

American Institute of Aeronautics and Astronautics

092407

1

VML Sequencing: Growing Capabilities over Multiple
Missions

Dr. Christopher A. Grasso*
Jet Propulsion Laboratory / California Institute of Technology / Blue Sun Enterprises, Boulder, Colorado, 80302

and

Patricia d. Lock†
Jet Propulsion Laboratory / California Institute of Technology, Pasadena, California, 91109

I. Introduction
irtual Machine Language (VML) is an award-winning advanced procedural sequencing language in use on
NASA deep-space missions since 1997. Missions featuring VML include Spitzer Space Telescope, Mars

Odyssey, Stardust, Genesis, Mars Reconnaissance Orbiter, Phoenix, Dawn and Juno. The latest deployed version,
VML 2.0, features parameterized functions, conditionals, polymorphism, a rich set of control directives and data
types, event detection and response, and on-the-fly creation of spacecraft commands. This feature set is used to
simplify spacecraft operations and science gathering activities. A new 2.1 version is being prototyped for use as an
executive within flight instruments, and may be deployed on Juno.

VML is used for a diverse set of mission functions on its various host spacecraft, including launch sequencing, daily
activity loads, orbit insertion, aerobraking, entry-descent-landing, science observation, and fault responses. On
Dawn, VML is used to autonomously control thrust output of the Ion Propulsion System. Generic implementations
of several major uses are presented. Functional problem factoring and resource utilization are also considered.

VML is divided into three major components. The flight component exists onboard the spacecraft, allowing VML
sequences to run within the flight context. The VML compiler translates human readable sequences into binary
executables placed onboard and loaded by the flight component. Offline Virtual Machine is a workstation program
that marries the flight component to a user interface, can run sequences at several hundred thousand times real-time,
and provides a runtime behavior with 100% fidelity to the flight context. Each of these components is used in the
development and deployment of sequences for flight. This paper discusses the use of these components in typical
operations development processes on missions like Mars Odyssey, Phoenix, and Dawn.

Blocks are reusable relative time-tagged sequences that parameterize routine operations, and are typically packaged
together into single uplinkable files called libraries. Sequences are single-use sets of instructions that run in absolute
or relative time. The relationship between reusable blocks and one-use sequences is discussed. Reduced
development effort due to iterative block development is outlined, along with typical development procedures. The
lower cost and reduced complexity involved with creating blocks rather than flight software is noted, as is the
reduction in uplink size. The ability to migrate to the spacecraft functionality that is more traditionally implemented
on the ground is examined. The implications for implementing spacecraft autonomy without the need for expensive
flight software agent development are discussed.

Increasingly more capable versions of VML have flown on a series of missions. The arc of VML 0, VML 1.0, VML
1.1, VML 2, and VML 2.1 is examined. Given VML's long lineage of missions and increasing capability, further
simplification of operations using features in VML 2.1 is discussed. Finally, the application of lessons learned on
each of the VML missions, and the incorporation of new features based on these lessons, is provided. VML is
available for distribution free of charge by the Jet Propulsion Laboratory under NASA Technical Report 40365.

* Principle Flight Software Engineer, Blue Sun Enterprises, 1942 Broadway Street Suite 314, Boulder, CO, 80302,
Professional Member.
† Senior System Engineer, End-to-End Information System Engineering, Jet Propulsion Laboratory, 4800 Oak
Grove Drive, Pasadena, CA, 91109, Member.

V

American Institute of Aeronautics and Astronautics

092407

2

II. Development Backdrop

A. The Olden Days: One-offs and Cul-de-sacs
Back in the time of large, unfriendly computers, commanding a spacecraft was a large and cumbersome process.

One set of tools was needed to design science observations and another set created the commands to carry out those
designs. Separately, flight software was developed to operate each spacecraft. Since each spacecraft was unique, its
flight software was also unique. In some cases, flight software could be reprogrammed in flight, but it was an
esoteric and risky process, usually reserved for extreme cases such as when the Galileo mission's high gain antenna
became stuck in a partially opened position.

Ground software and flight software were developed in parallel pre-launch but the development processes were

decoupled, with separate teams, sets of requirements, and mindsets. Ground had no influence on flight, and flight
had a tendency to overlook operations needs. The assembly and test phase of development often used a third set of
tools until close to launch, leaving operators with little or no hands-on experience in using the flight system they
would be responsible for keeping safe.

