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I. Introduction 
irtual Machine Language (VML) is an award-winning advanced procedural sequencing language in use on 
NASA deep-space missions since 1997. Missions featuring VML include Spitzer Space Telescope, Mars 

Odyssey, Stardust, Genesis, Mars Reconnaissance Orbiter, Phoenix, Dawn and Juno. The latest deployed version, 
VML 2.0, features parameterized functions, conditionals, polymorphism, a rich set of control directives and data 
types, event detection and response, and on-the-fly creation of spacecraft commands. This feature set is used to 
simplify spacecraft operations and science gathering activities. A new 2.1 version is being prototyped for use as an 
executive within flight instruments, and may be deployed on Juno. 
 
VML is used for a diverse set of mission functions on its various host spacecraft, including launch sequencing, daily 
activity loads, orbit insertion, aerobraking, entry-descent-landing, science observation, and fault responses. On 
Dawn, VML is used to autonomously control thrust output of the Ion Propulsion System. Generic implementations 
of several major uses are presented. Functional problem factoring and resource utilization are also considered. 
 
VML is divided into three major components. The flight component exists onboard the spacecraft, allowing VML 
sequences to run within the flight context. The VML compiler translates human readable sequences into binary 
executables placed onboard and loaded by the flight component. Offline Virtual Machine is a workstation program 
that marries the flight component to a user interface, can run sequences at several hundred thousand times real-time, 
and provides a runtime behavior with 100% fidelity to the flight context. Each of these components is used in the 
development and deployment of sequences for flight. This paper discusses the use of these components in typical 
operations development processes on missions like Mars Odyssey, Phoenix, and Dawn. 
 
Blocks are reusable relative time-tagged sequences that parameterize routine operations, and are typically packaged 
together into single uplinkable files called libraries. Sequences are single-use sets of instructions that run in absolute 
or relative time. The relationship between reusable blocks and one-use sequences is discussed. Reduced 
development effort due to iterative block development is outlined, along with typical development procedures. The 
lower cost and reduced complexity involved with creating blocks rather than flight software is noted, as is the 
reduction in uplink size. The ability to migrate to the spacecraft functionality that is more traditionally implemented 
on the ground is examined. The implications for implementing spacecraft autonomy without the need for expensive 
flight software agent development are discussed.  
 
Increasingly more capable versions of VML have flown on a series of missions. The arc of VML 0, VML 1.0, VML 
1.1, VML 2, and VML 2.1 is examined. Given VML's long lineage of missions and increasing capability, further 
simplification of operations using features in VML 2.1 is discussed. Finally, the application of lessons learned on 
each of the VML missions, and the incorporation of new features based on these lessons, is provided. VML is 
available for distribution free of charge by the Jet Propulsion Laboratory under NASA Technical Report 40365. 
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II. Development Backdrop 

A. The Olden Days: One-offs and Cul-de-sacs 
Back in the time of large, unfriendly computers, commanding a spacecraft was a large and cumbersome process. 

One set of tools was needed to design science observations and another set created the commands to carry out those 
designs. Separately, flight software was developed to operate each spacecraft. Since each spacecraft was unique, its 
flight software was also unique. In some cases, flight software could be reprogrammed in flight, but it was an 
esoteric and risky process, usually reserved for extreme cases such as when the Galileo mission's high gain antenna 
became stuck in a partially opened position. 

 
Ground software and flight software were developed in parallel pre-launch but the development processes were 

decoupled, with separate teams, sets of requirements, and mindsets. Ground had no influence on flight, and flight 
had a tendency to overlook operations needs. The assembly and test phase of development often used a third set of 
tools until close to launch, leaving operators with little or no hands-on experience in using the flight system they 
would be responsible for keeping safe.  

 
Voyager, Galileo, Cassini, Mars Observer, and Magellan all were developed under this paradigm, with small 

advances from mission to mission. What heritage could be maintained was transmitted by personnel rather than by 
software reuse, and therefore was subject to loss by reassignment or retirement of personnel. In operations, those 
who moved among missions brought with them an understanding of what could be the same and what must be 
different from spacecraft to spacecraft. A consensus grew that rather than only bringing personnel experience 
forward, tools and systems should also be reused. During this period, space exploration budgets became tighter as 
well, and a shift from large flagship missions to smaller more agile missions began. 

B. Sea Change: The Multimission Mindset 
With the advent of the Pathfinder mission, JPL developed a wide range of new technologies for spaceflight: a 

base station / rover combination, airbags, use of a radiation-hardened processor similar to commercial PowerPC 
chips, and modularized flight code intended for easy reuse on future missions. Far from creating a one-off 
implementation, Pathfinder showed the multimission mindset taking hold. 

 
The Pathfinder lander software architecture (excluding the rover), in particular, would have considerable impact 

on the Stardust, Mars Climate Orbiter, and Mars Polar Lander missions that featured VML 0. First, rather than 
featuring custom software from the lowest levels up, Pathfinder's flight software was built on a space-rated version 
of a modern real-time operating system, VxWorks. This provided convenient scheduling of multiple tasks, mutual 
exclusion constructs, a concept of priority, and a commercially supported development environment. The flight code 
featured more sophisticated telemetry than the typical subcommutated frame map, instead using event reports for 
rapid time-tagged reporting of conditions, and a channelized "push" telemetry system to allow tasks to cyclically 
place telemetry information into a separate telemetry reporting task. The opcode / parameter commanding was 
mapped into a messaging system, allowing individual commands to be automatically routed to the proper task and 
stored in a queue until the task became active. In addition, tasks could communicate among themselves using this 
messaging protocol. The features of messaging, event reports, channelized telemetry, and task scheduling would all 
find their way into VML flight code. 

 
Despite its design for reuse, the Pathfinder code base provided only a rudimentary sequencing capability. 

Sequences featuring conditional checks and other sophisticated activities were implemented in C code as single use 
flight software modules and uplinked to the spacecraft on a daily basis. Once onboard, they were loaded into the 
flight software image space via VxWorks call, effectively relinking the flight software into one or more new 
configurations each mission day. The sequencer consisted of separate VxWorks tasks, each of which would wait 
until a designated time before calling a routine in one of the newly loaded flight software modules. Fundamentally, 
this implementation was a set of sequence lists, but had the side effect of requiring a new flight software 
configuration for each sequence. One downside of this approach was the difficulty of testing the sequence software 
loads using a faster-than-realtime virtual clock in a non-VxWorks environment. A second downside was the 
exposure of the full flight software load to any mistakes made in the C coded sequences. A final downside was that 
this approach propagated the lack of coordination between flight and ground systems prevalent in preceding 
missions. 
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C. Clean Sheet 
Spitzer (originally named SIRTF, the Space Infrared Telescope Facility), the last of the four Great Observatories, 

was a new kind of mission for JPL. Rather than time-constrained mapping or flyby observations, Spitzer could 
observe a large portion of the sky for several weeks, repeating on 6-month cycles. Spitzer's cryogen use strategy also 
constrained operations to using one instrument for one week, then switching to another instrument for the next week. 
A time allocation committee chose science observations from among peer-reviewed proposals. The selected 
observations were entered into a database of potential observations, each observation having a validity window 
rather than a specific start time. 

 
 A commanding strategy was explored that would load the observation specifications into onboard tables. The 

spacecraft flight software would choose at runtime which observation to execute next, based on duration, remaining 
time in the observation window, time left before downlink, etc. Because spacecraft turn duration was non-
deterministic, it was believed that this approach would also increase observation schedule efficiency by allowing the 
spacecraft to control start times based on local knowledge of turn completion, rather than by adding slew margin on 
the ground. This in turn would allow more data to be taken over the life of the mission before the cryogen ran out. 

 
As this strategy was analyzed, it became clear that none of the onboard sequencing applications currently in use 

could perform this type of commanding, nor could any of them be readily adapted to the table structure. A new 
flight software sequencing application was needed for Spitzer. This new flight software would be expensive, risky 
and likely not very adaptable to planetary missions. Based on schedule and budget constraints, another solution 
needed to be found: Virtual Machine Language sequencing. 

 

III. What's a VM? 

A. Like a Little Computer: Emulated Processing 
The basic programming approach familiar to most spacecraft operations personnel is procedural in nature. 

Named routines stored in an instruction space call other named routines, passing parameters and receiving results. 
Data is stored in a separate memory space, and is altered according to defined arithmetic and logical rules. At any 
instant in time, there is one instruction being executed. There is a concept of control flow: one instruction is 
considered as "next", either because it immediately follows the current instruction, or because branching logic forces 
execution to jump to some other instruction. The entire conceptual framework of the modern computer, with 
instructions, data, a current position, and branching control flow can run either directly on a central processing unit 
(CPU), or within a software-simulated processor called a virtual machine. VML takes the latter approach. 

