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This paper presents a method to model the external gravity field and to estimate the internal density vari-
ation of a small-body. We first discuss the modeling problem, where we assume the polyhedral shape and
internal density distribution are given, and model the body interior using finite elements definitions, such as
cubes and spheres. The gravitational attractions computed from these approaches are compared with the true
uniform-density polyhedral attraction and the level of accuracies are presented. We then discuss the inverse
problem where we assume the body shape, radiometric measurements, and a priori density constraints are
given, and estimate the internal density variation by estimating the density of each finite element. The result
shows that the accuracy of the estimated density variation can be significantly improved depending on the orbit
altitude, finite-element resolution, and measurement accuracy.

I. Introduction

Over the past decade, there has been a growing interest in exploring small bodies, i.e., asteroids, comets, and
planetary satellites. To name a few, missions such as NEAR (1996), Deep Space 1 (1998), Stardust (1999), MUSES-C
(2002), ROSETTA (2004), Deep Impact (2005), and Dawn (2007) have visited or will visit small bodies, where their
mission objectives range from orbiting and flybys to landing on the surface. Among many critical requirements of
such a mission, one of the most crucial components is an accurate characterization of the spacecraft orbit environment
as it is usually directly related to the quality of science outcome. In general, small bodies have irregular shapes as their
local gravity is not strong enough to pull the body into a concentric sphere, and thus, modeling its external gravitational
field is an extremely challenging astrodynamics problem.

The first problem we discuss is the modeling problem where we assume an accurate shape model and an internal
density variation of a small body is given and want to model the external gravitational field. Given an irregularly
shaped body, there are basically two fundamentally different ways to model its gravitational field.1 The first approach
is to use a series expansion to approximate the gravitational potential, such as using the external spherical harmon-
ics.2–4 When the body in question is close to a sphere (e.g., planets) and when the field point is outside the Brillouin
(i.e., circumscribing) sphere, spherical harmonics can provide a very good approximation of the overall gravitational
field. When the field point is inside the Brillouin sphere, however, these series diverge in general, which makes the use
of spherical harmonics not suitable especially for irregularly shaped bodies. The second approach is the direct compu-
tation of the gravitational potential using a finite number of polyhedral definitions.5, 6 This approach, however, usually
assumes that the body has a constant density, and thus, it may not be a good model for a body with a strong density
variation. It is possible to subdivide a polyhedron into multiple polyhedrons, but such an algorithm for subdivision is
not a trivial problem.
∗Member of Engineering Staff, Outer Planet Navigation Group, Jet Propulsion Laboratory, Pasadena, California, Member AAS, Member AIAA,

Ryan.S.Park@jpl.nasa.gov.
†Senior Member of Engineering Staff, Optical Navigation Group, Jet Propulsion Laboratory, Pasadena, California,

Robert.A.Werner@jpl.nasa.gov.
‡Group Supervisor, Outer Planet Navigation Group, Jet Propulsion Laboratory, Pasadena, California, Member AIAA,

Shyam.Bhaskaran@jpl.nasa.gov.
c©2008 California Institute of Technology. Government sponsorship acknowledged.

1 of 18

American Institute of Aeronautics and Astronautics Paper AIAA-2008-6603



Since we are interested in an irregularly shaped small body that has a significant density variation, the external
spherical harmonics or the constant density polyhedron cannot be utilized to approximate the true gravity field. As
an alternate method, we present a finite-element approach to model the gravitational potential and the necessary
derivatives. We assume that a spacecraft surveys the body before the close approach, and by processing the optical
data, a high-precision polyhedral shape model is available. Based on this shape model, we fill up the body interior
using finite elements such as cubes (i.e., regular hexahedrons) or spheres with distinct density values. For example,
Figure 1(a) is a predicted shape model of Itokawa from a radar survey prior to MUSES-C arrival and Figures 1(b)
and 1(c) illustrate how a shape model can be constructed using finite cubes and spheres, respectively. Once a physical
finite-element shape model is available, it is straight forward to compute the attraction whether a spacecraft is inside a
Brillouin sphere or the body has a strong density variation. We compare the attraction based on finite-element shape
models with the true attraction from a polyhedron model and discuss the level of accuracies.

