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Abstract—The Curiosity Rover, currently operating on Mars, 
contains flight software onboard to autonomously handle aspects 
of system fault protection.  Over 1000 monitors and 39 responses 
are present in the flight software.  Orchestrating these behaviors 
is the flight software’s fault protection engine.  In this paper, we 
discuss the engine’s design, responsibilities, and present some 
lessons learned for future missions. 
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I. INTRODUCTION 
The flight software on the Mars Science Laboratory 

mission (MSL) [1] is active during launch during, the cruise to 
Mars, during Mars entry, and while the Curiosity rover roams 
Mars.  Throughout all of these phases, if a fault occurs, flight 
software must autonomously take appropriate action.  The 
portion of flight software that checks for faults and decides 
what action to take in response is called the fault protection 
engine.   

In this paper, we will discuss the MSL fault protection 
engine.  We will begin by discussing prior work on similar 
missions.  We then provide background overview of the MSL 
mission itself.  We then discuss the interfaces between the fault 
protection engine and other parts of flight software, namely 
monitors and responses.  We then delve deeper into the engine 
itself, discussing details on how the engine chooses what 
actions to take.  Finally, we discuss some lessons learned and 
future directions.  

II. PRIOR WORK 
Deep Impact [2, 3] had a centralized fault protection 

engine.  It mapped from symptoms to faults, and then from 
faults to responses.  Its engine used a queue to ensure that 
faults are serviced in a first-come-first-serve basis.  Only a 
single response could run at a time.  Some responses were 
interruptible.  After a response completes, during a designated 
recovery time, their engine is free to service another response 
triggered by a different monitor.  

The fault protection engine on MER [4] provided a 
resource arbitration scheme in the event of a resource conflict 
between multiple fault responses.  

An alternative architecture [5] suggests integrating systems 
fault protection through the entire system design, and not 
necessarily having a centralized fault protection engine. 
Functions should be preserved, not just protected.  Fault 

protection should not be separated from the nominal operation 
of the same functions.  The emphasis is on modeling and 
obtaining state knowledge, and then closing the loop around 
state. 

III. MISSION AND FLIGHT SOFTWARE OVERVIEW 

A. Mission Overview 
The Curiosity rover has the goal of exploring the 

habitability of Mars [1]. The mission was launched on 
November 26, 2011, and landed on Mars on August 6, 2012.  
The mission goes through 3 main phases, each of which uses a 
subset of the hardware.  Note that the fault protection behaviors 
needed for each phase are different.   

During the cruise phase, the spacecraft travels from Earth 
to Mars.  During cruise, trajectory correction maneuvers are 
performed, refining the trajectory.  As the spacecraft nears 
Mars, the cruise stage hardware is then discarded.  

Next is the Entry Descent and Landing (EDL) phase, which 
lands the rover on Mars.  During this phase, a combination of 
guided entry, a parachute, powered descent, and finally a sky 
crane are used to deliver the rover safely to the Martian 
surface.  By the time the rover has reached the ground, EDL 
hardware is discarded.  System fault protection is disabled in 
this phase, as the EDL software fully is in control. 

During the final phase, the surface phase, the Mars rover 
drives on the surface of Mars, performing scientific 
investigations with its suite of instruments.  The rover carries 
ten instruments, a robotic arm, various cameras, and a drill.    

Particularly relevant to fault protection, the MSL spacecraft 
has redundancy in a number of hardware areas.  Specifically, it 
carries two flight computers, only one of which is prime at a 
time.  As further examples of this redundancy, the spacecraft 
also carries dual sets of avionics, sensors, heaters, and has 
multiple telecommunications options. 

B. Flight Software Overview 
The MSL flight software runs on the VxWorks operating 

system.  It is broken up into a number of modules, each of 
which runs in its own VxWorks task.  Each module typically 
communicates with another module via IPC.  IPC messages get 
put on a priority queue, and each priority can be individually 
enabled or disabled.  As the queue is primary means of 
communication between tasks, semaphores are not typically 
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used.  In most scenarios, a client will send an IPC message, 
wait for a reply IPC message, and then proceed. 