 
The virtual machine, or VM, is implemented as a complex data construct acted upon by flight software. A 

simplified form of this data construct is shown in Figure 1. The VML flight software interprets instructions in the 
virtual machine, using an index to track the current 
instruction number much like a hardware CPU tracks the 
address of the current machine instruction. When branching 
instructions are encountered, the software interprets whether 
to take the branch or to continue to the next instruction, and 
changes the value in the instruction index to reflect the 
decision made. 

 
The operand stack is used to store variables found in 

various functions, parameter values for calls to functions, and 
instruction indices for returning from function calls. Simple 
data types like integers and floating point values are compact 
enough to be stored directly on the operand stack. For 
efficiency, string operands use separate string storage space. 
Strings are typically much larger than integers or floating 
point values, and vary widely in the number of bytes required 
to hold a value. Specialized string storage allows bytes to be packed together and referenced by operands in the 
operand stack. The string storage is implemented as a separate data space in the virtual machine construct. 

 

  
Figure 1. Virtual machine construct. Each VM 
consists of instruction storage, static data storage, 
dynamically allocated data operands in a stack, 
specialized storage for strings and commands, a 
current instruction pointer, and a pointer to the top 
of the operand stack. 
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Spacecraft commands, like strings, also vary a great deal in length. A NOOP (no-operation) spacecraft command 
might only take one or two bytes, whereas some 
specialized instrument commands may take hundreds. 
Therefore, a specialized area is provided for command 
storage in order to avoid wasting memory. 

 
The entire approach of instructions with a current 

instruction index, operands pushed onto and removed from 
the operand stack, and branching control flow allows the 
VM to emulate the kind of processing normally found in 
computing hardware. The interpretation step allows the 
instruction set of a VM function to be specifically limited 
to high-level, sophisticated directives tuned to operational 
needs. 

 
Traditional sequencing, by contrast, typically uses a list 

or a table of instructions with time tags indicating the time 
of execution for each entry in the table. Figure 2 shows this 
rudimentary capability. In a list, the instructions are 
executed in order, but feature no parallelism. In the 
sequence table, entries execute in parallel, each waiting for 
its time to come due. 

 
The instructions invoked from the list or table might be spacecraft commands with fixed parameter values, or 

high-level directives invoked with fixed parameter sets. Any high level directives would have to be coded in flight 
software in order to feature logic and branching, perform calculations, or check for conditions. This dependence on 
flight software removes the possibility of operations personnel implementing new conditional statements, loops, or 
calculations as part of the in-flight products, decreasing sequence flexibility and increasing costs. 

 
The sequence table also features a lack of structure and coherence. Since any instruction may come due at any 

time, there is no sense of "current" and "next" that is fundamental to programming. This lack of structure can 
impede easy understanding of the intended functionality of any particular sequence load, as time tagged instructions 
with the same time of execution may exist anywhere in a comparatively large space of hundreds or thousands of 
entries. In addition, a lack of structure inhibits detecting events and responding to conditions, as we will discuss in 
the next section. 

B. Less Is More: Being Next 
The concept of control flow through code running on a CPU inherently implies a current instruction and a next 

instruction. When the current instruction finishes executing, the CPU must calculate which instruction in memory to 
execute next. Most of the time (statistically), the next instruction resides in the next memory address. Occasionally, 
a decision must be made regarding whether to execute the next instruction or to jump to some other instruction in 
memory. VML employs similar mechanisms to those used by CPUs. 

 
Flow control in VML may take the form of simply continuing to the next instruction, performing a conditional 

check followed by a branch to a different location, calling a subroutine and returning, or starting execution of a new 
thread to run in parallel with the current thread. VML implements conditional checks using expression evaluation, 
then branches to a label in a manner similar to an assembly program. Calling preserves return information on the 
VM operand stack and uses the first instruction of a named routine as the branch destination, taking the return off 
the stack when the end of the routine is reached. Spawning starts a separate VM to take the first instruction of a 
named routine as its first instruction and runs in parallel with the spawner in a fashion similar to multitasking. In 
each case, the key to the structure of the function is to designate what the virtual machine is to do next. 

C. Lots of Little Computers: Multiple Threads of Execution 
With the basic execution paradigm defined, it is a simple matter to generalize from having a single virtual 

machine to having an arbitrary number of them. Each engine has its own instruction and operand space, and each 
engine provides one thread of execution. Due to the data-driven nature of the sequencing engines, VML can support 

 

Figure 2. Sequence list or table. This rudimentary 
approach to sequencing uses time tags to indicate 
when spacecraft commands or other high-level 
actions are to be executed. 
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as few as one engine, or (accounting for hidden engines used for global variables and spawning) as many as 65,532, 
although this maximum configuration would probably entail a prohibitively large memory footprint. 

 
The first VML 0 missions were sized to eight engines, mirroring the sequence capabilities VML replaced (see 

section IV B below). Odyssey and Genesis, using VML 1.0, also used eight engines, but due to its operational 
complexity, the Spitzer mission opted for twelve engines. VML 2.0 missions chose to further expand the number of 
engines: Dawn and Phoenix both run with 16 engines, while MRO uses 20 in order to more simply manage the large 
number of instruments onboard. Juno is exploring using 28 engines. 

D. Tool Chain: Components Working in Concert 
The VML tool suite allows the generation of files containing functions, the loading and execution of sequences, 

and the testing of sets of sequences. The relationship of each of 
these VML tools is shown in Figure 3. A source file containing 
human-readable VML script is generated using a standard 
editor or a ground data system tool. The VML Compiler 
translates a text file, or set of merged text files, into a loadable 
binary, translating spacecraft commands and absolute times 
using external mission-specific tools. The VML Compiler also 
has access to lists of valid global variables and symbolic 
constants for the mission. The module file produced can then 
be loaded by the VML Flight Component. 

 
The typical development process involves running the 

compiled module under Offline VM (OLVM) in order to test 
and validate the behavior of the code. OLVM is capable of 
performing user-defined tests automatically by first capturing a 
user-guided session, then extracting user keystrokes from the 
human-readable session output and rerunning the test. This 
automates the testing process for very little investment of 
effort. OLVM can be widely deployed on relatively modest workstations, including Sun Ultra, Intel Linux, PPC 
Macintosh, and Intel Macintosh platforms. Developers can thoroughly test products before taking them to the more 
expensive, slower, and less available real-time software test lab. VML products tend to work the first time in the lab 
without further modification when their development features OLVM testing. In some cases, products span so much 
mission time (weeks to months) that a full run in a test lab is not practical or even possible. 

E. VML: Human Readable Language 
VML's ultimate aim is to eliminate errors, yet provide enough power to simplify operational blocks and 

sequences. Fortunately, the two goals are complementary. By providing high-level constructs like conditionals and 
loops, discouraging branching with labels, encouraging functional abstraction via parameterized blocks, allowing 
graceful coercion and weak data typing, and building commands with calculated parameter values, VML allows 
concise, syntactically simple operations products to be implemented. 

F. Reusable Blocks: Parameters, Conditionals, and Return Values 
Perhaps the easiest way to explain VML scripting representations is by example. Figure 4 shows a code listing of 

VML with blocks used for setting up and stopping contacts between a notional mission and the Deep Space Network 
used for communicating with interplanetary missions. Blocks are intended to be reused, sometimes thousands of 
times. In this sample code, the complexities of choosing bit rate indices, actuating a solid-state power amplifier with 
timing appropriate for the safety of the electronics, and turning off the electronics are abstracted as the blocks. VML 
is not case sensitive, but for demonstration clarity, VML keywords have been fully capitalized. 

 
The function convert_bit_rate is a reusable block that accepts one parameter. Notice that no data type 

specification is necessary, but may be optionally provided to cause a coercion if desired. The parameter is treated 
like a local variable, and may be used in expressions inside the block. Values may also be assigned to it within the 
block. An arbitrary number of parameters may be expected by a function, as well as no parameters at all. Any 
missing parameters in the call to the function are gracefully substituted with the special data type and value UNKNOWN. 
Any excess parameters in the call are ignored by the function. 

  
Figure 3. Tool chain. Files of functions are created 
by using an editor or ground data system (GDS) tool 
to create human-readable VML script. The compiler 
translates this into a binary format usable within 
OLVM or some variant of flight computer either in a 
software test lab or on the spacecraft 
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Next comes the declaration section, which in this case features one declaration of a local variable 

bit_rate_index. The variable has an initialized value of 0. All variable declarations include an initialization value 
that is evaluated upon entry into the function. 
This eliminates nondeterministic behavior due 
to random initialization values, and prevents 
corrupt floating point values from causing 
exceptions on CPU hardware. 

