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SUMMARY & CONCLUSIONS 

 
Decisions made during the operational phase of a space 

mission often have significant and immediate consequences. 
Without the explicit consideration of the risks involved and 
their representation in a solid model, it is very likely that these 
risks are not considered systematically in trade studies.  
Wrong decisions during the operational phase of a space 
mission can lead to immediate system failure whereas correct 
decisions can help recover the system even from faulty 
conditions.  A problem of special interest is the determination 
of the system fault protection strategies upon the occurrence of 
faults within the system.  Decisions regarding the fault 
protection strategy also heavily rely on a correct 
understanding of the state of the system and an integrated risk 
model that represents the various possible scenarios and their 
respective likelihoods.   

 
Probabilistic Risk Assessment (PRA) modeling is 

applicable to the full lifecycle of a space mission project, from 
concept development to preliminary design, detailed design, 
development and operations.  The benefits and utilities of the 
model, however, depend on the phase of the mission for which 
it is used.  This is because of the difference in the key strategic 
decisions that support each mission phase. The focus of this 
paper is on describing the particular methods used for PRA 
modeling during the operational phase of a spacecraft by 
gleaning insight from recently conducted case studies on two 
operational Mars orbiters.  

 
During operations, the key decisions relate to the 

commands sent to the spacecraft for any kind of diagnostics, 
anomaly resolution, trajectory changes, or planning.  Often, 
faults and failures occur in the parts of the spacecraft but are 
contained or mitigated before they can cause serious damage.  
The failure behavior of the system during operations provides 
valuable data for updating and adjusting the related PRA 
models that are built primarily based on historical failure data.  

The PRA models, in turn, provide insight into the effect of 
various faults or failures on the risk and failure drivers of the 
system and the likelihood of possible end case scenarios, 
thereby facilitating the decision making process during 
operations.  This paper describes the process of adjusting PRA 
models based on observed spacecraft data, on one hand, and 
utilizing the models for insight into the future system behavior 
on the other hand.  While PRA models are typically used as a 
decision aid during the design phase of a space mission, we 
advocate adjusting them based on the observed behavior of the 
spacecraft and utilizing them for decision support during the 
operations phase.   

 
We conclude this paper by discussing current open 

research issues and possible future directions for this work.  
 

1 INTRODUCTION 

In this section we will provide a brief overview of the 
rationale for using quantitative risk and reliability engineering 
techniques during the lifecycle of a system, and the 
application and utility of these techniques during the 
operations phase of a space mission.   
 
1.1 Quantitative Risk Assessment (QRA)  

Galileo Galilei (1564-1642) is the first person known to 
have developed mathematical models of failure phenomena.  
The cantilevered beam drawing, by Galileo, illustrates his 
apparatus for gathering data on the failure characteristics of 
beams under load. Mathematical modeling techniques for 
reliability analysis of products were first brought to industrial 
use in the course of World War 2, when it was noticed that 
products made of a large number of high quality parts still had 
low reliability.  The development and application of such 
techniques increased after World War 2 as products became 
increasingly complex and complicated control and safety 
systems were designed and utilized.  Towards the end of the 
1950’s and beginning of the 1960’s, interest in the US was 



concentrated on intercontinental ballistic and space research. 
In the 1970’s, the interest in the risk and safety aspects of 
nuclear power plants increased.   

 
Throughout the Apollo Program and until the Challenger 

Accident, NASA relied heavily on failure modes and effects 
analysis (FMEA) for safety assessment.  In 1986, during the 
course of the investigation of the Challenger Accident, the 
Committee on Science and Technology of the House of 
Representatives criticized NASA for not estimating the 
probability of failure for various [Shuttle] elements.  The 
Committee recommended that “probabilistic risk assessment 
approaches be applied to the Shuttle risk management 
program at the earliest possible [10].   Since then, NASA has 
been adopting the use of quantitative risk assessment 
techniques for important decision making during the life-cycle 
of a space mission.   
 