The second problem we discuss is the inverse problem where we assume that a polyhedral body shape, radiometric
measurements, and a priori density constraints are given, and we want to estimate the internal density variation by
estimating the density of each finite element. The advantage of finite element approach is that the measurements
from inside the Brillouin sphere can be utilized and estimated density has a physical meaning. In practice, this is a
much more difficult problem since it is generally an ill-conditioned problem depending on the order of accuracy of
the density variation one is solving for. As an example, we discuss how well the density variation can be estimated
based on the polyhedral shape model shown in Figure 1(a) with different finite-element resolution, orbit altitude, and
measurement accuracy.

(a) Polyhedron model (3688 faces). (b) Finite-cube shape model (26311 elements). (c) Finite-sphere shape model (26311 ele-
ments).

Figure 1. Different types of a small-body shape model.

II. Gravitational Potential of a Small Body

A. Potential of a Constant-Density Polyhedron

Following the notations in Werner,5 the gravitational potential of a polyhedral body at a field point r can be represented
as:

Up(r) =
1
2
G%

∑

e∈edges

rT
e Eere · Le − 1

2
G%

∑

f∈faces

rT
f Ff rf · ωf , (1)

where

re = re1 − r, (2)
Ee = n̂A(n̂A

12)
T + n̂B(n̂B

21)
T , (3)

Le = ln
re1 + re2 + e12

re1 + re2 − e12
, (4)

rf = rf1 − r, (5)

Ff = n̂f n̂T
f , (6)
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ωf =





2 arctan
Df − run|ωf |

rise|ωf |
, z > 0

0 , z = 0

2 arctan
run|ωf | −Df

−rise|ωf |
, z < 0,

(7)

Df =

√
(run|ωf |)2 +

(
rise|ωf |

)2

, (8)
[

run|ωf |
rise|ωf |

]
=

[
−runSn riseSn

−riseSn −runSn

]
· · ·

[
−runS2 riseS2

−riseS2 −runS2

][
−runS1 riseS1

−riseS1 −runS1

][
1
0

]
, (9)

runSj =
(
rT
i rk

)
r2
j −

(
rT
i rj

) (
rT
j rk

)
, (10)

riseSj = ri · (rj × rk) · rj , (11)

Here, G represents the universal gravitational constant, % represents the body density, re1 and re2 represent the vectors
from the field point to vertices of an edge, e12 represents the length of the edge, rf is a vector from the field point to
some fixed point in the face plane, n̂f is the face normal vector, n̂A and n̂B are the face normal vectors, and n̂A

12 and
n̂B

21 are the edge normal vectors. From the potential function, the acceleration, gravity-gradient matrix, and Laplacian
at a field point r can be derived as:

∂Up

∂r
= −G%

∑

e∈edges

Eere · Le + G%
∑

f∈faces

Ff rf · ωf , (12)

∂2Up

∂r2
= G%

∑

e∈edges

Ee · Le −G%
∑

f∈faces

Ff · ωf , (13)

∇2Up = −G%
∑

f∈faces

ωf . (14)

Note that computing the Laplacian gives whether a field point is inside, outside, on the face, or on a vertex or an edge:

−∇
2Up(ri)
G%

=





4π, if inside
0, if outside
2π, if on the face
solid angle, if on a vertex or an edge

. (15)

B. Potential of Multiple Finite-Cube and Finite-Sphere Shape Models

In order to create a finite-cube shape model from a polyhedral body, we first determine a rectangular box that circum-
scribes the entire body. We then mesh the rectangular box with the pre-defined cube length, `, and check the Laplacian
of each grid point. The grid point is stored only if it’s inside the body or on the surface. This way, we obtain multiple
cubes with physical length ` where their center points lie inside the body or on the surface. Note that this method does
not perfectly model the surface variation as some cubes will have excess volumes and some polyhedron spaces will not
be covered. The most trivial way to resolve this problem would be to decrease ` since, in the limit (` → 0), Uc → Up,
where Uc is the potential of the finite-cube shape model. This approach, however, increases the computational cost
tremendously and as we will see later that estimating the density variation may become an ill-conditioned problem
depending on the cube size.