 
The body of the function contains the 

executable instructions, bounded by BODY and 
END_BODY. The instructions within a function 
execute according to timing relative to one 
another. In versions of VML prior to 2.1, 
explicit time tags were required on every 
statement. This proved cumbersome, so starting 
with VML 2.1, if no time tag is present, the 
VML compiler substitutes a time period of one 
tick. This has the effect of separating the 
execution between statements. Zero time tag 
values are allowed, in which case instructions 
are executed in the order encountered, but the 
next instruction after the current instruction is 
issued on the same tick as the current 
instruction. 

 
Within the body of convert_bit_rate are 

instructions implementing a cascading 
conditional structure with three matching 
conditions. These work like ordinary IF 
statements in most computer languages such as 
C or Ada. There is no need for an explicit 
conditional body for multiple statements as in 
C: every statement between the IF and the 
eventual ELSE_IF, ELSE, and END_IF is 
automatically considered to be part of the body 
of the IF, eliminating a source of coding errors. 
The IF statement clauses shown here feature complex expressions, including in some cases Boolean logic operators 
like AND (&&), OR (||), XOR (@@), and NOT (!). 

 
Values can be returned from functions one of two ways: RETURN statements (shown in the example), which 

provide a single value back to the calling statement that can be assigned within the context of the calling function, 
and INPUT_OUTPUT parameters. The latter are not shown in this example, but provide a reference to a variable in the 
caller's context rather than a copy of such a variable. Assignments to the INPUT_OUTPUT parameter change the 
original variable rather than a local copy. If a literal is given in the call corresponding to an INPUT_OUTPUT 
parameter, VML quietly treats the parameter as an INPUT parameter, making a local copy of the value. This 
eliminates any need to detect and respond to mismatch errors. 

 
The next function, dsn_contact_start, accepts two parameters, one of which has been coerced to a string and 

checked for valid values. Failure to match a valid value for the mode parameter results in a runtime error. The 
function starts by calling the block convert_bit_rate discussed previously, receiving a value to use for the 
bit_rate_index. It then goes on to dispatch commands using ISSUE statements. Notice the R0.2 time tag between 
the first two ISSUEs: this forces a 0.2 second relative time delay between the completion of the first command and 
the dispatch of the second command. VML 2.1 has facilities for detecting the completion of commands, whereas 
previous versions only timed the dispatch of commands relative to the previous command dispatch. Since VML does 

BLOCK convert_bit_rate 
    INPUT bit_rate 
    DECLARE INT bit_rate_index := 0 
BODY 
    IF bit_rate < 6 THEN 
        bit_rate_index := 0 
    ELSE_IF 6 <= bit_rate  &&  bit_rate <= 1024 THEN 
        bit_rate_index := 1 + (bit_rate - 1) / 10 
    ELSE 
        bit_rate_index := 103 
    END_IF 
     
    RETURN bit_rate_index 
END_BODY 
 
BLOCK dsn_contact_start 
    INPUT STRING mode VALUES "standby", "half", "full" 
    INPUT bit_rate 
    DECLARE INT bit_rate_index := 0 
BODY 
    bit_rate_index := CALL convert_bit_rate bit_rate 
     
    ISSUE sspa_mode standby 
    R0.2 ISSUE set_power_switch sspa, on 
    R1.0 ISSUE_DYNAMIC "sspa_mode", mode 
    DELAY_BY gv_sspa_on_warmup_time 
    R4.0 ISSUE_DYNAMIC "transponder_on", bit_rate_index 
    gv_dsn_contact := TRUE 
END_BODY 
 
BLOCK dsn_contact_end 
BODY 
    ISSUE sspa_mode standby 
    ISSUE set_power_switch sspa, off 
    gv_dsn_contact := FALSE 
END_BODY 
 

Figure 4. Sample blocks. These sample blocks for a notional 
mission would be placed together as a library. They provide simple 
abstractions for complex operations, and are used in place of 
individual commands. 
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not understand a spacecraft command per se, it depends on an external translation tool to provide the VML Compiler 
with the binary equivalent of whatever text is present to the end of the line after the ISSUE keyword. This allows 
enormous flexibility in spacecraft commands, and guarantees that VML syntax will never collide with spacecraft 
command syntax. 

 
Next come two examples of dynamically issued commands, separated by a programmable delay. The dynamic 

commands are built by looking up command formats in a mission-specific data structure compiled into the VML 
flight component. Notice how the bit_rate_index value return from a previous block call is used in the second 
ISSUE_DYNAMIC statement. Command parameters are checked against the mission-specific command definition data 
at runtime for valid ranges and state values, with violations resulting in a command dispatch error that will abort 
execution if engine aborts are enabled. In the case of a violation, no command is actually dispatched. 

 
Finally, at the end of the function, a global variable gv_dsn_contact is set to the logical value TRUE, which can 

be tested in other blocks (and even non-VML flight software) in order to affect runtime behavior. 
 
The use of blocks reduces development effort, providing a high-level representation of complex functionality 

without imposing the kind of heavyweight review process required by flight software. Blocks, once developed, 
remain in most cases unchanged. Only the invocation of a block need be reviewed when examining the sequences 
that use it. This substantially reduces the amount of time required to review activities and reduces the risk of error. 

G. Sequences: Activities Using Blocks 
A second major kind of function is the sequence. Sequences are intended to be used exactly once, and come in 

two varieties, absolute and relative. Absolutely timed sequences contain absolute time expressed either in spacecraft 
time (seconds since a configurable epoch) or Earth-time, with the latter requiring a conversion tool. Absolute 
sequences may also contain relative times, and these will be offset from the previous statement. Relative time 
sequences contain only relative times similar to those seen in the example blocks above. This allows some flexibility 
in when the sequence is initiated, but causes 
the sequence to proceed according to precise 
timing. 

 
Figure 5 shows an absolutely time tagged 

sequence master_4. This sequence 
automatically executes upon being loaded 
into an engine, and automatically vacates the 
entire file loaded into that engine when it is 
finished executing. This particular sequence 
loads a file containing a slave sequence that 
performs observations. Ten seconds after 
issuing the load command, the master 
sequence starts execution of the relative 
sequence observe_day_39 (not shown here). 
The master sequence handles the loading, 
starting, and stopping of slave sequences, and 
the initiation of DSN contacts. 

 
At a later time, the master sequence 

makes use of a PAUSE statement in order to suspend observations while a contact with the deep space network 
proceeds. The PAUSE simply defers execution of the engine intact so that it may be resumed at a later time. Notice 
the use of the blocks previously discussed. Once the DSN contact has completed, RESUME allows the paused slave 
sequence to proceed. The ellipses in this master sequence are provided to indicate that there are other statements not 
shown, perhaps more slave sequences loaded, paused, and resumed, along with more DSN contacts. 

 
At the end of the sequence the HALT statement terminates any unfinished camera observations, and the engine 

containing the observation sequence is unloaded to free it for future use. The final statement of the master sequence 
loads the next master sequence. Since the command takes a round trip through the command subsystem, the VML 

ABSOLUTE_SEQUENCE master_4 
FLAGS AUTOEXECUTE AUTOUNLOAD 
BODY 
A2010-020T01:23:14.0 VM_LOAD 5, "d:/seq/observe_day_39.mod" 
R10.0                SPAWN 5 observe_day_39 
 
A2010-020T07:34:21.0 PAUSE 5 
A2010-020T07:34:22.0 CALL dsn_contact_start "main", 1024 
A2010-020T08:11:15.0 CALL dsn_contact_end 
A2010-020T08:11:16.0 RESUME 5 
... 
A2010-050T10:11:00.0 HALT 5     ; stop camera observations 
A2010-050T10:11:00.0 ISSUE VM_UNLOAD 5 
A2010-050T10:11:01.0 ISSUE VM_LOAD 1, "d:/seq/master_5.abs" 
 
END_BODY 
 

Figure 5. Sample sequence. This sequence is absolutely time tagged. 
A mission-specific tool outside of the VML Compiler converts the times 
to seconds. Times may also be specified directly in spacecraft clock 
times as seconds without use of an external tool, with format Sxxxxxx.x 
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Flight Component has time to unload the file containing master_4 from engine 1 before loading the file containing 
master_5. This technique is known as chaining, and has been used extensively on missions since Mars Odyssey. 

H. Details: Arithmetic, Loops 
A wide variety of arithmetic operators and built-in functions is available, but has not been shown in the examples 

above. Arithmetic operators include addition (+), subtraction (-), multiplication (*), division (/), modulo (%), and 
power (^). Bitwise operators include bit-and (&), bit-or (|), bit-exclusive-or (@), bit-invert (~), bit shift left (<<), and 
bit shift right (>>). Logical operators include logical-and (&&), logical-or (||), logical-exclusive-or (@@), and logical-
not (!). Comparison operators include equal (=), not equal (!=), less than (<), less than or equal (<=), greater than (>) 
and greater than or equal (>=). The usual operator precedences are enforced, along with parentheses. 