1.2 Failure Modeling  

The goal of failure modeling is to represent the various 
scenarios in a system that could lead to failures and assess 
their relative likelihoods in order to determine an optimal plan 
for preventing their occurrence.  Reliability is the 
conditional probability that a system performs correctly 
throughout an interval of time  given that it was 
performing correctly at the beginning of that interval 0 .  
Unreliability is equal to the probability that a system 
doesn’t perform correctly throughout an interval of time 

 given that it was performing correctly at 
time 0 ; .  Once a system stops performing 
correctly, it has failed.  Failure modeling, therefore, involves 
representing the various sequences and order of events that 
lead to an unreliable state for the system.  Some of the 
standard techniques used for this failure modeling include 
Reliability Block Diagrams (RBD), which are logically 
equivalent to Static Fault Trees (SFT), Dynamic Fault Trees 
(DFT), Markov Models, and Stochastic Petri Nets [1,2,and 4].  
The main goal of these techniques is to determine the 
reliability of various system configurations.  Fault Tree 
Analysis has been used in the Aerospace industry since the 
1980s [6].  More recently, it is becoming more prevalent to 
use Probabilistic Risk Assessment (PRA) techniques, which 
are somewhat more involved than Reliability Analysis.  We 
will briefly describe PRA analysis in the next section.   
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1.3 Probabilistic Risk Assessment: Fault Trees and Event 
Trees 

Probabilistic Risk Assessment (PRA) [1,2]  is a scenario 
based methodology that is used to model the various possible 
scenarios that can occur and their respective likelihoods.  
Scenarios are strings of events that begin with an initiator and 
lead to some sort of a conclusion or end state.   In between the 
initiator and end state are pivotal events in the scenario.  
Pivotal events may be protective, mitigative, aggregative, or 
benign.  Scenarios can be modeled in many different fashions, 

but are most commonly modeled through the use of fault trees 
and event trees.  

 
Event trees are said to be based on inductive, or forward, 

logic; i.e., the forward thinking represents the possible 
conditional events in the scenario based on the preceding 
event, or the possible events that can occur; given an initiator.  
Fault trees are said to be deductive in nature, i.e., they are used 
to identify all of the possible failure causes of an event from a 
top down approach.  There is no one single way to develop a 
PRA model, and the trade off is that the larger the event tree, 
the smaller the fault trees, and vice versa.  The use of event 
trees and fault trees and their sizes is up to the analyst, but 
their sizes are typically decided based upon the PRA 
methodology used (large event tree versus small event tree),. 
 

Figure 1 shows a sample event tree/fault tree diagram.  In 
this figure we have depicted three different events.  In order to 
determine the probability of each event, we use a fault tree 
diagram that shows the combinations of system behaviors that 
can cause the event to occur.  The dependencies within the 
system are captured by identifying the shared basic events 
across the fault trees.   The sample end states of the event tree 
include mission success, Loss of Mission (LOM), and Loss of 
Crew (LOC).   
 

 
 
 
 

 

Figure 1: Sample Event Tree/Fault Tree Diagram. 

 
In reliability modeling, we typically only examine two 

scenarios, the success of the mission (Reliability) and the 
mission failure (Unreliability).  In PRA modeling, however, 
we examine a broader set of scenarios, such as scenarios 
associated with varying degrees of science return for the 
mission.   

 
A fault tree is a logic diagram that describes the 

relationships between a potential critical event (accident) in a 
system and the reasons for this event [1].  It also provides a 
visual representation of the failure mechanisms of the system, 
which in turn facilitates the study of that system.  Traditional 
or static fault trees provide a mathematical and graphical 
representation of the combinations of events that can lead to 
system failure.  Dynamic fault trees [2] can also represent the 
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failure behavior of the system that is related to the order or 
sequence in which events occur.   This representation made 
possible by using special purpose gates.  While static fault 
trees are solved by using combinatorial approaches, the 
solution of dynamic fault trees requires techniques such as 
Markov modeling that enable the representation of time and 
order dependencies.   
 

1.4 QRA during spacecraft operations 

During the operations phase, the goal is to maximize the 
utility of the space mission.  This goal is often achieved by 
maximizing the lifetime of the mission and utilizing the 
spacecraft to achieve the desired objectives, which can be 
science measurements, relay, or technology demonstrations.  
The Mars orbiters include instruments for conducting science 
measurements and are also used for relaying data between the 
existing rovers on Mars (which currently include the Mars 
Exploration Rovers, Spirit and Opportunity) and earth.  

 
QRA models can help support the decisions that are made 

during operations by answering the following questions during 
operations: 
• What are currently the most likely failure paths in the 

system based on the latest information available from the 
system? 

• What component do we expect to fail next? 
• How sensitive is the system reliability, key risk drivers, 

and failure behavior of the system to:  
• The failure of each component. 
• Possible environmental effects due to changes in the 

trajectory and/or orbit. 
• Possible common cause failures. 
• Failure propagations due to software commands. 
• Anomaly resolution activities (such as resetting the 

system).  
• How do our assumptions about the system behavior affect 

the reliability and sensitivity metrics of the system. 
 
By better understanding the state of the system and the 

most likely failure paths and sensitivities, we determine how 
to maximize the utility of the mission by planning to achieve 
the goals within the system limitations.  Moreover, an 
understanding of the failure behavior of the system helps to 
determine the appropriate fault protection strategies for the 
system.     

