase, a combination of
guided entry, a parachute, powered descent, and finally a sky
crane are used to deliver the rover safely to the Martian
surface. By the time the rover has reached the ground, EDL
hardware is discarded. System fault protection is disabled in
this phase, as the EDL software fully is in control.

During the final phase, the surface phase, the Mars rover
drives on the surface of Mars, performing scientific
investigations with its suite of instruments. The rover carries
ten instruments, a robotic arm, various cameras, and a drill.

Particularly relevant to fault protection, the MSL spacecraft
has redundancy in a number of hardware areas. Specifically, it
carries two flight computers, only one of which is prime at a
time. As further examples of this redundancy, the spacecraft
also carries dual sets of avionics, sensors, heaters, and has
multiple telecommunications options.

B. Flight Software Overview
The MSL flight software runs on the VxWorks operating

system. It is broken up into a number of modules, each of
which runs in its own VxWorks task. Each module typically
communicates with another module via IPC. IPC messages get
put on a priority queue, and each priority can be individually
enabled or disabled. As the queue is primary means of
communication between tasks, semaphores are not typically

This work is sponsored by the Jet Propulsion Laboratory (JPL),
California Institute of Technology under a contract with the National
Aeronautics and Space Administration (NASA)

This work is sponsored by the Jet Propulsion Laboratory (JPL),
California Institute of Technology under a contract with the National
Aeronautics and Space Administration (NASA)

used. In most scenarios, a client will send an IPC message,
wait for a reply IPC message, and then proceed.

IV. FAULT PROTECTION ARCHITECTURE
We identify the key players that participate in the fault

protection implemented by flight software. Monitors identify a
persistent problem. The monitors may initiate a local response.
A local response is code that resides solely within the same
module as the monitor, and attempts to correct an issue by
using only a small portion of the system.

The fault protection engine is responsible for checking for
problems periodically, and for initiating a response if
appropriate. The engine periodically polls the monitor states.
When the engine notices that a monitor has turned red, the
engine maps the monitor to a system response. The engine
then initiates a system response. A system response is code
that makes large, system level changes in an attempt to address
a fault condition. A system response typically calls multiple
software modules.

A. Monitors
A monitor is a portion of software that is responsible for

detecting an anomalous situation. Monitors are spread
throughout the flight software near the software that has
knowledge of a particular device. On MSL, most monitors
were implemented with a library that was used by many
modules. MSL has a total of over 1000 monitors. However
many of them share the same code, especially for thermal
monitors.

A persistence count is typically used within a monitor, so
that it takes multiple occurrences of the erroneous reading to
provoke a response.

A monitor goes through a number of states which are
visible in telemetry. The black state indicates we do not have
any data yet. In the green state, we have received data
indicating there is no error. In the yellow state we have
received erroneous data for a long enough persistence that we
need to run a local fault response. Note that a local response is
handled within the module, and the fault protection engine is
not involved. A local response can be enabled or disabled via
ground command.

When the erroneous data reading persists even longer, the
monitor turns red, indicating that the monitor needs to get
system fault protection involved. A key provision here is that
once a monitor gets to red, the monitor stays red until it resets.
Even if good data arrives, the monitor stays red. When we
describe how the engine behaves in a later section, we will
explain why this behavior was implemented. This contrasts
with the approach in [2], where monitors do not latch red.

Although rarely used if ever, monitors provide the
capability to disable detection via a ground command. This
setting can be stored in non-volatile memory. Monitors can
also be temporarily disabled from flight software, but this
change is only noted in RAM. We found this was necessary to
prevent unintended monitors from tripping as a consequence of
hardware being in an intermediate state during a response.

B. Responses
We now provide a description of system responses. All

responses begin by stopping any ongoing autonomous behavior
onboard. For example, this includes stopping any currently
running onboard sequences. We allow responses to have
multiple tiers, so that as a problem recurs, more severe actions
will be taken in a response. Also, because many of the
internal response actions are similar, it is quite common for
responses to be implemented in terms of other responses. That
is, a response may be implemented in part by calling a portion
of another response as if it were a library.

A typical response will have a menu of options to take in
various degrees of severity. Some examples of responses
actions include changing the telecommunications
configuration, swapping redundant devices, power cycling a
device, or in an extreme case, switching to the other spacecraft
main computer.

Most responses do not involve much branching behavior,
and are typically implemented as a simple state machine that
executes a step, waits for response back, and then executes the
next step. A response tells the engine when it has finished.

MSL has a total of 39 responses. Further examples of
typical responses are provided in [6].

V. FAULT PROTECTION ENGINE
We first provide a high level view of the fault protection

engine behavior, and then proceed to look into the details.
• Once per second, check to see which monitors have

just turned red.
• In a table, look up the responses associated with the

newly red monitors
• Choose the highest priority response; this will be our

new candidate response
• If no responses are currently running, start running

the candidate response
• If a response is already running, but is lower priority

than the candidate response, abort the currently
running response, then start running the candidate
response.

• When a response has finished, reset all monitors
associated with the response.