Another direct way to resolve surface variation problem would be to completely cover the entire polyhedron using
cubes so that there are no empty spaces left and to reshape the surface-intersecting cubes as parallelopipeds, tetrahe-
drons, or even general polyhedrons so that the polyhedron surface can be approximated more accurately. An indirect,
yet simpler, way would be to apply density that is proportional to the volume difference to the surface-intersecting
cubes.a These approaches would yield physically more accurate shape representations, but are not considered in this
study.

aThis density correction method can also be applied to a finite-sphere shape model as well.
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Given multiple cubes, it is straight forward to come up with the following gravitational potential function and
related derivatives at a field point r:

Uc(r) =
∑

i∈cubes


1

2
G%i

∑

e∈edges

rT
e Eere · Le − 1

2
G%i

∑

f∈faces

rT
f Ff rf · ωf


 , (16)

∂Uc

∂r
=

∑

i∈cubes


−G%i

∑

e∈edges

Eere · Le + G%i

∑

f∈faces

Ff rf · ωf


 , (17)

∂2Uc

∂r2
=

∑

i∈cubes


G%i

∑

e∈edges

Ee · Le −G%i

∑

f∈faces

Ff · ωf


 , (18)

∂

∂%j

(
∂Uc

∂r

)
=

∑

i∈cubes


−Gδij

∑

e∈edges

Eere · Le + Gδij

∑

f∈faces

Ff rf · ωf


 , (19)

where δij represents the Kronecker delta function.
If we model the shape using spheres (i.e., point masses), the corresponding gravitational potential, acceleration,

gravity-gradient matrix, and partial of acceleration with respect to density are:

Um(r) =
∑

i∈spheres

4π

3
r3
miG%i

1
||r− ri|| , (20)

∂Um

∂r
=

∑

i∈spheres

−4π

3
r3
miG%i

r− ri

||r− ri||3 , (21)

∂2Um

∂r2
=

∑

i∈spheres

4π

3
r3
miG%i

1
||r− ri||5

[
I3×3 − 3

(r− ri)(r− ri)T

||r− ri||2
]

, (22)

∂

∂%j

(
∂Um

∂r

)
= −4π

3
r3
mjG

r− rj

||r− rj ||3 , (23)

where ri and rmi represent the position vector and the radius of an ith sphere. Note that a finite cube can always
be modeled using finite spheres since we can always reduce the size of spheres to fill up the cube. This approach,
as discussed earlier in this section, would increase the computational cost and estimating the density variation may
become an ill-conditioned problem.

C. Comparison of the Attractions of a Finite Cube and a Finite Sphere

Consider a cube with a length `. Assuming a sphere has the same density and mass as the cube, its corresponding
radius is rm = (3/4π)1/3` ≈ 0.62`. We want the masses to be the same because the point-mass approximations of
both shapes should be identical.

Now define λij as follows:

λij =
‖∂Ui/∂r− ∂Uj/∂r‖

‖∂Ui/∂r‖ × 100 %, (24)

which represents the percent difference between the attractions from the model i and model j, e.g., λcm represents
the percent difference between finite-cube and finite-sphere shape models. Assuming a unit cube, Figure 2 shows λcm

along x-y plane, which is also discussed in the work of Werner and Scheeres.6 Since the masses are the same, we
know that, in the limit (||r|| → ∞), λcm → 0 %. We note that, in general, the difference is very small (λcm < 0.5
%) when the field point is about 2` distance away from the center. The maximums occur on the surfaces (λcm ≈ 54
%). This indicates that, depending on the location of the field point, a cube can be approximated as a sphere, which is
generally easier to implement and computationally faster.
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Figure 2. Percent difference between the attractions from a finite cube and a finite sphere.

D. Comparison of the Attractions of Finite-Cube, Finite-Sphere, and Polyhedral Shape Models

Consider the tetrahedral Itokawa polyhedral shape model shown in Figure 1(a), which has 1846 vertices and 3688
faces. In this study, the polyhedron density is assumed to be constant7 (1.9 g/cm3) and the volume is computed to be8∑

i∈faces det [ri1, ri2, ri3] /6 = 0.026278 km3, where rij is the jth vertex position vector of the ith face.
We model the polyhedral shape using finite elements based on the method discussed in Section II.B. Assuming a