 

1.5 Problem Addressed 

 
The problem addressed in the case studies described in 

the next section was to determine the effect of anomalies on 
the remaining lifetime and failure scenarios of the spacecraft.  

The questions that needed to be addressed were as 
follows: 

 

• What are the updated failure paths for the system? 
• How can we utilize the information obtained from the 

failure of the components that have caused the anomalies 
to better understand the failure characteristics of other 
similar components in the system? 

• Are there any common causes of failure?  In other words, 
could the causes of the anomalies also propagate 
throughout the system and cause other failures in the 
system? 

 

2 CASE STUDY  

In the case of the Mars Reconnaissance Orbiter (MRO), 
there were two anomalies in the Telecommunications system: 
an anomaly had occurred in a waveguide transfer switch 
(WTS) reducing the number of possible paths for routing the 
redundant X-band Traveling Wave Tube Amplifiers 
(TWTA’s) to the antennas.  Moreover, the Ka-band exciter of 
the A-side Small Deep Space Transponder (SDST) had failed; 
while this was mainly a technology demo, it also provided 
some redundancy as an independent high rate downlink 
option.  Furthermore a side swap had occurred in the 
Command and Data Handling system from side A to side B.   

 
The anomaly in the Mars Odyssey (ODY) spacecraft had 

occurred in the B side of the High Energy Power Supply 
which had been a hot spare for the A side.  In the case of both 
of the ODY and MRO the anomalies had resulted in the loss 
of functional and physical redundancy.   

 
In the next section, we will describe the reference models 

that were built before the anomalies and the process of 
updating them using the latest information from the spacecraft 
to glean insight into the future behavior of the system.   

2.1  Reference Model 

The reference risk models for each of the spacecrafts had 
been built prior the anomalies; primarily for the purpose of 
determining the robustness of the relay communication around 
Mars [7], and for experimenting with risk modeling during 
conceptual design [8].  The various failure paths for building 
the dynamic fault trees associated with the spacecraft were 
obtained from the schematics of the spacecraft system.  This 
information gave insight into the various combinations of 
events which could cause a failure in each of the subsystems 
and hence the spacecraft system itself.  The information 
related to the probabilistic failure distribution of each of the 
components, in turn was obtained from thermal cycling data 
and consumable information from the spacecraft provider, the 
Lockheed Martin Corporation.  This information was not 
complete and was supplemented by eliciting expert opinions 
from the spacecraft system and subsystem engineers about the 
failure behavior of the components.  The components of the 
spacecraft which were subject to degradation and wear out 
were modeled using a Weibull distribution and the parameters 
of the Weibull distribution were obtained by eliciting 
information about the percentiles of the distribution from the 



experts.  Other components, such as electronics, which are 
mainly subject to random failures and can safely be assumed 
to have constant failure rates are modeled using an exponential 
distribution.   

 
The models were built using the Galileo Advanced 

System Safety Assessment Program (ASSAP) Dynamic Fault 
Tree software [2,3].  Exercising these models automatically 
provides the user with the exact reliability measure, the 
minimal cutsets and their corresponding probabilities, and the 
local and global sensitivity measures of the system modules.   

 
In the case of components with the Weibull distribution, if 

we consider the Weibull cumulative distribution function to 
be:  

 F
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β  is the shape parameter of the distribution and 
α  is the scale parameter, then we can obtain the 100pth 
percentile of the distribution in terms of the shape and scale 
parameters: 
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In this case study, the values of the parameters were 

obtained by eliciting expert information regarding the 0.01 and 
0.99th percentile of the distributions and solving for the shape 
and scale parameters of the distributions. 

 
In the case of the components with Exponential 

distributions, it was sufficient to elicit information regarding 
the 99th percentile of the distribution.  If we consider the 
distribution function to be:  
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where λ/1 is the mean of the distribution.  
 
Then the 100pth percentile of the distribution is: 
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It’s important to note that expert inputs were solicited for 

the interpretation of the thermal cycling and/or consumable 
data that was provided from the spacecraft provider.  After the 
consideration of several different interpretations for that data, 
and iterating on the results with the experts, the decision was 
to consider the remaining lifetime computed for each of the 
components as the 99th percentile of the exponential 
distribution.  Components which were subject to wear-out, for 
example the antennas and the gimbals were primarily modeled 
using expert opinions.  The results were iterated with the 
experts several times for refinement purposes.   