IV. FAULT PROTECTION ARCHITECTURE 
We identify the key players that participate in the fault 

protection implemented by flight software.  Monitors identify a 
persistent problem.  The monitors may initiate a local response.  
A local response is code that resides solely within the same 
module as the monitor, and attempts to correct an issue by 
using only a small portion of the system.   

The fault protection engine is responsible for checking for 
problems periodically, and for initiating a response if 
appropriate.  The engine periodically polls the monitor states. 
When the engine notices that a monitor has turned red, the 
engine maps the monitor to a system response.  The engine 
then initiates a system response.  A system response is code 
that makes large, system level changes in an attempt to address 
a fault condition.  A system response typically calls multiple 
software modules. 

A. Monitors 
A monitor is a portion of software that is responsible for 

detecting an anomalous situation.  Monitors are spread 
throughout the flight software near the software that has 
knowledge of a particular device.  On MSL, most monitors 
were implemented with a library that was used by many 
modules.  MSL has a total of over 1000 monitors.  However 
many of them share the same code, especially for thermal 
monitors. 

A persistence count is typically used within a monitor, so 
that it takes multiple occurrences of the erroneous reading to 
provoke a response.     

A monitor goes through a number of states which are 
visible in telemetry.  The black state indicates we do not have 
any data yet.  In the green state, we have received data 
indicating there is no error.  In the yellow state we have 
received erroneous data for a long enough persistence that we 
need to run a local fault response.  Note that a local response is 
handled within the module, and the fault protection engine is 
not involved.  A local response can be enabled or disabled via 
ground command. 

When the erroneous data reading persists even longer, the 
monitor turns red, indicating that the monitor needs to get 
system fault protection involved.  A key provision here is that 
once a monitor gets to red, the monitor stays red until it resets.  
Even if good data arrives, the monitor stays red.  When we 
describe how the engine behaves in a later section, we will 
explain why this behavior was implemented.  This contrasts 
with the approach in [2], where monitors do not latch red. 

Although rarely used if ever, monitors provide the 
capability to disable detection via a ground command. This 
setting can be stored in non-volatile memory.  Monitors can 
also be temporarily disabled from flight software, but this 
change is only noted in RAM. We found this was necessary to 
prevent unintended monitors from tripping as a consequence of 
hardware being in an intermediate state during a response. 

B. Responses 
We now provide a description of system responses. All 

responses begin by stopping any ongoing autonomous behavior 
onboard.  For example, this includes stopping any currently 
running onboard sequences.  We allow responses to have 
multiple tiers, so that as a problem recurs, more severe actions 
will be taken in a response.    Also, because many of the 
internal response actions are similar, it is quite common for 
responses to be implemented in terms of other responses. That 
is, a response may be implemented in part by calling a portion 
of another response as if it were a library. 

A typical response will have a menu of options to take in 
various degrees of severity. Some examples of responses 
actions include changing the telecommunications 
configuration, swapping redundant devices, power cycling a 
device, or in an extreme case, switching to the other spacecraft 
main computer. 

Most responses do not involve much branching behavior, 
and are typically implemented as a simple state machine that 
executes a step, waits for response back, and then executes the 
next step.  A response tells the engine when it has finished. 

MSL has a total of 39 responses. Further examples of 
typical responses are provided in [6]. 

V. FAULT PROTECTION ENGINE 
We first provide a high level view of the fault protection 

engine behavior, and then proceed to look into the details.  
• Once per second, check to see which monitors have 

just turned red.   
• In a table, look up the responses associated with the 

newly red monitors 
• Choose the highest priority response; this will be our 

new candidate response 
• If no responses are currently running, start running 

the candidate response 
• If a response is already running, but is lower priority 

than the candidate response, abort the currently 
running response, then start running the candidate 
response. 

• When a response has finished, reset all monitors 
associated with the response. 

A. Mapping from monitor to response 
The engine maintains a hard-coded table, containing an 

entry that maps a single monitor to a single response.  This 
array is indexed by monitor, and returns the appropriate 
response.  Note that the table is not dependent on the 
spacecraft configuration, be it cruise or surface.  So if a 
behavior depends on the spacecraft mode, the change in 
behavior must be done within the response, not the engine.   