Voyager, Galileo, Cassini, Mars Observer, and Magellan all were developed under this paradigm, with small

advances from mission to mission. What heritage could be maintained was transmitted by personnel rather than by
software reuse, and therefore was subject to loss by reassignment or retirement of personnel. In operations, those
who moved among missions brought with them an understanding of what could be the same and what must be
different from spacecraft to spacecraft. A consensus grew that rather than only bringing personnel experience
forward, tools and systems should also be reused. During this period, space exploration budgets became tighter as
well, and a shift from large flagship missions to smaller more agile missions began.

B. Sea Change: The Multimission Mindset
With the advent of the Pathfinder mission, JPL developed a wide range of new technologies for spaceflight: a

base station / rover combination, airbags, use of a radiation-hardened processor similar to commercial PowerPC
chips, and modularized flight code intended for easy reuse on future missions. Far from creating a one-off
implementation, Pathfinder showed the multimission mindset taking hold.

The Pathfinder lander software architecture (excluding the rover), in particular, would have considerable impact

on the Stardust, Mars Climate Orbiter, and Mars Polar Lander missions that featured VML 0. First, rather than
featuring custom software from the lowest levels up, Pathfinder's flight software was built on a space-rated version
of a modern real-time operating system, VxWorks. This provided convenient scheduling of multiple tasks, mutual
exclusion constructs, a concept of priority, and a commercially supported development environment. The flight code
featured more sophisticated telemetry than the typical subcommutated frame map, instead using event reports for
rapid time-tagged reporting of conditions, and a channelized "push" telemetry system to allow tasks to cyclically
place telemetry information into a separate telemetry reporting task. The opcode / parameter commanding was
mapped into a messaging system, allowing individual commands to be automatically routed to the proper task and
stored in a queue until the task became active. In addition, tasks could communicate among themselves using this
messaging protocol. The features of messaging, event reports, channelized telemetry, and task scheduling would all
find their way into VML flight code.

Despite its design for reuse, the Pathfinder code base provided only a rudimentary sequencing capability.

Sequences featuring conditional checks and other sophisticated activities were implemented in C code as single use
flight software modules and uplinked to the spacecraft on a daily basis. Once onboard, they were loaded into the
flight software image space via VxWorks call, effectively relinking the flight software into one or more new
configurations each mission day. The sequencer consisted of separate VxWorks tasks, each of which would wait
until a designated time before calling a routine in one of the newly loaded flight software modules. Fundamentally,
this implementation was a set of sequence lists, but had the side effect of requiring a new flight software
configuration for each sequence. One downside of this approach was the difficulty of testing the sequence software
loads using a faster-than-realtime virtual clock in a non-VxWorks environment. A second downside was the
exposure of the full flight software load to any mistakes made in the C coded sequences. A final downside was that
this approach propagated the lack of coordination between flight and ground systems prevalent in preceding
missions.

American Institute of Aeronautics and Astronautics

092407

3

C. Clean Sheet
Spitzer (originally named SIRTF, the Space Infrared Telescope Facility), the last of the four Great Observatories,

was a new kind of mission for JPL. Rather than time-constrained mapping or flyby observations, Spitzer could
observe a large portion of the sky for several weeks, repeating on 6-month cycles. Spitzer's cryogen use strategy also
constrained operations to using one instrument for one week, then switching to another instrument for the next week.
A time allocation committee chose science observations from among peer-reviewed proposals. The selected
observations were entered into a database of potential observations, each observation having a validity window
rather than a specific start time.

 A commanding strategy was explored that would load the observation specifications into onboard tables. The

spacecraft flight software would choose at runtime which observation to execute next, based on duration, remaining
time in the observation window, time left before downlink, etc. Because spacecraft turn duration was non-
deterministic, it was believed that this approach would also increase observation schedule efficiency by allowing the
spacecraft to control start times based on local knowledge of turn completion, rather than by adding slew margin on
the ground. This in turn would allow more data to be taken over the life of the mission before the cryogen ran out.

As this strategy was analyzed, it became clear that none of the onboard sequencing applications currently in use

could perform this type of commanding, nor could any of them be readily adapted to the table structure. A new
flight software sequencing application was needed for Spitzer. This new flight software would be expensive, risky
and likely not very adaptable to planetary missions. Based on schedule and budget constraints, another solution
needed to be found: Virtual Machine Language sequencing.