2.2 Approach for Updating the Reference Model  

 
After the occurrence of the anomalies, the main 
objective was to determine how these anomalies 
affect the remaining lifetime, and the various 
failure scenarios of the system.  Nevertheless, 
new information had been generated over the 
course of time and it was important to benefit 
from this information to better represent the 
system failure behavior.  We can classify this 
new information into information about the 
failure behavior of the individual system 
components and information about the failure 
paths in the system. 
 
Moreover, in order to have a better 
understanding of how the anomalies affect the 
failure paths of the system, it was important to 
increase the fidelity of the models associated 
with the subsystems that were most affected by 
the anomalies.  

2.3 Updated Failure Models for System Components.  

 
There had been a non-zero cumulative 
probability of failure associated with the 
components which had not failed, and that 
needed to be updated.  So all the components 
had to be revisited and their associated failure 
model updated.  In particular, there were 
identical components to the components which 
had failed, such as the WTS and the Ka-band 
exciter on MRO, and the A-side of the High 
Electric Power Supply unit on ODY and it was 
important to assess how the failure of units 
which were identical to them would impact the 
updated failure distribution of these units and if 
the additional data point was statistically 
significant.   
 
In the case of the WTS, the flight project had decided to 

no longer operate the remaining WTS’s in the system and 
therefore it wasn’t necessary to consider an increased failure 
rate for them.  In the case of the Ka-exciter on MRO, expert 
elicitation indicated that there was a significant amount of test 
data available on identical units and that the failure of the unit 
on MRO was a random failure and could only be considered a 
single data point and combined with the rest of the data 
available. 

 



Another failure rate that needed special attention was the 
one corresponding with the High Energy Power Supply 
(HEPS) on the Mars ODY spacecraft.  The most likely cause 
of the unexpected shutdown of the side B HEPS system was a 
single event upset which is primarily a random event.  We 
only had one data point about the occurrence of single event 
upsets that can cause a failure and our data point was the 
lifetime of the orbiter at the time that the failure occurred.  
Therefore, we considered that there is an additional failure 
mode associated with the HEPS (both sides) which has a 
MTTF equal to the current lifetime of the system (which was 6 
years) and that it can occur on either side of the HEPS.  
Therefore the probability distribution function of a single 
event upset causing the failure of the HEPS system is 

year/
6
1

.    The possibility of single event upsets had 
not been considered in the original models and this failure rate 
was calculated after observing this failure behavior.   

=λ

 
The conservative assumption made in this case was that 

single event upset this failure will cause the HEPS to fail.  The 
reason this assumption is conservative is because it is not clear 
that the failure is not recoverable and there is a reasonably 
good chance that if the system is reset, it will recover from this 
failure.  We did not consider an increased failure rate for the 
hardware units of the HEPS due to the fact that it was very 
unlikely that the failure had been caused by a parts failure.  A 
possible failure path that was at the time being explored by the 
ODY team was the possibility of the combined degradation of 
several parts.  Due to the unavailability of sufficient 
information about the combinations of degraded states that 
would result in a side-swap and their respective probabilities, 
this scenario was not considered in the model.  The failure 
rates associated with the hardware parts of the HEPS system 
were provided by the Lockheed Martin Corporation.  They 
had considered the rates available in MIL-HBK-217 for 
conducting a reliability analysis on the HEPS system and 
provided us with the aggregate failure rate that corresponded 
with the failure of the HEPS due to a hardware failure.   

 
Another element which was worthy of consideration was 

the likelihood that the failures were caused by common-cause 
events which could affect other parts of the system as well, so 
it was important to examine the root cause of these failures 
and assess how it impacts the rest of the system.  

 
 

2.4 Updated Failure Paths 

 
The failure of the WTS and the Ka-band exciter changed 

the failure paths of the Telecommunications system of the 
MRO spacecraft, and therefore the associated fault trees 
changed considerably.  Information about the new failure 
paths in the system were obtained from domain experts and 
the fault trees were updated accordingly.  

 

In the process of updating the system fault trees, the 
additional information elicited from the experts helped 
identify recovery paths and fault protection strategies that had 
not been previously considered. This information helped to 
build more realistic risk models which in turn can be used for 
examining the behavior of the system and identifying other 
fault protection strategies that may not be otherwise apparent 
to the engineers.   

 
In the case of the ODY anomaly, there was no cross-

strapping between the A and B sides of the HEPS system and 
the IMU’s or the Transceivers.  Therefore the IMU – B side 
and the Transceiver-B side are no longer available unless the 
faulted HEPS component is recovered and the system is able 
to switch back to and forth between the A and B sides of the 
HEPS.  This made a significant difference in the remaining 
lifetime of the system.  