 
Built-in functions simplify calculation. For numeric values, these include ABS(), SIN(), COS(), TAN(), ASIN(), 

ACOS(), and ATAN(). String lengths in characters are calculated by the LENGTH() built-in function. In addition, string 
operators are available to concatenate strings (+) and to split strings into substrings. Left split takes all characters to 
the left of a given character position, 
including that character (-|). Right split 
takes all characters to the right of a given 
character position, excluding the 
character (|-). 

 
Loops featuring condition checking 

(WHILE) and iteration (FOR) are available. 
Simple examples of each are shown in 
Figure 6. The WHILE loop checks a 
logical condition in order to continue, 
whereas a FOR loop uses a local variable 
to count from a given starting value up to 
or down to a given ending value. The explicit designation of counting up or counting down makes the syntax of the 
FOR loop simpler than is found in the C language. The body of the WHILE loop is bounded by END_WHILE, and the 
body of the FOR loop is bounded by END_FOR. 

I. Event Driven Sequencing 
Event-driven sequencing provides a compact syntax for waiting on conditions, and proceeding when those 

conditions are met. This allows blocks to react to external signals from flight software and other blocks without an 
unduly complex implementation, in turn reducing both the cost of implementation and the risk of error. 

 
Event detection takes the form of a variety of WAIT statements, shown in Figure 7. These instructions suspend 

execution of the running engine until a new value arrives, using no CPU processing: these are not spin locks, but 
instead are very efficient signaling 
mechanisms tied to global variable 
access routines. The simplest form of 
WAIT simply checks for a value to 
arrive, in which case the waiting 
engine is rescheduled. More 
complicated versions wait for changed 
values or wait for particular conditions 
to come true on the variable. In all 
cases, WAIT statements may assign the 
value in the global variable being 
waited on to a local variable, which 
can then be used in calculations. WAIT 
statements feature optional timeout 
values in order to guarantee that 
execution resumes if no acceptable value arrives within the specified time period. If the timeout expires, the local 
variable on the left side of the assignment is not assigned. This means that the user can definitively tell whether a 

BLOCK slew 
    INPUT ra 
    INPUT dec 
    DECLARE DOUBLE rates := 0.0 
BODY 
    ISSUE_DYNAMIC "SLEW", ra, dec 
    rates := WAIT gv_instrument_rate < 0.001 TIMEOUT 10.0 
    rates := WAIT gv_instrument_rate 
    state := WAIT_CHANGE gv_state 
    ... 

Figure 7. The many-varied WAIT statement. Event detection takes the 
form of WAIT statements, which examine a single sequencing global 
variable. The WAIT can be simple, feature a comparison, or look for a 
change. WAIT statements contain optional timeouts in order to guarantee 
resumption of processing if the condition is not met. 

    WHILE gv_images < 45  &&  gv_camera_ready DO 
    ... 
    END_WHILE 
 
    FOR i := 1 TO x DO 
    ... 
    END_FOR 
 
    FOR i := gv_start DOWN_TO gv_end STEP 3 DO 
    ... 
    END_FOR 

Figure 6. Loops. WHILE loops check logic. FOR loops iterate up or down 
by 1, or an optional step value. 
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value arrived or the statement timed out by first assigning an impossible value (e.g. -1), then checking to see if that 
value is present after the WAIT. 

 
Simple semaphores are implemented using the TEST_AND_SET statement. This statement acts on a global variable, 

testing it as being greater than 0 and decrementing it all in one step before any other engine can execute a statement. 
If the value is zero or negative, execution of the engine is suspended until a non-zero value becomes present in the 
global, at which point the engine is again scheduled and attempts the TEST_AND_SET again. This capability allows 
global variables to guard mutually exclusive portions of functions to prevent miscommanding spacecraft elements, 
and allows classical producer / consumer code implementations as found in other computing environments. Like the 
WAIT statement, the TEST_AND_SET features an optional timeout in order to guarantee that execution is not 
permanently deadlocked. 

 

J. Flight Insight: Commands and Telemetry 
Controlling the activities of the VML Flight Component takes the form of commands dispatched to the software 

by the ground and by functions implemented by operators. These commands are straightforward, and provide a rich 
set of actions. They are listed below, along with basic descriptions. Note that some of the command names have 
changed slightly between versions: only the names found in the most current version of the VML flight software are 
given. 

VM_GV_RENAME: rename the variable at the given index with a new name 
VM_GV_SAVE: save a range of global variables to a named file in the file system 
VM_GV_SET_DBL: set a global variable to a given double floating point value 
VM_GV_SET_INT: set a global variable to a given integer value 
VM_GV_SET_STR: set a global variable to a given string value 
VM_GV_SET_TIME: set a global variable to a given time value 
VM_GV_SET_UINT: set a global variable to a given unsigned integer value 
 
VM_ABORT_MODE: set the engine to abort on an error (e.g. divide by 0, command error) 
VM_HALT: halt execution of the given engine 
VM_HALT_NAME: halt execution of whichever engine is running the named function 
VM_PAUSE: pause execution of the given engine, allowing later resumption 
VM_RESUME: resume execution of the given paused engine 
 
VM_LOAD: load a file on a given engine, or choose an engine if a special "load to any engine" value is 

given 
VM_LOAD_SPAWN: load the given file on an engine and spawn the given function with parameters in one 

step on that same engine 
VM_SPAWN: spawn the given function with parameters on a given engine 
VM_START: spawn the given function with no parameters on a given engine 
VM_UNLOAD: unload the given engine 
VM_UNLOAD_FILE: unload whichever engine has the given file loaded on it 
 
VM_PROTECT: prevent an engine from being unloaded until it is unprotected 
VM_UNPROTECT: allow an engine to be unloaded 
VM_RESERVE: reserve an engine from being loaded unless its engine number is explicitly given 
VM_UNRESERVE: allow an engine to be loaded when the special "load to any engine" value is given 

 
Monitoring the actions of an engine takes the form of telemetry channels. Each engine pushes its current 

function name, position, and file load to telemetry. In addition, the running state, load state, protection and 
reservation modes, and abort mode are reported. In order to monitor use, start count, start time, nominal termination 
count, and abort count are recorded. A variety of telemetry points also track the previous and next activity times and 
opcodes. 

 
Taken together, the various features of VML provide a concise, powerful, standardized language for operating 

deep space missions. We will now examine the arc of missions over which VML has been used. 
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IV. Safe Sandbox 

A. Spitzer Redux 
When it became clear that the table-driven non-deterministic sequencing system (as discussed in Section II D 

above) was too risky and expensive for Spitzer, another solution had to be found. Coincidentally, VML was in the 
early stages of development for future missions. The Spitzer spacecraft developers co-opted VML and sped up its 
evolution to match the Spitzer schedule. In a break from previous missions, the system engineers from both flight 
and ground had to work together to define the set of capabilities that would fulfill Spitzer's needs, yet continue on 
the path of multimission reusable flight and ground software. This approach resulted in a feature set that would act 
as a flexible, standardized "front door" to the spacecraft for both Spitzer and future missions. 

 
Spitzer's operational requirements stressed the existing flight and ground toolsets, and taxed the abilities of the 

small operations team. The Spitzer operations duty cycle was to observe for 11-1/2 hours, then turn and downlink 
for 30 minutes. Large data volumes and constrained onboard storage made it essential to get most of the data down 
in the first downlink opportunity. Because Spitzer's lifetime was limited by its cryogen, operating efficiently was 
essential to completing the mission's science requirements. Non-deterministic slew and settle durations also meant 
valuable observing time would be lost if worst case slew times had to be assumed in the planning of observations.  

 
The earlier idea of letting the spacecraft choose which observation to perform next had been abandoned as too 

costly and risky. However, parts of that strategy could be applied through VML. In this case, VML was used to 
"pack 6 pounds of flour into a 5 pound bag" by intentionally oversubscribing the 11-1/2 hour observation window. 
Targets were chosen via a database on the ground and the observation sequence was assembled. Then, one or two 
extra observations were added to the end of the 11-1/2 hour window to take advantage of faster-than-expected slew 
and settle times. Global variables allowed the flight system to tell the sequence when the slew completed and 
settling was accomplished, and were used to trigger observation start. If an observation was never started or did not 
have time to complete, it was added back to the database and performed at another time.  

 
VML made a major difference to Spitzer in the area of uplink volume. Sequences were uplinked to Spitzer only 

once per week. With only 30 minute DSN contacts, uplink volume was severely constrained. Much of Spitzer's 
observation strategy was highly repetitive. For some observations, the same command was issued over and over 
with only one or two parameters changing throughout the observation. VML blocks are ideal for this commanding 
style and in fact, Spitzer could not fit within its uplink limits without them. A study on the savings for Spitzer from 
using VML blocks revealed a reduction in uplink volume of 90%. 