III. What's a VM?

A. Like a Little Computer: Emulated Processing
The basic programming approach familiar to most spacecraft operations personnel is procedural in nature.

Named routines stored in an instruction space call other named routines, passing parameters and receiving results.
Data is stored in a separate memory space, and is altered according to defined arithmetic and logical rules. At any
instant in time, there is one instruction being executed. There is a concept of control flow: one instruction is
considered as "next", either because it immediately follows the current instruction, or because branching logic forces
execution to jump to some other instruction. The entire conceptual framework of the modern computer, with
instructions, data, a current position, and branching control flow can run either directly on a central processing unit
(CPU), or within a software-simulated processor called a virtual machine. VML takes the latter approach.

The virtual machine, or VM, is implemented as a complex data construct acted upon by flight software. A

simplified form of this data construct is shown in Figure 1. The VML flight software interprets instructions in the
virtual machine, using an index to track the current
instruction number much like a hardware CPU tracks the
address of the current machine instruction. When branching
instructions are encountered, the software interprets whether
to take the branch or to continue to the next instruction, and
changes the value in the instruction index to reflect the
decision made.

The operand stack is used to store variables found in

various functions, parameter values for calls to functions, and
instruction indices for returning from function calls. Simple
data types like integers and floating point values are compact
enough to be stored directly on the operand stack. For
efficiency, string operands use separate string storage space.
Strings are typically much larger than integers or floating
point values, and vary widely in the number of bytes required
to hold a value. Specialized string storage allows bytes to be packed together and referenced by operands in the
operand stack. The string storage is implemented as a separate data space in the virtual machine construct.

Figure 1. Virtual machine construct. Each VM
consists of instruction storage, static data storage,
dynamically allocated data operands in a stack,
specialized storage for strings and commands, a
current instruction pointer, and a pointer to the top
of the operand stack.

American Institute of Aeronautics and Astronautics

092407

4

Spacecraft commands, like strings, also vary a great deal in length. A NOOP (no-operation) spacecraft command
might only take one or two bytes, whereas some
specialized instrument commands may take hundreds.
Therefore, a specialized area is provided for command
storage in order to avoid wasting memory.

The entire approach of instructions with a current

instruction index, operands pushed onto and removed from
the operand stack, and branching control flow allows the
VM to emulate the kind of processing normally found in
computing hardware. The interpretation step allows the
instruction set of a VM function to be specifically limited
to high-level, sophisticated directives tuned to operational
needs.

Traditional sequencing, by contrast, typically uses a list

or a table of instructions with time tags indicating the time
of execution for each entry in the table. Figure 2 shows this
rudimentary capability. In a list, the instructions are
executed in order, but feature no parallelism. In the
sequence table, entries execute in parallel, each waiting for
its time to come due.

The instructions invoked from the list or table might be spacecraft commands with fixed parameter values, or

high-level directives invoked with fixed parameter sets. Any high level directives would have to be coded in flight
software in order to feature logic and branching, perform calculations, or check for conditions. This dependence on
flight software removes the possibility of operations personnel implementing new conditional statements, loops, or
calculations as part of the in-flight products, decreasing sequence flexibility and increasing costs.

The sequence table also features a lack of structure and coherence. Since any instruction may come due at any

time, there is no sense of "current" and "next" that is fundamental to programming. This lack of structure can
impede easy understanding of the intended functionality of any particular sequence load, as time tagged instructions
with the same time of execution may exist anywhere in a comparatively large space of hundreds or thousands of
entries. In addition, a lack of structure inhibits detecting events and responding to conditions, as we will discuss in
the next section.

B. Less Is More: Being Next
The concept of control flow through code running on a CPU inherently implies a current instruction and a next

instruction. When the current instruction finishes executing, the CPU must calculate which instruction in memory to
execute next. Most of the time (statistically), the next instruction resides in the next memory address. Occasionally,
a decision must be made regarding whether to execute the next instruction or to jump to some other instruction in
memory. VML employs similar mechanisms to those used by CPUs.