20 m resolution finite-cube shape model, there are 3292 cubes, and in order to keep total mass the same, the density
of each cube is corrected to MItokawa/Vtotal cubes = 1.896 g/cm3, where Vtotal cubes = 0.026336 km3. The finite-sphere
shape model is obtained in a similar manner where each sphere has the corresponding radius of 12.41 m.b

Figures 3(a-c) show the attractions, i.e., ∂Uc/∂r, based on a finite-cube shape model along different cross-sections.
As expected, we observe irregular gravitational attractions near the surface and becomes more concentrically dis-
tributed as the field point moves away from the center. Figures 4(a,c,e) show λpc, which represents the percent
difference in the attractions between the polyhedral and finite-cube shape models. We observe a poor agreement
near the surface, which is mostly because the surface variation is not modeled as discussed in Section II.B. Figures
4(b,d,f) show λcm, and as expected, we observe a very good agreement except for the points near the surface, which
is essentially the result discussed in Section II.C.

bEach cube and sphere are assumed to have the same density, mass, and volume, and thus, the only difference is their physical shapes.
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(a) Along x-y plane. (b) Along y-z plane.

(c) Along x-z plane.

Figure 3. Attraction of the finite-cube shape model.
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(a) Along x-y plane (λpc). (b) Along x-y plane (λcm).

(c) Along y-z plane (λpc). (d) Along y-z plane (λcm).

(e) Along x-z plane (λpc). (f) Along x-z plane (λcm).

Figure 4. Comparison of the attractions from polyhedral, finite-cube (20 m length), and finite-sphere (12.41 m radius) shape models. The
figures on the left show λpc and the figures on the a right show λcm along different cross-sections.
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III. Covariance Analysis

A. Batch Least-Squares Filter

Define the cost function J as follows:

J(x0) =
1
2

(x0 − xa)T Λa (x0 − xa) +
1
2

[z∗ − z(x0)]
T W [z∗ − z(x0)] , (25)

where xa is the a priori state estimate, Λa is the a priori information matrix, z∗ is the actual measurement vector (i.e.,
observed data), z is the predicted measurement vector, W is the measurement weight matrix, and x0 is the estimated
initial state vector.c Under ideal conditions, i.e., perfect dynamical model and observables, the cost function J should
vanish to zero for each x0. In practice, however, there always exist errors in both the dynamics and measurement
models. The goal of the batch least-squares filter is to find the initial state x0 such that the cost function J is minimized
given z∗.

By applying the necessary conditions to Eqn. (25) and by linearizing about the nominal trajectory, x̄0, the following
normal equation is obtained:9, 10

[
Λa + HT

x0
WHx0

]

︸ ︷︷ ︸
Λ0

δx0 = Λaδxa + HT
x0

W∆z︸ ︷︷ ︸
z̃

,

Λ0 δx0 = z̃, (26)

where δxa = xa − x̄0, ∆z = z∗ − z(x̄0), and

Hx0 =
∂z
∂x0

∣∣∣∣
x0=x̄0

=




h1Φ1

...
hNΦN


 . (27)

Here, Λ0 is called the epoch-state information matrix, z̃ is called the data vector, and Φk = Φ(tk, t0) is the usual state
transition matrix (STM) mapping the deviation from t0 to tk, i.e.,

Φ̇ =
∂

∂x

(
dx
dt

)
Φ = AΦ. (28)

In summation notation, the epoch-state information matrix and the data vector can then be stated as:

Λ0 = Λa +
N∑

k=1

1
σ2

k

ΦT
k hT

k hkΦk, (29)

z̃ = Λaδxa +
N∑

k=1

1
σ2

k

ΦT
k hT

k [z∗k − zk(x̄0)]. (30)

The least squares filter computes the correction vector δx0 and iterates until the solution converges, which usually
depends on some user-defined quantities, e.g., ||δx0|| < εδx0 . When carrying out a batch least-squares covariance
analysis, however, one is only interested in computing Λ0 as it conveys how well the estimations of the estimate vector
x0 can be made by processing N measurements. To see this, let each measurement have Gaussian statistics so that
each residual can be represented as ε = z∗ − z(x0) ∼ N (0,Σ), which is a usual assumption made in conventional
trajectory navigation. Given the statistical properties of the processed measurements, we want to characterize the
statistics of the estimate vector x0. Computing the first two central moments results in, i.e., conditional mean and
covariance matrix:

E[xlsq
0 ] = E [x̄0 + δx0] = x0, (31)

Plsq
0 = E

[
(xlsq

0 − E[xlsq
0 ])(xlsq

0 − E[xlsq
0 ])T

]
=

(
Λa + HT

x0
WHx0

)−1

. (32)

cNote that x0 is not necessarily limited to the spacecraft initial state vector. It can be augmented to include any parameters of interest, such as
dynamics and measurement biases.
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Therefore, we can conclude that the estimate vector x0 is indeed a Gaussian vector with xlsq
0 ∼ N (x0,Λ−1

0 ), or the
full Gaussian probability density function of xlsq

0 can be given as:

p(xlsq
0 ) =

√
detΛ0

(2π)n/2
exp

[
−1

2
(xlsq

0 − x0)T Λ0(xlsq
0 − x0)

]
, (33)

Pr(xlsq
0 ∈ B) =

∫

B
p(x0) dx0. (34)

Therefore, it is evident that the information matrix Λ0 characterizes the statistical properties of x0, and thus, the least-
squares covariance analysis is a useful filter design tool. In this paper, we carry out a batch least-squares covariance
analysis rather than a full estimation simulation since our goal is to analyze the level of expected accuracies of the
estimated densities from processing radiometric measurements.

B. Square-Root Information Filter Measurement Update

It has been known for many years that numerical precision is often lost in the covariance computation due to numerical
round-off and measurement update (i.e., matrix inversion) errors. A method for retaining precision is to use the square-
root information filter (SRIF):9, 11

Λ0 = RT
0 R0, (35)

where R0 is the epoch-state SRIF matrix which we update at every measurement increment. When a measurement is
updated at tk:

Λ+
0 = RT

0 R0 +
1
σ2

k

ΦT
k hT

k hkΦk =




R0

hkΦk

σk




T

TT
HTH




R0

hkΦk

σk


 =

[
RH

0

]T [
RH

0

]
, (36)

where TH is an orthogonal Householder transformation matrix which satisfies TT
HTH = I and RH is an upper triangu-

lar matrix which becomes the updated epoch-state SRIF matrix. In the actual computation, we adopt QR-factorization
as the Householder transformation.12 After the Householder transformation is applied, the updated epoch-state infor-
mation matrix becomes:

Λ+
0 = RT

HRH , (37)

and the updated epoch-state covariance matrix yields:

P+
0 = R−1

H R−T
H , (38)

which represents the a posteriori uncertainty of the estimated initial state vector.

IV. Estimation of the Small-Body Density Distribution

A. Correlation between Two Finite Spheres

Before carrying out a full covariance analysis, we would like to understand how well we can decouple the information
content from a single measurement when estimating the density of multiple finite elements. Consider two finite spheres
located at∓c = [∓c, 0, 0] with volumes V1 and V2 and densities %1 and %2. The total attraction from two finite spheres
is then:

a = −G

(
%1V1

r + c
||r + c||3 + %2V2

r− c
||r− c||3

)
. (39)

Now suppose we can directly measure the acceleration and compute the measurement partials, i.e.,

h =
[
−V1G

(
r + c

||r + c||3
)

, −V2G

(
r− c

||r− c||3
) ]

. (40)
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The epoch-state information matrix can be computed as Λ0 = hT h, so that P0 = Λ−1
0 . Figure 5 shows the correlation

coefficient between finite-sphere densities, i.e., P0,12/
√

P0,11P0,22, and note that both x and y axes are normalized by
the radius c.d We are interested in the correlation coefficient because it is the measure of how much information content
of a single acceleration measurement can be used to decouple the estimates of %1 and %2. Note that the correlation
coefficient is invariant under the volume and density of finite spheres since only one measurement is taken at time
zero. The result shows that the field point has to be at a close distance in order to obtain a meaningful measurement.
Also, note that the information matrix is not invertible along the points y = 0, which is expected as the acceleration
directions due to each finite sphere are parallel. The zero correlation occur when the field point to finite-sphere vectors
are perpendicular, i.e., the circle at the origin with radius c.

Figure 5. Correlation of the estimated densities of two finite spheres.