 
Using VML and multiple engines also allowed new fault protection strategies. Spitzer employed a master/slave 

sequence architecture. The master sequence ran on one engine and controlled the start times of science observations 
that were spawned onto other engines as slave sequences. The master sequence also controlled all absolute timed 
events such as DSN contacts and engineering activities. If a slave sequence ran into trouble or aborted, the master 
sequence was unaffected and could continue, ensuring that the spacecraft still made its next DSN contact. A 
sequence engine was also set aside for fault protection use. The fault protection engineers created VML blocks for 
their own purposes and spawned them onto the reserved engine to react to faults or to speed recovery from a faulted 
condition. 

 
As Spitzer blocks were developed, the number of parameters in commands made holding all of the needed 

parameter combinations inside a block, and selecting the correct version using conditional statements, very large and 
unwieldy. Such commands needed to be built on the fly as the sequence executed. The concept of dynamic 
commanding was added to VML to address this issue. Originally, this dynamic commanding took the form of bits 
set within a local variable, but this approach also proved unwieldy, requiring large numbers of instructions to build a 
handful of commands. The final form of dynamically built commands incorporated specially made flight software 
and a data structure defining the format of every command in the mission. This approach allowed any command to 
be written without requiring prior planning, and allowed the same checks on valid command parameter values as 
were used on the ground. Dynamic command building found extensive use in instrument commanding, allowing the 
spacecraft to be configured to certain observation modes for large sets of images, conserving uplink and simplifying 
the sequence review process. 
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B. The VML Gambit: Stardust / MCO / MPL Sequence Software Lockup Fix 
As part of the Stardust / MCO / MPL flight software development process, Pathfinder lander code was used as 

the development baseline for the sequencing capability. This activity proceeded in parallel with the VML 
development undertaken for Spitzer, but did not initially include VML code. Instead, the Pathfinder sequence code 
was to be enhanced with a comparison and branching capability. Implementation flaws in this code enhancement 
caused deadlock conditions among the eight sequencing tasks that manifested themselves during critical MPL entry, 
descent, and landing tests. The modified code was judged to be unsuitable for flight. Given the nature of the flaws 
and the relatively short period of time between failure manifestation and launch (approximately eight months), a 
whole-cloth emergency replacement of the sequencing flight code was deemed the lowest risk alternative available: 
VML would take an earlier flight than its originally scheduled Spitzer mission. 

 
The partially implemented Spitzer VML 1.0 code was cut down to meet a reduced requirement set in order to 

speed production and deployment onto Stardust, MCO, and MPL. This version, referred to as VML 0, featured the 
VM engine core, simplified integer data types of global and local variables, basic arithmetic, bitwise operators, 
logical operators, and spawning of functions without any parameters. Approximately three months elapsed between 
the spacecraft operations testing failures and installation of the new VML 0 sequencing code, beating the launch 
date of the first mission by a scant five months. Experience on these missions would influence VML 1.0 
development, providing flight time on the software and incorporating operations experience with the software base. 

C. Odyssey: Spitzer's Other Testbed 
After launch of Stardust, work resumed on the VML 1.0 flight code, and commenced on a second series of 

missions. Mars Odyssey, Genesis, and the Mars 2001 Lander were all ramping up production. While the Spitzer 
Space Telescope faced a variety of delays, operations teams were starting to identify the growing complexity of the 
Odyssey aerobraking maneuver around Mars. Aerobraking is a process whereby atmospheric drag is used to lower 
the apoapsis of a spacecraft, and requires precise timing and knowledge of orbital periapsis. A more capable 
sequencer than VML 0 would be necessary to lower risks and complete the aerobraking phase of the Odyssey 
mission. VML 1.0 provided a large set of data types, sophisticated block and parameter capabilities, loops, and 
conditional statements, making it the ideal candidate to control aerobraking. The decision to fly VML 1.0 on 
Odyssey first allowed aerobraking to be simplified, and later benefited the mapping mission. Spitzer also profited, as 
the early deployment on Odyssey identified enhancements needed before Spitzer's launch. 

D. Genesis: Not So Fast 
Despite being part of the next quartet of missions, all featuring the full VML 1.0 capability in flight software, 

mission managers on Genesis chose to continue with the limited ground system featured on Stardust. This decision 
was based on an effort to cap costs by eliminating changes from previous missions, coupled with the operationally 
simple nature of this solar sampling mission. Because of the decision, Genesis flew the binary translator originally 
developed for VML 0 due to the lack of the VML Compiler. The use of the translator limited Genesis' ability to use 
VML features. In order to maintain an identical flight software load across the four missions, the three full VML 
missions also flew the binary translator, although it remained unused. To simplify the code base and encourage 
operations personnel to share knowledge, the binary translator was eliminated from VML 2.0. 

V. Missions, Missions Everywhere 

A. VML 2.0: A Broader Audience 
Early in 2001, the decision was made at JPL to target VML at more deep space missions across a larger range of 

contractors. The effort started with the VML 1.1 code base developed for Spitzer after the launch of Odyssey and 
featured uplink product size reduction features like string tables and time tag compression. New features included: 

• a software abstraction layer for removing Lockheed-specific and VxWorks-specific service routines 
• a new architectural layout to ease software integration 
• a smaller memory footprint and incremental parsing of large files to distribute processor loading over time 
• configurable alignment of data structures, configurable engine sizing, CCSDS compatibility 
• for loops, trigonometric functions, compound expressions, optionally typed parameters 
• removal of obsolete commands from VML 0 era, rename of commands, variable rename capability 
• compatibility with Gnu tool chain, elimination of Solaris C compiler and non-standard compiler switches 
• access to telemetry channels as read-only global variables, bringing more autonomy potential to missions 
• reentrancy protection to prevent a block or sequence from running multiple copies simultaneously 



 
American Institute of Aeronautics and Astronautics 

092407 

 

12 

 
These features helped attract new missions to the code base, including Mars Reconnaissance Orbiter (Lockheed) and 
Dawn (Orbital Sciences Corporation). Another mission using VML 2.0, the Hubble Robotic Vehicle mission, was 
canceled before phase C development. 

B. MRO 
Mars Reconnaissance Orbiter (MRO) brought a new set of challenges, and with it, a new set of VML functions. 

Its operational paradigm was to orbit Mars and allow the instruments to observe at will. Each instrument was 
allocated its own VM engine, with instrument teams taking responsibility for all instrument commanding. Separate 
virtual machines allowed partitioning of science activities from spacecraft engineering activities, reducing risk. 
MRO used 20 engines sized for the differing purposes. 

 
MRO engineering activities included trajectory correction maneuvers that were controlled by blocks, using 

programmable delays and logic condition checking. As with Odyssey, blocks were used for aerobraking passes to 
maneuver the spacecraft to its final orbital altitude. MRO profited by another VML 2.0 enhancement: the ability to 
read and act on prechannelized telemetry. This allowed assembly and test engineers to run self-tests on the 
spacecraft after major movement and assembly events, reducing the risk of undetected problems and saving time, 
effort, and money.  

C. Dawn 
Dawn was a first for VML. Because of its heritage, VML had only been used on those missions with spacecraft 

developed by Lockheed-Martin, but the spacecraft contractor for Dawn was Orbital Sciences Corporation. Orbital's 
heritage software employed an old-school sequencing system that was incompatible with both Dawn's observing 
needs and with JPL's multi-mission ground system. A trade study found that it would cost less to enhance Orbital's 
heritage flight software with the VML flight code than it would cost to upgrade the onboard system or compensate 
for the incompatibility in the ground tools. 

 
The VML 2.0 flight code was delivered to Orbital and integrated with their heritage system by means of a VM 

supervisor module. The supervisor allowed the VML code and the heritage flight software code to communicate 
with only a few changes to each set. Minor adaptations were also made to deal with the lack of an onboard file 
system and to add proper CCSDS headers to VM dispatched commands. The VML-Orbital collaboration was so 
successful that Orbital has requested permission to use VML on upcoming projects. 

D.  Phoenix 
With the cancellation of the Mars 2001 Lander after the loss of MCO and MPL, one of the VML 1.0 missions 

failed to fly. Fortunately, the mission hardware and software were resurrected as the Phoenix mission after years in 
storage. Due to the operational complexity of the surface phase and experience with VML 2.0 on MRO by LM 
personnel, the mission chose to replace the VML 1.0 code in its inherited software baseline with VML 2.0. This 
upgrade addressed a number of concerns, including the incremental loading of very large block libraries to avoid 
starving lower priority tasks, the decreased memory footprint of instructions, the ability to size engines with 
different storage space, extra built-in functions, and the repair of identified software flaws. 