 
3 LESSONS LEARNED 

 
The lessons learned and recommendations for future 

activities are summarized in table 1.  
 

    
LESSONS 
LEARNED RECOMMENDATIONS 

Expert 
Opinions 
regarding the 
failure 
behaviour of 
the 
components 
change over 
time.  Even 
the same 
experts 
change their 
mind. 

Identify the subsystem 
expert who is most 
familiar with each 
subsystem and elicit 
their expert opinions.  
Build the subsystem 
model, and iterate on it 
with the subsystem 
engineer until the 
results are verified. 

Expert 
Opinions  

Higher level 
Systems 
Engineers 
and Mission 
Managers 
often have 
different 
opinions than 
the 
Subsystem 
Engineers 

Iterate the system level 
results with the System 
Engineer or Mission 
Manager.  Iterate 
between the 
Subsystem Engineers 
and the System 
Engineers until they 
reach a consensus.  

   
   

   
   

   
   

 D
at

a 

Actual Data 

Historical 
failure 
information 
for similar 
components 
on other 
missions or 
for the same 
mission is 
sometimes 
available. 

Consider the actual 
failure information and 
use it to make 
adjustments to the 
information elicited 
from the experts.  Run 
the objective failure 
data by the experts 
after eliciting their 
opinion and determine 
how to consolidate the 
two. 



The 
information 
available for 
different 
subsystems is 
at different 
levels of 
fidelity.  Some 
have more 
detailed 
information 
than others. 

Determine the key 
system risk drivers 
before getting into the 
details of the 
subsystems.  

Risk Drivers 

The risk 
drivers of the 
system 
change over 
time.  

Determine the current 
state of health of the 
spacecraft and update 
the models 
accordingly. 

System 
Configuration 

The system 
configuration 
and failure 
behaviour 
cannot be 
fully 
determined 
from reliability 
block 
diagrams 

The Risk Engineer 
needs to validate her 
understanding of the 
failure behaviour of the 
system with domain 
experts. 

   
   

   
   

   
   

 M
od

el
in

g 

Fault 
Protection 

The Fault 
Protection 
strategy of 
the system, 
which heavily 
impacts the 
risk model, is 
not trivial.   

Assum-
ptions 

The results 
are very 
sensitive to 
the underlying 
assumptions. 

Make sure to articulate 
the assumptions.  
Conduct sensitivity 
analyses on the 
assumptions. 

   
Sy

nt
he

si
s 

Dynamism 

The key 
failure drivers 
change over 
time. 

Determine the failure 
drivers at various 
epochs in time.  Use 
the results to validate 
the underlying 
assumptions and 
iterate with domain 
experts to ensure as a 
means of validating the 
models. 

Table 1: Lessons Learned & Recommendations 

 

4 CURRENT RESEARCH ISSUES 

Although QRA technologies and Reliability Engineering 
have solid mathematical foundations, their application and 
adoption as a decision support technique during the various 
lifecycle phases of a space mission is still under development.  
Some of the current research issues associated with building 
and maintaining such models are as follow: 

 
Data:  The correctness of the results of a QRA model 

depends heavily on the data used for building and exercising 
it.  Often the existing data is scattered and difficult to collect 
and consolidate.  Currently, there’s a NASA wide effort, led 
by NASA Headquarters to generate databases of hardware and 
software failure data to facilitate the process of building and 

exercising QRA models. 
System Failure Behavior:  Information about the failure 

behavior of the system is primarily obtained from the system 
schematics.  However, more in-depth analysis of the system 
makes it clear that the various fault protection strategies and 
recovery paths are not explicit in the system schematics and 
that it is difficult to collect and consolidate the information 
about them.   

Technology Infusion: The application of QRA based 
techniques in the flight project community is still relatively 
new and as such there is resistance to adopting these 
techniques and using them to support the decision making 
activities.  From the experience of the author in infusing new 
technologies in other existing processes [9], one way to 
remedy this situation is for a resident expert to work in parallel 
with the Systems Engineers and facilitate the use of such 
techniques. 

 

5 SUMMARY AND CONCLUSIONS  

 
In this paper, we have explored Quantitative Risk 

Assessment (QRA) techniques and their application for 
supporting the decision making activities during the spacecraft 
operations phase.  The application of such techniques is 
becoming increasingly prevalent in the space industry and 
they can provide significant value if applied correctly and 
consistently.  Nevertheless, this application requires a 
foundation which consists of appropriate data bases of 
historical fault data for components, and the expertise to build, 
exercise, maintain and apply such models.  In addition, the 
infusion of such technologies in mature organizations with 
strong existing cultures is a challenge which can be addressed 
by providing the appropriate expertise and training.   
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