Flow control in VML may take the form of simply continuing to the next instruction, performing a conditional

check followed by a branch to a different location, calling a subroutine and returning, or starting execution of a new
thread to run in parallel with the current thread. VML implements conditional checks using expression evaluation,
then branches to a label in a manner similar to an assembly program. Calling preserves return information on the
VM operand stack and uses the first instruction of a named routine as the branch destination, taking the return off
the stack when the end of the routine is reached. Spawning starts a separate VM to take the first instruction of a
named routine as its first instruction and runs in parallel with the spawner in a fashion similar to multitasking. In
each case, the key to the structure of the function is to designate what the virtual machine is to do next.

C. Lots of Little Computers: Multiple Threads of Execution
With the basic execution paradigm defined, it is a simple matter to generalize from having a single virtual

machine to having an arbitrary number of them. Each engine has its own instruction and operand space, and each
engine provides one thread of execution. Due to the data-driven nature of the sequencing engines, VML can support

Figure 2. Sequence list or table. This rudimentary
approach to sequencing uses time tags to indicate
when spacecraft commands or other high-level
actions are to be executed.

American Institute of Aeronautics and Astronautics

092407

5

as few as one engine, or (accounting for hidden engines used for global variables and spawning) as many as 65,532,
although this maximum configuration would probably entail a prohibitively large memory footprint.

The first VML 0 missions were sized to eight engines, mirroring the sequence capabilities VML replaced (see

section IV B below). Odyssey and Genesis, using VML 1.0, also used eight engines, but due to its operational
complexity, the Spitzer mission opted for twelve engines. VML 2.0 missions chose to further expand the number of
engines: Dawn and Phoenix both run with 16 engines, while MRO uses 20 in order to more simply manage the large
number of instruments onboard. Juno is exploring using 28 engines.

D. Tool Chain: Components Working in Concert
The VML tool suite allows the generation of files containing functions, the loading and execution of sequences,

and the testing of sets of sequences. The relationship of each of
these VML tools is shown in Figure 3. A source file containing
human-readable VML script is generated using a standard
editor or a ground data system tool. The VML Compiler
translates a text file, or set of merged text files, into a loadable
binary, translating spacecraft commands and absolute times
using external mission-specific tools. The VML Compiler also
has access to lists of valid global variables and symbolic
constants for the mission. The module file produced can then
be loaded by the VML Flight Component.

The typical development process involves running the

compiled module under Offline VM (OLVM) in order to test
and validate the behavior of the code. OLVM is capable of
performing user-defined tests automatically by first capturing a
user-guided session, then extracting user keystrokes from the
human-readable session output and rerunning the test. This
automates the testing process for very little investment of
effort. OLVM can be widely deployed on relatively modest workstations, including Sun Ultra, Intel Linux, PPC
Macintosh, and Intel Macintosh platforms. Developers can thoroughly test products before taking them to the more
expensive, slower, and less available real-time software test lab. VML products tend to work the first time in the lab
without further modification when their development features OLVM testing. In some cases, products span so much
mission time (weeks to months) that a full run in a test lab is not practical or even possible.

E. VML: Human Readable Language
VML's ultimate aim is to eliminate errors, yet provide enough power to simplify operational blocks and

sequences. Fortunately, the two goals are complementary. By providing high-level constructs like conditionals and
loops, discouraging branching with labels, encouraging functional abstraction via parameterized blocks, allowing
graceful coercion and weak data typing, and building commands with calculated parameter values, VML allows
concise, syntactically simple operations products to be implemented.

F. Reusable Blocks: Parameters, Conditionals, and Return Values
Perhaps the easiest way to explain VML scripting representations is by example. Figure 4 shows a code listing of

VML with blocks used for setting up and stopping contacts between a notional mission and the Deep Space Network
used for communicating with interplanetary missions. Blocks are intended to be reused, sometimes thousands of
times. In this sample code, the complexities of choosing bit rate indices, actuating a solid-state power amplifier with
timing appropriate for the safety of the electronics, and turning off the electronics are abstracted as the blocks. VML
is not case sensitive, but for demonstration clarity, VML keywords have been fully capitalized.

The function convert_bit_rate is a reusable block that accepts one parameter. Notice that no data type

specification is necessary, but may be optionally provided to cause a coercion if desired. The parameter is treated
like a local variable, and may be used in expressions inside the block. Values may also be assigned to it within the
block. An arbitrary number of parameters may be expected by a function, as well as no parameters at all. Any
missing parameters in the call to the function are gracefully substituted with the special data type and value UNKNOWN.
Any excess parameters in the call are ignored by the function.