 
Phoenix features a very challenging mission phase: Entry, Descent, and Landing. Responsibility for EDL 

activities was divided between attitude control flight code for high-rate monitoring and actuation, and VML blocks 
for everything else. 

 
The approach taken within the VML sequences is state-driven. A series of 24 blocks, as a group, compose the 

mainline set of EDL activities. The mainline blocks (or segments) make use of both timed and event-driven 
sequencing, using programmed delays for times prior to atmospheric entry, and taking events from flight software 
for activities starting with parachute deployment and ending with touchdown. 

 
In parallel with the mainline sequence, all non-critical EDL activities execute on five other engines. These 

activities include communications, instrument management, CPU monitoring, uplink loss protection, and battery 
charge optimization. The mainline segments set sequencing global variable values during descent in order to signal 
to the secondary blocks and coordinate activities. This approach was so successful during testing that the EDL 
mainline segments have remained unchanged since before launch. The reduction in risk of using the same mainline 
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segments unmodified for a year before landing has been tangible, as all testing done in this period has the same 
known timing and subset of configuration. 

 
In keeping with the close coupling between flight and ground that was part of VML's origins, VML's creator and 

principle author of this paper served as the sequence developer for EDL. This placed both the author and the mission 
in a unique position, allowing a more in-depth understanding of its operations use. The lessons learned in EDL 
sequencing are being applied to VML 2.1. 

VI. VML 2.1: Anticipating needs 

A. New Features 
VML 2.1 features major incremental upgrades relative to VML 2.0. Like other VML versions, these changes are 

based on inputs from VML 2.0 missions like Phoenix and MRO, the author's own experiences developing blocks for 
Phoenix and other missions, and the need to address new instrument-oriented projects. The feature set in VML 2.1 
includes full upward compatibility with VML 2.0, to the point where blocks and sequences developed for VML 2.0 
missions load into VMLFC 2.1 and behave identically. Like other VML versions, VML 2.1 also enables missions to 
come up to speed rapidly by baselining previous mission capabilities, then extending them. 

B. State Machines 
The success of the state-oriented approach to sequencing complex, mission-critical activities like EDL on 

Phoenix has led to the inclusion of 
state machines in the syntax of VML 
2.1. State machines consist of named 
states that transition to other states 
when conditions become true. A 
partial example appears in Figure 8. 
State machines introduce a local scope 
for attributes, states, and transitions 
fully internal to themselves. 

 
A well-defined transition called 

enter exists in order to specify the 
starting set of activities for the state 
machine. This also allows states of 
state machines to themselves be state 
machines, without any sort of entry 
and exit point complexity. 

 
State machines contain attributes, 

identical to the module-level variables 
featured in previous versions of VML. 
These attributes provide persistent 
storage during the execution of the 
state machine. 

 
State transitions may be performed 

via JUMP_TO or TAKE statements. 
JUMP_TO is used when the transition 
from one state to another is simple and 
does not have side effects as spacecraft 
commands may, and does not need to 
coordinate across state machines. TAKE 
is used when a named transition with 
the given type is available. This named 
transition may share synchronization signaling conditions with other state machines, and will only be taken when all 
state machines are ready. All state machines then simultaneously follow the transition to end up in new states. The 

STATE_MACHINE flight_director 
 
ATTRIBUTES 
    DECLARE COLLECTION manager_list := { 
        #orbit_det_manager, #imaging_manager, #att_est_manager, 
        ...} 
    DECLARE LOGICAL maneuvering := FALSE 
END_ATTRIBUTES 
... 
 
TRANSITION enter 
BODY 
    JUMP_TO quiescent 
END_BODY 
 
STATE quiescent 
BODY 
    SELECT_LOOP 
        WHEN gv_fd_next_state = #launch JUMP_TO launch 
        ... 
        WHEN gv_fd_next_state = #orbiting JUMP_TO orbiting 
    END_SELECT_LOOP 
END_BODY 
 
STATE orbiting 
BODY 
    CALL enable_managers {#orbit_det_manager, #imaging_manager} 
    SELECT_LOOP 
        WHEN gv_fd_next_state = #quiescent JUMP_TO quiescent 
        WHEN gv_fd_next_state = #safe TAKE safe_spacecraft 
        WHEN maneuvering && gv_fd_next_state = #otm JUMP_TO otm 
    END_SELECT_LOOP 
END_BODY 
 
... 
end_state_machine 
 

Figure 8. State machines. These sample states for a notional mission 
contain commands and other side effects, and transition to other states 
when programmed conditions come to pass. 
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JUMP_TO and TAKE implementation is very similar to removing execution of the current state from the engine and 
SPAWNing the new state or transition to that same engine. SELECT_LOOP is used to detect conditions and take actions 
in response to those conditions. In a state machine, the SELECT_LOOP enforces logical conditions as being true before 
jumping to other states or taking transitions. 

 
The implementation of VML state machines mirrors specifications available in UML state machines. Because of 

their discrete states, state machines can be analyzed for correct behavior much more easily than can procedural 
languages. Rather than act as a model to be implemented on top of a procedural language, VML state machines are 
able to execute directly on a virtual machine, removing any possibility of miscoding the state transition behavior. 
Doing so also reduces development time and constrains the potential set of actions down to a manageable, easily 
analyzed number. 

 
It should be emphasized that the standard procedural approach utilizing blocks and sequences is still available, 

and can be intermixed with state machine use. Such an approach is better suited to a wide number of problem 
domains than are state machines alone, and is in keeping with VML's "evolution, not revolution" strategy. 

C. Objects 
Like state machines, objects provide a naming scope that allows capabilities to be packaged together. They 

feature attributes and locally scoped blocks. An example appears in Figure 9. Objects frequently have a thread of 
execution associated with them, but 
are not required to have such a thread, 
and may instead be used as a 
convenient package for functionality 
akin to a library. 

 
Object methods are visible globally 

using a reference that includes dot 
structure much akin to C structures or 
Ada records. This allows the methods 
within different objects to feature the 
same local names, but be explicitly 
unique. For example, an object 
corresponding to running a 
spectrograph might feature methods 
for powering the instrument up and 
down called on and off. So might the 
telecom object shown in the example. 
From within the object, the methods 
could be invoked using the short 
names on and off. From outside the 
object (e.g. from an absolute sequence) 
the full name of the methods would be 
given in the form telecom.on or spectrograph.on in order to differentiate between the two. Potential naming 
conflicts between globally visible blocks and object method short names are resolved using scope. The method is 
local to the object, so the method is locally matched first before a wider global search. Therefore, a local method 
overrides a global block. This mirrors typical object-oriented design found in languages like Smalltalk. 

D. Collections 
 
Collections are arrays of heterogeneous data. Rather than requiring all elements to be of the same data type, each 

element of the collection can be of whatever data type the user desires. This allows collections to serve in two 
capacities: as an array (e.g. numbers representing a vector), and as a data structure of related fields. Collections 
containing heterogeneous and homogeneous data types are shown for a notional block of a notional mission in 
Figure 10.  

OBJECT telecom 
 
ATTRIBUTES 
    declare string side := "side_a" tlm_id TELECOM_SIDE_TLM_ID 
    declare uint bit_rate := 40 tlm_id TELECOM_BIT_RATE_TLM_ID 
    declare string antenna := "omni" 
END_ATTRIBUTES 
... 
METHOD start_contact 
    INPUT new_bit_rate 
BODY 
    call on 
    bit_rate := new_bit_rate 
END_BODY 
... 
END_OBJECT 
 
ABSOLUTE_SEQUENCE day_702 
... 
    CALL telecom.on 
    IF telecom.bit_rate > 100 THEN 
        CALL telecom start_contact 100 
... 

Figure 9. Objects. Objects provide a convenient abstraction for 
functionality. Scoping is provided by the object name. Attributes are 
accessible using dot notation similar to C and Ada. 
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Like all other VML data types, the literal representing a collection has an unambiguous format. Like a set in 

discrete mathematics, collections are bounded by pairs of open and close braces {}, permanently specifying the 
dimensions of the 
collection even when 
copies of it are made and 
passed as parameters. The 
default value also serves to 
specify the collection 
format, since each of the 
fields is defined by a literal 
having a known type. There 
is no need for a separate 
data type definition 
statement, a departure from 
syntax in traditional 
strongly typed procedural 
languages such as Ada or 
C. 

 
Collections may contain 

collections, making it 
possible to pass complex 
data representations as 
single parameters between 
functions. Elements of a 
collection are accessed 
using open and close 
brackets [] and an index, 
as in Ada and C. Collection elements are numbered starting at 0. Figure 10 demonstrates dereferencing the obs 
collection. An assignment is made from side to obs[0]. Assigning to ra is made from a collection within obs: the 
element at index 1 is accessed, then the element at index 0 of that collection is accessed. Results in this case are 
passed back via input/output variables, and quaternion is passed back as a return value. 