B. Estimated Uncertainties of Finite-Cube and Finite-Sphere Shape Models

In the full covariance analysis, the estimated variables are the initial spacecraft state and the density of each finite
element, i.e.,

x = [ rT
0 , vT

0 , pT ]T , (41)

where

p = [ %1, · · · , %M ]T . (42)

Note that %j is the density of the jth element where j ∈ {1, · · · ,M} depends on the number of elements in the
finite-element shape model. The equations of motion for the estimated vector are:

ẋ =
[

vT ,
∂Ui

∂r
, 01×M

]T

, (43)

and the corresponding differential equations for the STM yields:

Φ̇ =




03×3 I3×3 03×M

∂2Ui

∂r2
03×3

∂

∂p

(
∂Ui

∂r

)

0M×3 0M×3 0M×M


Φ, (44)

dThe x and y axes are normalized by the radius (c) so that two finite spheres are located at (-1,0) and (1,0).
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where i ∈ {c,m} for either a finite-cube or a finite-sphere shape model. In the actual computation, the integration
of the STM of p is excluded since it’s always an M ×M identity matrix. Note that, at each point of integration, the
Jacobi constant (J ) is computed as a validation check,e i.e.,

J =
1
2

(
ẋ2 + ẏ2 + ż2

)− Ui(x, y, z). (45)

Our goal is to analyze how well we can estimate the density vector p based on radiometric measurements. In this
study, the first data type we consider is instantaneous range measurements:f

zR = ||r− rs|| = ||ρ|| = ρ, (46)

where rs is the station location vector. Taking the partials of the range measurement with respect to the current state
vector x yields:11, 13

hR =
∂zR

∂x
=

[
∂zR

∂r
,

∂zR

∂v
,

∂zR

∂p

]
=

[
ρ̂T , 01×3, 01×M

]
, (47)

where ρ̂ is the unit tracking station to spacecraft position vector.
The second data type we consider are instantaneous range-rate measurements.g Its analytic representation is:

zD =
d

dt
||r− rs|| = ρ̂ · ρ̇. (48)

Taking partials gives:

hD =
∂zD

∂x
=

[
ρ̇T

(
∂ρ̂

∂r

)T

, ρ̂T , 01×M

]
, (49)

where

∂ρ̂

∂r
=

1
ρ

[
I3×3 − ρ̂ρ̂T

]
. (50)

Throughout this paper, the following assumptions are made:

1. The central body is non-rotating.

2. One tracking station is located at 2.5 km along the +y axis.

3. The small-body occultation effect is ignored.

4. All trajectories are integrated for 5 days.

5. Both range and range-rate measurements are taken every 15 minutes.

6. Assuming X-band capability, the measurement accuracies are assumed to be 5 m and 0.075 mm/s for range and
range-rate data, respectively.

7. The a priori covariance matrix is assumed to be diagonal with (50 m)2, (0.01 m/s)2, and (50% of the given
density)2 (i.e., 0.946 g/m3 for 50 m or 0.948 g/m3 for 20 m finite cubes) for position, velocity, and density
components, respectively.

Table 1: Initial states used in covariance analysis simulation.

Initial Position (m) Initial Velocity (m/s) Initial Orbit Period (hours)

Case 1 r0 = [ − 360, 0, 0]T v0 = [ 0,−0.12026, 0]T 22.6

Case 2 r0 = [ 0, 200, 0]T v0 = [ 0.05, 0, 0.1188]T 2.69

eSince the gravity is a conservative force (i.e., energy is conserved) the Jacobi constant must be constant at all times.
fIn practice, the instantaneous range measurements are modeled as the uplink and downlink signal travel times.
gThe information content of an instantaneous range-rate measurement is essentially the Doppler frequency shift in the transmitted signals.
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Figures 6(a) and 7(a) show the Case 1 initial state integrated based on 50 m resolution finite-cube and finite-sphere
shape models, where the grid points are generated from the Itokawa shape model (i.e., Figure 1(a)) using the method
discussed in Section II.B. There are total of 211 elements, the nominal density of 1.9 g/m3 is corrected to 1.893 g/m3 to
retain the same mass, and the corresponding finite-sphere radius is 31.02 m. Figure 6(b) shows the a posteriori density
uncertainties along cross-sections defined by constant z-planes of the shape model shown in Figure 6(a), where the
green arrow represents the +z axis. Recall that the a priori density uncertainties are 50 % for each element. As
expected, only the cubes near the surface, where close flybys occur, have significant uncertainty improvement. The
estimated root-sum-square (RSS) of the a posteriori position uncertainties were≈ 1 m and 0.25 mm/s for position and
velocity, respectively. Figure 7(b) shows the same case based on a finite-sphere shape model and we observe the same
behavior as shown in Figure 6(b).