Figure 3. Tool chain. Files of functions are created
by using an editor or ground data system (GDS) tool
to create human-readable VML script. The compiler
translates this into a binary format usable within
OLVM or some variant of flight computer either in a
software test lab or on the spacecraft

American Institute of Aeronautics and Astronautics

092407

6

Next comes the declaration section, which in this case features one declaration of a local variable

bit_rate_index. The variable has an initialized value of 0. All variable declarations include an initialization value
that is evaluated upon entry into the function.
This eliminates nondeterministic behavior due
to random initialization values, and prevents
corrupt floating point values from causing
exceptions on CPU hardware.

The body of the function contains the

executable instructions, bounded by BODY and
END_BODY. The instructions within a function
execute according to timing relative to one
another. In versions of VML prior to 2.1,
explicit time tags were required on every
statement. This proved cumbersome, so starting
with VML 2.1, if no time tag is present, the
VML compiler substitutes a time period of one
tick. This has the effect of separating the
execution between statements. Zero time tag
values are allowed, in which case instructions
are executed in the order encountered, but the
next instruction after the current instruction is
issued on the same tick as the current
instruction.

Within the body of convert_bit_rate are

instructions implementing a cascading
conditional structure with three matching
conditions. These work like ordinary IF
statements in most computer languages such as
C or Ada. There is no need for an explicit
conditional body for multiple statements as in
C: every statement between the IF and the
eventual ELSE_IF, ELSE, and END_IF is
automatically considered to be part of the body
of the IF, eliminating a source of coding errors.
The IF statement clauses shown here feature complex expressions, including in some cases Boolean logic operators
like AND (&&), OR (||), XOR (@@), and NOT (!).

Values can be returned from functions one of two ways: RETURN statements (shown in the example), which

provide a single value back to the calling statement that can be assigned within the context of the calling function,
and INPUT_OUTPUT parameters. The latter are not shown in this example, but provide a reference to a variable in the
caller's context rather than a copy of such a variable. Assignments to the INPUT_OUTPUT parameter change the
original variable rather than a local copy. If a literal is given in the call corresponding to an INPUT_OUTPUT
parameter, VML quietly treats the parameter as an INPUT parameter, making a local copy of the value. This
eliminates any need to detect and respond to mismatch errors.

The next function, dsn_contact_start, accepts two parameters, one of which has been coerced to a string and

checked for valid values. Failure to match a valid value for the mode parameter results in a runtime error. The
function starts by calling the block convert_bit_rate discussed previously, receiving a value to use for the
bit_rate_index. It then goes on to dispatch commands using ISSUE statements. Notice the R0.2 time tag between
the first two ISSUEs: this forces a 0.2 second relative time delay between the completion of the first command and
the dispatch of the second command. VML 2.1 has facilities for detecting the completion of commands, whereas
previous versions only timed the dispatch of commands relative to the previous command dispatch. Since VML does

BLOCK convert_bit_rate
 INPUT bit_rate
 DECLARE INT bit_rate_index := 0
BODY
 IF bit_rate < 6 THEN
 bit_rate_index := 0
 ELSE_IF 6 <= bit_rate && bit_rate <= 1024 THEN
 bit_rate_index := 1 + (bit_rate - 1) / 10
 ELSE
 bit_rate_index := 103
 END_IF

 RETURN bit_rate_index
END_BODY

BLOCK dsn_contact_start
 INPUT STRING mode VALUES "standby", "half", "full"
 INPUT bit_rate
 DECLARE INT bit_rate_index := 0
BODY
 bit_rate_index := CALL convert_bit_rate bit_rate

 ISSUE sspa_mode standby
 R0.2 ISSUE set_power_switch sspa, on
 R1.0 ISSUE_DYNAMIC "sspa_mode", mode
 DELAY_BY gv_sspa_on_warmup_time
 R4.0 ISSUE_DYNAMIC "transponder_on", bit_rate_index
 gv_dsn_contact := TRUE
END_BODY

BLOCK dsn_contact_end
BODY
 ISSUE sspa_mode standby
 ISSUE set_power_switch sspa, off
 gv_dsn_contact := FALSE
END_BODY

Figure 4. Sample blocks. These sample blocks for a notional
mission would be placed together as a library. They provide simple
abstractions for complex operations, and are used in place of
individual commands.