 
The calling function observations contains a collection definition q for a four-element collection, all the 

elements of which are doubles. This local variable receives a copy of the quaternion local variable when the 
observe block returns. Since collections, like other data types, can coerce to all data types , a mismatch between 
collection sizes is handled gracefully: extra elements would be ignored, and missing elements would be set to the 
value UNKNOWN. 

E. Reconfigurable On-The-Fly 
One of the most vexing problems in any general purpose software system is to make sure that components are 

sized correctly. Sizing in VML includes the number of engines, the number of instructions on each engine, the 
number of operands on each engine's stack, the amount of space for storing strings and spacecraft commands on 
each engine, and so forth. In preceding versions of VML, all of these values have been fixed at compile time of the 
underlying flight component. VML 0, 1.0, and 1.1 flight components all featured identically sized engines. This was 
problematic if block libraries grew, because the memory footprint of the flight code was magnified by the number of 
engines, even if the need was specific to one engine. VML 2.0 improved upon this by allowing different memory 
allocations on different engines, but the operations development teams frequently outgrew the allocations. In order 
to resolve these problems, VML 2.1 allows the sizing of each engine to be changed at runtime. The overall number 
of instructions and operands, and the amount of string and command space, are fixed at compile time, but may be 
reallocated among engines in order to more suitably meet unanticipated needs. 

F. Command Interface Enhancements 
Controlling the activities of the VML 2.1 Flight Component requires only a few extensions over the existing set 

of commands for 2.0. All of the commands shown in section III J are supported in VML 2.1. Commands have been 

BLOCK observe 
    INPUT side 
    INPUT_OUTPUT ra 
    INPUT_OUTPUT intensity 
    DECLARE COLLECTION quaternion := {0.0, 0.0, 0.0, 1.0} 
    DECLARE COLLECTION obs := {"side_a", {0.0, 0.0}, 0 } 
BODY 
    quaternion := CALL get_camera_quat 
    obs[0] := side 
    CALL take_picture quaternion, obs 
    ra := obs[1][0] 
    intensity := obx[2] 
    RETURN quaternion 
END_BODY 
 
RELATIVE_SEQUENCE observations 
    DECLARE COLLETION q := {0.0, 0.0, 0.0, 1.0} 
    DECLARE UINT value := 0.0 
    DECLARE DOUBLE angle := 0.0 
BODY 
... 
    q := observe "side_b", angle, value 
... 

Figure 10. Collections. These sample collections within a block for a notional 
mission contain a variety of different data types. The local variable quaternion is an 
example of uniform data types, similar to an array. The local variable obs is an 
example of non-uniform data types, similar to an Ada record or C structure. Note that 
the format of the collection is implied by its initialization value, and no separate data 
typing is required. Field dereferencing is numerical. 
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added to allow setting flight software attributes which govern elements like access timeouts and command modes. 
This feature is also generalizable to flight software variables outside of the VML flight component. In addition, 
commands have been added to support dynamic reallocation of engine attributes. The new commands are listed 
below. 

VM_ATR_SET_DBL: set an attribute to a given double floating point value 
VM_ATR_SET_INT: set an attribute to a given integer value 
VM_ATR_SET_STR: set an attribute to a given string value 
VM_ATR_SET_UINT: set an attribute to a given unsigned integer value 
VM_ALLOC_INSTR: set the instruction allocation count for a given engine 
VM_ALLOC_STR: set the sting space allocation for a given engine 
VM_ALLOC_CMD: set the spacecraft command allocation for a given engine 
VM_ALLOC_RESET: remove all preceding allocations received 
VM_ALLOC_APPLY: apply all allocations received in preceding commands 

VML 2.1 Missions 

A. AutoGNC 
This technology demonstration program builds on the optical navigation work for the successful Deep Space 1 

and Deep Impact missions. The name stands for Automated Guidance, Navigation, and Control, and intends to 
create prototype hardware to allow any spacecraft to self-navigate to any given body, following an ephemeris model. 
Target missions include orbiters, landers, asteroid body interceptors, and cometary interceptors. Different modes of 
operation are supported, including stellar navigation, inertial navigation, and optical navigation. 

 
VML 2.1 serves as the executive of the overall software system. A flight director implemented as a state 

machine enables and disables managers of various system subcomponents, depending on mission phase. The 
managers coordinate together using rules and global variables in order to issue commands to instrument 
components. VML treats the AutoGNC instrument as its own small spacecraft, with commands, uplink, and 
telemetry. This approach has allowed rapid implementation of very complex control logic. 

B. Juno 
Juno, the Jupiter Polar Orbiter, will be a VML mission. Juno is in the early stages of development and system 

engineers are performing a trade study to decide whether to use VML 2.0 or advance to VML 2.1. There has also 
been interest in the possibility of installing VML in one or more of the instruments as an instrument executive. The 
work continues. 

C. GRAIL? 
GRAIL, the Gravity Recovery and Interior Laboratory lunar mission, has recently been approved to proceed with 

Phase B. It will be a Lockheed-Martin built pair of spacecraft with non-NASA heritage hardware but NASA-
heritage software. JPL will be starting the process of assessing VML inclusion in the project plan in the next few 
months. 

VII. Arcs of Development 

A. Arcs 
At each step of the way, VML has been carefully crafted to provide features required by missions without 

imposing one-off implementations. Every VML feature has been created with an eye toward generic capabilities 
useful on current and potential future missions. Features are not removed. Rather, as the arc of deep space missions 
has proceeded, VML has been extended where necessary without sacrificing past capabilities.  

 
Up to this point, we have examined the story of VML from the point of view of missions. We will now look at 

VML from the point of view of arcs of development, presented in Figure 11. VML features may be considered as 
groupings of data structure elements, language elements, and execution elements. Each of these elements is 
interesting in its own right, and shall be examined separately. The figure the points in time at which development 
arcs are considered complete, and correlates these features with the various missions using versions of VML. 
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Data arc elements include data types, name scopes, externalized data access, spacecraft command parameter 
types, and structuring of data. The language arc includes the VML scripting directives used by operators to express 
executable concepts, including function 
layout, timing, programming constructs, 
and expressions. The execution arc 
encompasses the hidden implementation 
details that allow the data and language 
arcs to be implemented as real software 
running on real platforms, including 
processor requirements, sizing, memory 
alignment, and support software needs. 

B. Data Arc 
 Over the past decade, the data types 

supported by VML have grown in 
number and complexity. Variable scopes 
and the ability to access data from the 
overall flight software build have been 
added. Constant parameters for 
spacecraft commands and support for 
CCSDS header fields have been folded 
into currently flying missions. The 
concepts of objects, object-level scoping, 
data structures and array elements have 
also been introduced. 

 
The basic VML 0 sequencing 

capability featured only the data 
constructs necessary to replicate the 
intended functionality of the original 
Stardust, MCO, and MPL requirements. 
Data was expressed as globally 
accessible integers, plus a small per-
engine set of locally accessible integers. 
Variables had no names, but were instead identified using indices within the simple pre-VML sequence 
specification. Integers represented absolute times to a resolution of seconds, or relative times to a resolution of 
tenths of seconds. Integers also performed as logical values, with 0 indicating false and non-zero indicating true. No 
floating point or string representations were available. 

 
Under VML 1, a wide variety of different data types was incorporated, allowing integers, unsigned integers, 

Boolean logicals, double precision floating point values, strings, and time. In addition a special value "unknown" 
was available to represent missing parameters. Time was represented by two 32 bit unsigned integers taken together 
to represent mission time in ticks, allowing absolute and relative times to be known to the same resolution, and 
therefore to be easily compared and calculated. All conversions between variable types were legal and defined, 
including conversions from numbers to strings and vice versa, making polymorphism during function calls simple 
and safe. Default values were required as part of all variable declarations, removing the potential for errors due to 
uninitialized variables. Variable scopes were enhanced with local, module level, and global variables. The module 
level variable scope allowed variables to hold values between invocations of functions in which they were assigned. 
This capability was useful in its own right, but would form the basis for objects later on. 

 
A minor enhancement to VML was made to address Spitzer uplink concerns. Incorporating an optional table of 

strings and a specialized compressed time format for small time values saves roughly 50% of the uplink bandwidth 
for the mission by reducing the size of blocks and sequences. This allowed Spitzer to live within its uplink allocation 
while simultaneously maintaining compatibility with the original in-line string format used in test products. 