Within the table, it is possible to have multiple monitors 
that trigger the same response.  But we require that a single 
monitor will only trigger one response. 



B. Polling approach 
Recall that we require that monitors stay red until the 

monitor is reset.  It is this property of monitors that allows 
polling to work.  If a monitor could independently move 
between red and green, a polling engine might miss a change 
if it happened too quickly.  By having the monitors stick to 
red, polling is able to notice that a monitor has turned red. 

There are some advantages to the polling approach.  The 
monitor modules do not need to have knowledge of or 
maintain a handshake with the engine.  The engine knows 
about monitors within the clients, but the clients do not have 
to know about the engine.  Architecturally, we believe this is a 
positive, because it prevents a cyclical dependency between 
the engine and its clients.  Additionally, we believe this 
approach simplifies the monitor implementation.   

Let us contrast it with an alternative which sent an IPC 
fault announce message every time a monitor turned red.  The 
client and the engine would have to coordinate to ensure that 
fault announce messages can never overflow the engine’s IPC 
queue.   

However, in fairness there are some disadvantages to the 
polling approach.  Because of our polling approach, the engine 
does not handle the monitor that occurred first, 
chronologically.  Instead, by polling, the engine acts on the 
first highest priority response that it examines.  It may be more 
likely that the first monitor to go off chronologically was the 
root cause, and thus should be handled first.  Our polling 
approach does not honor this.  Also the polling approach 
would need modification for a system in which the engine 
modules could not access the memory of the monitor modules. 

C. Priorities  
Each response is assigned a hard-coded priority.  Higher 

priorities are assigned to short-running responses that would 
need to run first due to the hardware architecture.  For 
example, a response that fixes a bus would be higher priority 
than a response that fixes a device that sits on that bus.   

We also note that there is an implicit, second level priority 
present.  Consider the case where multiple responses have the 
same explicit priority.  The implicit, second level priority 
turns out to be the order that the responses are examined 
within flight software.  In other words, if there are two 
candidate responses of the same priority, the engine will 
execute the first response it examines.  Thus, to predict which 
response will run given a list of candidate responses, the 
ground needs to know the explicit response priority levels and 
the implicit flight software response ordering. 

D. Aborts 
Suppose a lengthy low-priority response is already 

running, but the engine has detected a higher priority response 
which needs to run.  The engine has the capability to abort a 
lower-priority response in the middle of its run, to allow a 
higher priority response to start. To implement this, the low-
priority response receives an abort message from the engine.  
The response then waits for its current step to complete.  
When the step is complete, instead of starting a new step, the 
response tells the engine it is done aborting.  Upon receiving 

the abort done message from a response, the engine is then 
free to start the high-priority response.  

There was debate within the team about whether we 
should only abort at specific points within a response, or 
whether we should abort as soon as the current step completes.  
The advantage of aborting upon step completion is that we get 
to a higher priority response more quickly.  The disadvantage, 
however is that it is not feasible to test the entire space of 
abort locations.  By contrast, if we had limited the number of 
possible abort locations within a response, it might have been 
feasible to test them all. 

E. Enables and disables 
The engine provides ground commands to the operations 

team to limit the engine’s activities. The ground team is 
allowed to prevent a particular monitor from tripping its 
response.  Note that we do not allow the ground to disable a 
single response entirely.  Instead it is the response associated 
with a single monitor that is disabled or enabled via the 
ground.  The ground operator can be specific, enabling or 
disabling during only specific spacecraft configurations. 

Additionally, certain responses need to dead-end.  That is, 
responses are only permitted to run a given number of times, 
and after that point, the response must not run again.  The 
engine was modified to allow a response to dead-end itself.  
The dead-ending can be undone with a ground command. 

 

F. Response cleanup 
After a response has finished running, control returns to 

the engine.  The engine then uses a table to determine which 
monitors are associated with the response.  The engine then 
clears all of these monitors.  The monitors reset their 
persistence values, and return the black state.  At this point, 
monitors are no longer stuck in the red state. After the 
monitors are reset, they are free to redetect, and will 
eventually turn red again if the problem persists.   