American Institute of Aeronautics and Astronautics

092407

7

not understand a spacecraft command per se, it depends on an external translation tool to provide the VML Compiler
with the binary equivalent of whatever text is present to the end of the line after the ISSUE keyword. This allows
enormous flexibility in spacecraft commands, and guarantees that VML syntax will never collide with spacecraft
command syntax.

Next come two examples of dynamically issued commands, separated by a programmable delay. The dynamic

commands are built by looking up command formats in a mission-specific data structure compiled into the VML
flight component. Notice how the bit_rate_index value return from a previous block call is used in the second
ISSUE_DYNAMIC statement. Command parameters are checked against the mission-specific command definition data
at runtime for valid ranges and state values, with violations resulting in a command dispatch error that will abort
execution if engine aborts are enabled. In the case of a violation, no command is actually dispatched.

Finally, at the end of the function, a global variable gv_dsn_contact is set to the logical value TRUE, which can

be tested in other blocks (and even non-VML flight software) in order to affect runtime behavior.

The use of blocks reduces development effort, providing a high-level representation of complex functionality

without imposing the kind of heavyweight review process required by flight software. Blocks, once developed,
remain in most cases unchanged. Only the invocation of a block need be reviewed when examining the sequences
that use it. This substantially reduces the amount of time required to review activities and reduces the risk of error.

G. Sequences: Activities Using Blocks
A second major kind of function is the sequence. Sequences are intended to be used exactly once, and come in

two varieties, absolute and relative. Absolutely timed sequences contain absolute time expressed either in spacecraft
time (seconds since a configurable epoch) or Earth-time, with the latter requiring a conversion tool. Absolute
sequences may also contain relative times, and these will be offset from the previous statement. Relative time
sequences contain only relative times similar to those seen in the example blocks above. This allows some flexibility
in when the sequence is initiated, but causes
the sequence to proceed according to precise
timing.

Figure 5 shows an absolutely time tagged

sequence master_4. This sequence
automatically executes upon being loaded
into an engine, and automatically vacates the
entire file loaded into that engine when it is
finished executing. This particular sequence
loads a file containing a slave sequence that
performs observations. Ten seconds after
issuing the load command, the master
sequence starts execution of the relative
sequence observe_day_39 (not shown here).
The master sequence handles the loading,
starting, and stopping of slave sequences, and
the initiation of DSN contacts.

At a later time, the master sequence

makes use of a PAUSE statement in order to suspend observations while a contact with the deep space network
proceeds. The PAUSE simply defers execution of the engine intact so that it may be resumed at a later time. Notice
the use of the blocks previously discussed. Once the DSN contact has completed, RESUME allows the paused slave
sequence to proceed. The ellipses in this master sequence are provided to indicate that there are other statements not
shown, perhaps more slave sequences loaded, paused, and resumed, along with more DSN contacts.

At the end of the sequence the HALT statement terminates any unfinished camera observations, and the engine

containing the observation sequence is unloaded to free it for future use. The final statement of the master sequence
loads the next master sequence. Since the command takes a round trip through the command subsystem, the VML

ABSOLUTE_SEQUENCE master_4
FLAGS AUTOEXECUTE AUTOUNLOAD
BODY
A2010-020T01:23:14.0 VM_LOAD 5, "d:/seq/observe_day_39.mod"
R10.0 SPAWN 5 observe_day_39

A2010-020T07:34:21.0 PAUSE 5
A2010-020T07:34:22.0 CALL dsn_contact_start "main", 1024
A2010-020T08:11:15.0 CALL dsn_contact_end
A2010-020T08:11:16.0 RESUME 5
...
A2010-050T10:11:00.0 HALT 5 ; stop camera observations
A2010-050T10:11:00.0 ISSUE VM_UNLOAD 5
A2010-050T10:11:01.0 ISSUE VM_LOAD 1, "d:/seq/master_5.abs"

END_BODY

Figure 5. Sample sequence. This sequence is absolutely time tagged.
A mission-specific tool outside of the VML Compiler converts the times
to seconds. Times may also be specified directly in spacecraft clock
times as seconds without use of an external tool, with format Sxxxxxx.x

American Institute of Aeronautics and Astronautics

092407

8

Flight Component has time to unload the file containing master_4 from engine 1 before loading the file containing
master_5. This technique is known as chaining, and has been used extensively on missions since Mars Odyssey.