A. Mapping from monitor to response
The engine maintains a hard-coded table, containing an

entry that maps a single monitor to a single response. This
array is indexed by monitor, and returns the appropriate
response. Note that the table is not dependent on the
spacecraft configuration, be it cruise or surface. So if a
behavior depends on the spacecraft mode, the change in
behavior must be done within the response, not the engine.

Within the table, it is possible to have multiple monitors
that trigger the same response. But we require that a single
monitor will only trigger one response.

B. Polling approach
Recall that we require that monitors stay red until the

monitor is reset. It is this property of monitors that allows
polling to work. If a monitor could independently move
between red and green, a polling engine might miss a change
if it happened too quickly. By having the monitors stick to
red, polling is able to notice that a monitor has turned red.

There are some advantages to the polling approach. The
monitor modules do not need to have knowledge of or
maintain a handshake with the engine. The engine knows
about monitors within the clients, but the clients do not have
to know about the engine. Architecturally, we believe this is a
positive, because it prevents a cyclical dependency between
the engine and its clients. Additionally, we believe this
approach simplifies the monitor implementation.

Let us contrast it with an alternative which sent an IPC
fault announce message every time a monitor turned red. The
client and the engine would have to coordinate to ensure that
fault announce messages can never overflow the engine’s IPC
queue.

However, in fairness there are some disadvantages to the
polling approach. Because of our polling approach, the engine
does not handle the monitor that occurred first,
chronologically. Instead, by polling, the engine acts on the
first highest priority response that it examines. It may be more
likely that the first monitor to go off chronologically was the
root cause, and thus should be handled first. Our polling
approach does not honor this. Also the polling approach
would need modification for a system in which the engine
modules could not access the memory of the monitor modules.

C. Priorities
Each response is assigned a hard-coded priority. Higher

priorities are assigned to short-running responses that would
need to run first due to the hardware architecture. For
example, a response that fixes a bus would be higher priority
than a response that fixes a device that sits on that bus.

We also note that there is an implicit, second level priority
present. Consider the case where multiple responses have the
same explicit priority. The implicit, second level priority
turns out to be the order that the responses are examined
within flight software. In other words, if there are two
candidate responses of the same priority, the engine will
execute the first response it examines. Thus, to predict which
response will run given a list of candidate responses, the
ground needs to know the explicit response priority levels and
the implicit flight software response ordering.

D. Aborts
Suppose a lengthy low-priority response is already

running, but the engine has detected a higher priority response
which needs to run. The engine has the capability to abort a
lower-priority response in the middle of its run, to allow a
higher priority response to start. To implement this, the low-
priority response receives an abort message from the engine.
The response then waits for its current step to complete.
When the step is complete, instead of starting a new step, the
response tells the engine it is done aborting. Upon receiving

the abort done message from a response, the engine is then
free to start the high-priority response.

There was debate within the team about whether we
should only abort at specific points within a response, or
whether we should abort as soon as the current step completes.
The advantage of aborting upon step completion is that we get
to a higher priority response more quickly. The disadvantage,
however is that it is not feasible to test the entire space of
abort locations. By contrast, if we had limited the number of
possible abort locations within a response, it might have been
feasible to test them all.

E. Enables and disables
The engine provides ground commands to the operations

team to limit the engine’s activities. The ground team is
allowed to prevent a particular monitor from tripping its
response. Note that we do not allow the ground to disable a
single response entirely. Instead it is the response associated
with a single monitor that is disabled or enabled via the
ground. The ground operator can be specific, enabling or
disabling during only specific spacecraft configurations.

Additionally, certain responses need to dead-end. That is,
responses are only permitted to run a given number of times,
and after that point, the response must not run again. The
engine was modified to allow a response to dead-end itself.
The dead-ending can be undone with a ground command.

F. Response cleanup
After a response has finished running, control returns to

the engine. The engine then uses a table to determine which
monitors are associated with the response. The engine then
clears all of these monitors. The monitors reset their
persistence values, and return the black state. At this point,
monitors are no longer stuck in the red state. After the
monitors are reset, they are free to redetect, and will
eventually turn red again if the problem persists.

G. Design for Testability
A number of features were added to the engine to assist

with testing. Testers wanted the ability to start a response
directly on command without waiting for a monitor turn red.
In essence, this was used to test the response, not the engine
itself. So the engine added a utility command to directly
execute a single response. Additionally, testers wanted a way
to exercise and test the engine, without being dependent on a
particular monitor implementation. To facilitate this, the
engine added a second utility command. This command
forces the engine to detect that a particular monitor turned red.
It bypasses the actual state of the monitor. These two
commands allowed testing the responses and engine in
isolation. So when it came time to test the behavior of
monitors, the engine, and responses in end-to-end scenarios,
we had more confidence that the individual pieces would
work.

H. Important Telemetry
During a fault scenario, it is typical to switch to a very low

data rate. Because of this we must choose carefully what
telemetry to send, to help the ground diagnose the current
situation. Some of telemetry MSL selected for this situation
comes from the fault protection engine.