G. Design for Testability 
A number of features were added to the engine to assist 

with testing.  Testers wanted the ability to start a response 
directly on command without waiting for a monitor turn red.  
In essence, this was used to test the response, not the engine 
itself.  So the engine added a utility command to directly 
execute a single response.  Additionally, testers wanted a way 
to exercise and test the engine, without being dependent on a 
particular monitor implementation.   To facilitate this, the 
engine added a second utility command.  This command 
forces the engine to detect that a particular monitor turned red.  
It bypasses the actual state of the monitor.  These two 
commands allowed testing the responses and engine in 
isolation.  So when it came time to test the behavior of 
monitors, the engine, and responses in end-to-end scenarios, 
we had more confidence that the individual pieces would 
work. 



H. Important Telemetry 
During a fault scenario, it is typical to switch to a very low 

data rate. Because of this we must choose carefully what 
telemetry to send, to help the ground diagnose the current 
situation. Some of telemetry MSL selected for this situation 
comes from the fault protection engine.  

MSL has two main types of telemetry: periodic channelized 
telemetry channels, and prioritized event reports (EVRs).  The 
fault protection engine is responsible for tracking and storing 
the last n fault monitors to turn red.  It also tracks and stores 
the last n responses to run.  This information is stored 
persistently in a special memory that is shared between both 
flight computers.  So on boot and whenever this information 
changes, the engine pushes the last n monitors and responses 
out to a telemetry channel.  In addition, the engine contains a 
number of high priority EVRs that indicate the last n monitors 
and last n responses, and get generated whenever one of the 
lists change.   We also maintain counts for the total number of 
monitors that turned red, and for the total number of responses 
that have run over the course of the mission.  

VI. LESSONS LEARNED AND FUTURE DIRECTIONS 

A. Future directions 
We believe the MSL fault protection engine could be used 

in other missions.  The primary areas that would change to the 
engine code proper would be hardcoded mapping tables.  
These tables are isolated, and contain information that lets the 
engine map monitors to responses.  The tables also let the 
engine know what monitors to reset when a response has 
finished.   

The other main side effect of using the engine in another 
mission would be the way the engine impacts the new 
mission’s monitor designs.  A new mission would need to 
design monitors that latch red.  Additionally, the new mission 
would need to have all monitors implement a uniform API for 
the engine to use for polling and resetting the monitors.  
Additionally, a new mission would have to design responses 
such that they could be aborted. 

B. Lessons Learned 
Several changes were made to the engine later in 

development, and serve as lessons for future missions.  Several 
responses had requirements to dead-end.  That is, the responses 
would execute a finite number of times, and afterwards, they 
would not be allowed to execute again.  To facilitate this, the 
engine was modified to track a response’s dead-end state in 
non-volatile memory.  

Additionally, we found during response testing that several 
responses ending up causing additional monitors to trip in the 
middle of response execution.  Additional engine capabilities 
were added, allowing a response to tell the engine to 
temporarily ignore certain monitors during a small portion of 
response execution.   

As further advice for future fault protection designers, we 
suggest they carefully plan the fault protection design for times 
when the spacecraft goes through a major reconfiguration 

change.  The caution is noted because the software that 
performs a reconfiguration may conflict with or attempt to run 
simultaneously or at cross purposes with the system fault 
protection.  Consider the protocols and restrictions on 
interactions between the fault protection engine and other 
services that reconfigure the system.  Make sure to plan for 
scenarios with a fault during a configuration change, or a 
scenario with a configuration change during an already running 
fault response. 

VII. CONCLUSIONS  
We have discussed our polling approach in MSL’s fault 

protection engine.  We’ve showed how information flows from 
a monitor to the engine, and showed how the engine prioritizes 
and then runs responses.  We have also showed our strategy for 
aborting responses.  We presented engine changes that were 
discovered later in the development process, and discussed 
several other lessons learned that are applicable to future 
projects.  We feel that with a change to hard-coded mapping 
tables, the engine could be re-used in future missions.   
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