H. Details: Arithmetic, Loops
A wide variety of arithmetic operators and built-in functions is available, but has not been shown in the examples

above. Arithmetic operators include addition (+), subtraction (-), multiplication (*), division (/), modulo (%), and
power (^). Bitwise operators include bit-and (&), bit-or (|), bit-exclusive-or (@), bit-invert (~), bit shift left (<<), and
bit shift right (>>). Logical operators include logical-and (&&), logical-or (||), logical-exclusive-or (@@), and logical-
not (!). Comparison operators include equal (=), not equal (!=), less than (<), less than or equal (<=), greater than (>)
and greater than or equal (>=). The usual operator precedences are enforced, along with parentheses.

Built-in functions simplify calculation. For numeric values, these include ABS(), SIN(), COS(), TAN(), ASIN(),

ACOS(), and ATAN(). String lengths in characters are calculated by the LENGTH() built-in function. In addition, string
operators are available to concatenate strings (+) and to split strings into substrings. Left split takes all characters to
the left of a given character position,
including that character (-|). Right split
takes all characters to the right of a given
character position, excluding the
character (|-).

Loops featuring condition checking

(WHILE) and iteration (FOR) are available.
Simple examples of each are shown in
Figure 6. The WHILE loop checks a
logical condition in order to continue,
whereas a FOR loop uses a local variable
to count from a given starting value up to
or down to a given ending value. The explicit designation of counting up or counting down makes the syntax of the
FOR loop simpler than is found in the C language. The body of the WHILE loop is bounded by END_WHILE, and the
body of the FOR loop is bounded by END_FOR.

I. Event Driven Sequencing
Event-driven sequencing provides a compact syntax for waiting on conditions, and proceeding when those

conditions are met. This allows blocks to react to external signals from flight software and other blocks without an
unduly complex implementation, in turn reducing both the cost of implementation and the risk of error.

Event detection takes the form of a variety of WAIT statements, shown in Figure 7. These instructions suspend

execution of the running engine until a new value arrives, using no CPU processing: these are not spin locks, but
instead are very efficient signaling
mechanisms tied to global variable
access routines. The simplest form of
WAIT simply checks for a value to
arrive, in which case the waiting
engine is rescheduled. More
complicated versions wait for changed
values or wait for particular conditions
to come true on the variable. In all
cases, WAIT statements may assign the
value in the global variable being
waited on to a local variable, which
can then be used in calculations. WAIT
statements feature optional timeout
values in order to guarantee that
execution resumes if no acceptable value arrives within the specified time period. If the timeout expires, the local
variable on the left side of the assignment is not assigned. This means that the user can definitively tell whether a

BLOCK slew
 INPUT ra
 INPUT dec
 DECLARE DOUBLE rates := 0.0
BODY
 ISSUE_DYNAMIC "SLEW", ra, dec
 rates := WAIT gv_instrument_rate < 0.001 TIMEOUT 10.0
 rates := WAIT gv_instrument_rate
 state := WAIT_CHANGE gv_state
 ...

Figure 7. The many-varied WAIT statement. Event detection takes the
form of WAIT statements, which examine a single sequencing global
variable. The WAIT can be simple, feature a comparison, or look for a
change. WAIT statements contain optional timeouts in order to guarantee
resumption of processing if the condition is not met.

 WHILE gv_images < 45 && gv_camera_ready DO
 ...
 END_WHILE

 FOR i := 1 TO x DO
 ...
 END_FOR

 FOR i := gv_start DOWN_TO gv_end STEP 3 DO
 ...
 END_FOR

Figure 6. Loops. WHILE loops check logic. FOR loops iterate up or down
by 1, or an optional step value.

American Institute of Aeronautics and Astronautics

092407

9

value arrived or the statement timed out by first assigning an impossible value (e.g. -1), then checking to see if that
value is present after the WAIT.