MSL has two main types of telemetry: periodic channelized
telemetry channels, and prioritized event reports (EVRs). The
fault protection engine is responsible for tracking and storing
the last n fault monitors to turn red. It also tracks and stores
the last n responses to run. This information is stored
persistently in a special memory that is shared between both
flight computers. So on boot and whenever this information
changes, the engine pushes the last n monitors and responses
out to a telemetry channel. In addition, the engine contains a
number of high priority EVRs that indicate the last n monitors
and last n responses, and get generated whenever one of the
lists change. We also maintain counts for the total number of
monitors that turned red, and for the total number of responses
that have run over the course of the mission.

VI. LESSONS LEARNED AND FUTURE DIRECTIONS

A. Future directions
We believe the MSL fault protection engine could be used

in other missions. The primary areas that would change to the
engine code proper would be hardcoded mapping tables.
These tables are isolated, and contain information that lets the
engine map monitors to responses. The tables also let the
engine know what monitors to reset when a response has
finished.

The other main side effect of using the engine in another
mission would be the way the engine impacts the new
mission’s monitor designs. A new mission would need to
design monitors that latch red. Additionally, the new mission
would need to have all monitors implement a uniform API for
the engine to use for polling and resetting the monitors.
Additionally, a new mission would have to design responses
such that they could be aborted.

B. Lessons Learned
Several changes were made to the engine later in

development, and serve as lessons for future missions. Several
responses had requirements to dead-end. That is, the responses
would execute a finite number of times, and afterwards, they
would not be allowed to execute again. To facilitate this, the
engine was modified to track a response’s dead-end state in
non-volatile memory.

Additionally, we found during response testing that several
responses ending up causing additional monitors to trip in the
middle of response execution. Additional engine capabilities
were added, allowing a response to tell the engine to
temporarily ignore certain monitors during a small portion of
response execution.

As further advice for future fault protection designers, we
suggest they carefully plan the fault protection design for times
when the spacecraft goes through a major reconfiguration

change. The caution is noted because the software that
performs a reconfiguration may conflict with or attempt to run
simultaneously or at cross purposes with the system fault
protection. Consider the protocols and restrictions on
interactions between the fault protection engine and other
services that reconfigure the system. Make sure to plan for
scenarios with a fault during a configuration change, or a
scenario with a configuration change during an already running
fault response.

VII. CONCLUSIONS
We have discussed our polling approach in MSL’s fault

protection engine. We’ve showed how information flows from
a monitor to the engine, and showed how the engine prioritizes
and then runs responses. We have also showed our strategy for
aborting responses. We presented engine changes that were
discovered later in the development process, and discussed
several other lessons learned that are applicable to future
projects. We feel that with a change to hard-coded mapping
tables, the engine could be re-used in future missions.

ACKNOWLEDGMENT
We would like to thank the entire MSL flight software

team, led by Ben Cichy, for their contributions. We recognize
the outstanding designs and leadership contributions of fault
protection systems engineer Tracy Neilson. We thank the
systems fault protection test team headed by Mary Lam.

REFERENCES

[1] J. Grotzinger, J. Crisp, A. Vasavada, R. Anderson, C. Baker, R. Barry,
D. Blake et al. “Mars Science Laboratory mission and science
investigation,” Space science reviews 170, no. 1-4, 2012, pp. 5-56.

[2] K. Barltrop, E. Kan, “How much fault protection is enough – A deep
impact perspective,” Proceedings of the 2005 IEEE Aerospace
Conference, 2005, pp. 1-14.

[3] K. Barltrop, E. Kan, J. Levison, C. Schira, and K. Epstein, "Deep
Impact: ACS Fault Tolerance in a Comet Critical Encounter," Advances
in the Astronautical Sciences, Vol. 111, 2002, pp. 111-126.

[4] T. Neilson, “Mars exploration rovers surface fault protection”, 2005
IEEE Conference on Systems, Man and Cybernetics, Vol. 1, pp. 14-19,
2005.

[5] R. Rasmussen, “GN&C fault protection fundamentals,” Proceedings of
the 31st Annual AAS Guidance and Control Conference, AAS 08-031,
2008.

[6] P. Morgan, “Fault protection techniques in JPL Spacecraft,” Proceedings
of the First International Forum on Integrated System Health
Engineering and Management in Aerospace (ISHEM), 2005.

[7] N. Rouquette, T. Neilson, G. Chen, “The 13th Technology of Deep
Space One”, Proceedings of the 1999 IEEE Aerospace Conference, Vol.
1, 1999, pp. 477-487.

	I. Introduction
	II. Prior Work
	III. Mission and Flight Software Overview
	A. Mission Overview
	B. Flight Software Overview

	IV. Fault Protection Architecture
	A. Monitors
	B. Responses

	V. Fault Protection Engine
	A. Mapping from monitor to response
	B. Polling approach
	C. Priorities
	D. Aborts
	E. Enables and disables
	F. Response cleanup
	G. Design for Testability
	H. Important Telemetry

	VI. Lessons Learned and Future Directions
	A. Future directions
	B. Lessons Learned

	VII. Conclusions
	Acknowledgment
	References