 

  
Figure 11. Arcs of development. The basic elements of VML data, 
language, and execution features are listed in order of development, along 
with a list of mission time spans showing use of the various versions. 
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Experience on the Odyssey and Spitzer missions led to further data enhancements under VML 2.0. Managing 
global variables on these missions consisted of creating a set of named global variables with specific data types for 
known uses, then adding spare variables whose use was to be determined during flight. All sequence global variable 
definitions had to be complete before compiling and linking the final spacecraft flight software load. Because the 
name of the spare did not reflect its eventual use, some confusion arose about the meaning of spare global variables 
that were decided on well into the mission. Therefore, a VM command was added to rename global variables during 
runtime, allowing the names of these spare variables to be changed in flight. This feature has been exploited on 
MRO and especially on Phoenix, as Phoenix surface operations blocks were designed and implemented primarily 
after completion of the final flight software build. 

 
Much of the need for sequencing global variables is driven by the need for blocks to respond to flight software 

conditions. However, it is difficult to anticipate all such interactions ahead of time. Therefore, MRO operators 
requested the ability to map telemetry data into VML global variables. Since knowledge of spacecraft state is 
ultimately pushed into telemetry, direct access to that information allowed blocks to respond to any element of 
spacecraft state without modifying the flight software to push that information into global variables. This external 
data access capability allows any spacecraft flight software data to be accessed in a generic fashion. 

 
Spacecraft operations on both Dawn and MRO required the ability to dynamically build and dispatch commands 

featuring unchanging parameters. In Dawn's case, these parameter values represented fields of CCSDS packets, 
whereas for MRO, the fixed constant parameters were needed for instrument commands. The needs in both cases 
were identified within five days of each other, and in keeping with VML's generic implementation approach, the 
same underlying implementation applied to both. 

 
The modern concept of objects with attributes made its way into VML 2.1, built on module variables and a 

simple nested naming convention similar to record access in C and Ada. Similarly, states for state machines built 
around UML state transition diagrams use the object baseline. Collections, the single most-asked-for feature, are 
aggregations of data similar to data structures or arrays, created using object-like aggregation techniques to maintain 
cohesion. 

C. Language Arc 
The VML 0 language facilities included a programmable delay, branching on true / false conditions to labels 

expressed as integers, branching unconditionally to labels, and evaluating simple unary and binary operators. 
Spacecraft commands were isolated from the language definition in order to reuse code between missions. The 
existing ground software produced binary sequence loads, so a translator was incorporated into the flight software to 
dynamically translate these binaries into a runtime load acceptable to the VML flight parser. No compiler was 
necessary for VML 0. 

 
With the deployment of VML 1.0 on Odyssey, Spitzer, and Genesis came the full set of initial VML capabilities 

in both flight and ground. The VML Compiler translated fully implemented human-readable VML script into 
uplinkable binaries, replacing the onboard binary translation in VML 0. (The translator remained installed in the 
flight code in order to accommodate Genesis mission design demands for a ground system identical to Stardust's, 
however.) Arithmetic and comparison operators were extended to operate on the new data types. Built-in functions 
for string manipulation were added, including sizing, concatenation, and substring extraction. Names for blocks and 
sequences allowed more than one per file, giving rise to the concept of libraries of reusable on-board blocks that 
could be invoked repeatedly. WHILE loops and IF statements allowed structured programming and testing of 
conditions using simple expressions with one comparison operator. 

 
VML 2.0 built up capabilities with FOR loop constructs and compound expressions. Spitzer's need for 

trigonometric functions had been met somewhat clumsily with finite series calculation blocks, so built-in functions 
for trigonometry were added to VML 2.0 for simplicity and convenience. Protection was added against spawning 
blocks and sequences more than once, unless explicitly allowed using a REENTRANT flag. The binary translator for 
backwards-compatible support of the obsolete Stardust and Genesis ground system was removed with concurrence 
of the VML 2.0 missions. 

 
VML 2.1 continues the enhancement. Intrinsic time tags make VML look more like mainstream languages, 

allowing time between statements to be assumed rather than explicitly stated. The implementation of entry, descent, 
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and landing blocks on Phoenix as cooperating state machines led to the implementation of direct language support 
for UML-like state machines. Waiting on more than one event via compound event detection grew directly from 
language support for these state machines. So too did the implementation of SELECT_LOOPs, allowing a very dense 
representation of possible code branches. 

D. Execution Arc 
The VML 0 execution engine core supported spawning sequences (either absolutely or relatively timed) to run in 

parallel on identically sized engines, but no facility was made for passing parameters. Instead, global variables held 
any values passed between sequences, requiring operators to exercise care to prevent collisions in variable use when 
spawning multiple parallel sequences. The engine core was compatible only with VxWorks running on PowerPC-
derived processors with big-endian byte ordering. A parsing buffer was incorporated to allow large sequence loads 
to be incrementally parsed from memory rather than directly from the file system, increasing the speed of loading. 

 
VML 1.0 introduced the use of named functions to represent sequences and reusable blocks, enabling more than 

one block to be present in a file loaded onto an engine. Hand in hand with named functions came the CALL operation 
with parameters, whereby information could be passed into and out of reusable blocks in order to affect block 
behavior. The CALL functionality eliminated the need for complicated user-written synchronization mechanisms 
using global variables, implicitly causing the calling function to remain suspended until the called sequence 
completed. Block library routines were used extensively by Odyssey for aerobraking and mapping. Spitzer also 
made considerable use of block libraries for performing observations and commanding communications passes. 
Dynamic commands were used in conjunction with blocks in order to allow the spacecraft to substitute calculated 
variable and parameter values into spacecraft commands, coupling the VML sequencing system directly to 
command dispatch and dramatically simplifying block development. 

 
Event detection allowed VML 1.0 to efficiently recognize spacecraft conditions represented by the flight 

software, and allowed non-deterministic timing in blocks. This facility found use aboard Spitzer to allow 
observations to proceed as quickly as possible after completing slews and settling the spacecraft. Odyssey used 
event detection during the completion of aerobraking as well. The event detection facility would act as the basis for 
compound event detection and command completion in VML 2.1. 

 
VML 2.0 added a number of enhancements to simplify the deployment of VML on non-Lockheed missions by 

using an interface layer and an abstraction of real-time operating system calls. Four-byte alignment made the 
underlying data structures compatible with Dawn's flight computer, and allowed the flight code to run within the 
OLVM program on Sun workstations without the use of non-standard C compiler flags. Compile time sizing 
allowed engines to be specifically tuned for uses, letting some engines be oversized in order to hold block libraries 
and others to be sized for simple instrument operations: MRO, Dawn, and Phoenix all made extensive use of tuned 
sizes. Based on operations experience, protection kept important elements like block libraries from being 
accidentally unloaded. Reservation allowed engines used in specifically-targeted mode to be separated from engines 
used in first-available mode, reducing the number of engines needed by allowing certain activities to be allocated 
from an available engine pool. Incremental parsing reduced the allowed CPU time used for loading to be spread out, 
reducing the load on the system, removing the possibility of starving lower priority tasks during file loads, and 
allowing larger files with more blocks to be loaded. 

 
With the advent of VML 2.1, the concept of command completion was borrowed from the Mars Exploration 

Rovers, allowing function timing to be inherently coupled with command execution timing and simplifying block 
implementation In response to operations requests, runtime resizing of engines and commands allowing the direct 
setting of attributes has been added. Finally, to increase the number of compatible target platforms, the newest code 
base supports Intel-type little-endian byte ordering. 

 
These arcs of development do not exist separately from one another. They intertwine and support each other, 

giving rise to the overall set of reusable capabilities that is VML. 
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VIII. Conclusions 
Virtual Machine Language is a powerful tool. Through its eleven-year life to date, it has provided a modern, 

flexible, scalable software set, enhancing mission success over a large range of missions. The simple abstraction of 
complex spacecraft operations into parameterized, reusable blocks streamlines operations and reduces uplink 
volume and risk while enhancing science efficiency. The configurable sequencing capability allows missions to 
customize the software suite to their needs while operating within the multimission environment and experience 
base. The high level capabilities of VML and the tight integration of the flight and ground components speed 
development time while fostering "test-as-you-fly" conditions. The ability to read and act on prechannelized 
telemetry opens the door to many kinds of onboard automation.  

 
Increasingly more capable versions of VML are flown with each new set of missions. Lessons learned come 

from testers and operators with real flight experience, leading to the incorporation of modifications and 
enhancements based on those lessons. Missions use a preceding mission's flight software and configuration as a 
starting point, significantly reducing the amount of time required to produce the first functional flight software build. 
Operations builds upon blocks created for preceding missions, making modifications as appropriate, and applying 
the same sequencing architecture. For sequence software, at least, the era of parallel yet separate software 
development is over. With the coming capabilities of state machines, new platform compatibility, and instrument 
based executives, it is clear that VML's arc of development will continue on for quite some time to come. 
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