Figure 8(a) shows the Case 1 initial state integrated based on a 20 m resolution finite-cube shape model, which
corresponds to 3292 finite cubes. In this case, the nominal density is corrected to 1.896 g/m3. Figure 8(b) shows
the estimated a posteriori density uncertainties of each 20 m resolution finite cube and we observe almost negligible
change in the density uncertainties when compared to the 50% a priori density uncertainty. This is mainly because
the flyby distance is not close enough to decouple the measurement information content for each finite cube. This be-
havior is similar fundamental limit which exists when estimating the spherical harmonics from a spacecraft trajectory.
Depending on the orbit altitude, there exists a limit on up to what degree and order spherical harmonic coefficients can
be estimated.14

Figures 9(a) and 10(a) show the Case 2 initial state integrated based on 50 m resolution finite-cube and finite-
sphere shape models, respectively. Figure 9(b) shows the estimated uncertainties along the constant z planes. We
observe improved uncertainty accuracies which is mainly due to decreased orbit altitude. Although it’s not shown
here, modeling the body shape using finite spheres yields essentially the same result. Figure 10(b) shows the same case
based on the corresponding finite-sphere shape model and more accurate measurement accuracies of 0.5 m and 0.0075
mm/s for range and range-rate, respectively. When compared to Figure 9(b), we observe significant improvement,
where the improvement ranges from factor of 1 to 6.2. A similar result is obtained when we model the body shape
using finite-cubes.

V. Conclusion

In this study, we have presented a finite-element based approach to model the external gravitational field and to
estimate the internal density variation of a small body. Given a polyhedral shape model, the body interior was filled
using finite elements, such as cubes and spheres, and we showed that, depending on the finite-element resolution
and field-point distance from the small body, the finite-element approach provides a very good approximation of the
polyhedral gravity field. The main error comes from neglecting the surface variation and we discussed potential ways
to resolve this problem. Also, finite-cube and finite-sphere shape models showed noticeable difference only when the
field point is very close to the surface.

We also presented the covariance analysis of an inverse problem where a shape model, radiometric measurements,
and a priori density constraints are given, and we attempt to solve for the internal density variation by estimating the
density of each finite element. In practice, we will probably need to apply a bootstrap method where we start from
large finite elements and refine as the the orbit altitude is lowered. Another potential approach would be to estimate the
spherical harmonics when the spacecraft is outside of the Brillouin sphere, and solve for the initial guess of the internal
density values using a method such as discussed by Scheeres et al..15 As a result, we have shown that the accuracy
of the estimated density uncertainties can be significantly improved depending on the finite-element resolution, orbit
altitude, and radiometric measurement accuracy.
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(a) 3-d trajectory and finite-cube shape model (211 elements).

z = −100 m z = −50 m

z = 0 m z = 50 m

z = 100 m
 

z = 150 m

 0
10
20
30
40
50

(b) Density uncertainties along the x-y plane (%).

Figure 6. Case 1 trajectory based on 50 m cube resolution.
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(a) 3-d trajectory and finite-sphere shape model (211 elements).

(b) Density uncertainties along the x-y plane (%).

Figure 7. Case 1 trajectory based on 31.02 m finite-sphere radius.
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(a) 3-d trajectory and finite-cube shape model (3292 elements).
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(b) Density uncertainties along the x-y plane (%).

Figure 8. Case 1 trajectory based on 20 m cube resolution.
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(a) 3-d trajectory and finite-cube shape model (211 elements).
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(b) Density uncertainties along the x-y plane (%).

Figure 9. Case 2 trajectory based on 50 m cube resolution.
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(a) 3-d trajectory and finite-sphere shape model (211 elements).

(b) Density uncertainties along the x-y plane (%).

Figure 10. Case 2 trajectory based on 30.02 finite-sphere radius assuming the measurement accuracy of 0.5 m and 0.0075 mm/s for range
and range-rate data, respectively.
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