Simple semaphores are implemented using the TEST_AND_SET statement. This statement acts on a global variable,

testing it as being greater than 0 and decrementing it all in one step before any other engine can execute a statement.
If the value is zero or negative, execution of the engine is suspended until a non-zero value becomes present in the
global, at which point the engine is again scheduled and attempts the TEST_AND_SET again. This capability allows
global variables to guard mutually exclusive portions of functions to prevent miscommanding spacecraft elements,
and allows classical producer / consumer code implementations as found in other computing environments. Like the
WAIT statement, the TEST_AND_SET features an optional timeout in order to guarantee that execution is not
permanently deadlocked.

J. Flight Insight: Commands and Telemetry
Controlling the activities of the VML Flight Component takes the form of commands dispatched to the software

by the ground and by functions implemented by operators. These commands are straightforward, and provide a rich
set of actions. They are listed below, along with basic descriptions. Note that some of the command names have
changed slightly between versions: only the names found in the most current version of the VML flight software are
given.

VM_GV_RENAME: rename the variable at the given index with a new name
VM_GV_SAVE: save a range of global variables to a named file in the file system
VM_GV_SET_DBL: set a global variable to a given double floating point value
VM_GV_SET_INT: set a global variable to a given integer value
VM_GV_SET_STR: set a global variable to a given string value
VM_GV_SET_TIME: set a global variable to a given time value
VM_GV_SET_UINT: set a global variable to a given unsigned integer value

VM_ABORT_MODE: set the engine to abort on an error (e.g. divide by 0, command error)
VM_HALT: halt execution of the given engine
VM_HALT_NAME: halt execution of whichever engine is running the named function
VM_PAUSE: pause execution of the given engine, allowing later resumption
VM_RESUME: resume execution of the given paused engine

VM_LOAD: load a file on a given engine, or choose an engine if a special "load to any engine" value is

given
VM_LOAD_SPAWN: load the given file on an engine and spawn the given function with parameters in one

step on that same engine
VM_SPAWN: spawn the given function with parameters on a given engine
VM_START: spawn the given function with no parameters on a given engine
VM_UNLOAD: unload the given engine
VM_UNLOAD_FILE: unload whichever engine has the given file loaded on it

VM_PROTECT: prevent an engine from being unloaded until it is unprotected
VM_UNPROTECT: allow an engine to be unloaded
VM_RESERVE: reserve an engine from being loaded unless its engine number is explicitly given
VM_UNRESERVE: allow an engine to be loaded when the special "load to any engine" value is given

Monitoring the actions of an engine takes the form of telemetry channels. Each engine pushes its current

function name, position, and file load to telemetry. In addition, the running state, load state, protection and
reservation modes, and abort mode are reported. In order to monitor use, start count, start time, nominal termination
count, and abort count are recorded. A variety of telemetry points also track the previous and next activity times and
opcodes.

Taken together, the various features of VML provide a concise, powerful, standardized language for operating

deep space missions. We will now examine the arc of missions over which VML has been used.

American Institute of Aeronautics and Astronautics

092407

10

IV. Safe Sandbox

A. Spitzer Redux
When it became clear that the table-driven non-deterministic sequencing system (as discussed in Section II D

above) was too risky and expensive for Spitzer, another solution had to be found. Coincidentally, VML was in the
early stages of development for future missions. The Spitzer spacecraft developers co-opted VML and sped up its
evolution to match the Spitzer schedule. In a break from previous missions, the system engineers from both flight
and ground had to work together to define the set of capabilities that would fulfill Spitzer's needs, yet continue on
the path of multimission reusable flight and ground software. This approach resulted in a feature set that would act
as a flexible, standardized "front door" to the spacecraft for both Spitzer and future missions.

Spitzer's operational requirements stressed the existing flight and ground toolsets, and taxed the abilities of the

small operations team. The Spitzer operations duty cycle was to observe for 11-1/2 hours, then turn and downlink
for 30 minutes. Large data volumes and constrained onboard storage made it essential to get most of the data down
in the first downlink opportunity. Because Spitzer's lifetime was limited by its cryogen, operating efficiently was
essential to completing the mission's science requirements. Non-deterministic slew and settle durations also meant
valuable observing time would be lost if worst case slew times had to be assumed in the planning of observations.

The earlier idea of letting the spacecraft choose which observation to perform next had been abandoned as too

costly and risky. However, parts of that strategy could be applied through VML. In this case, VML was used to
"pack 6 pounds of flour into a 5 pound bag" by intentionally oversubscribing the 11-1/2 hour observation window.
Targets were chosen via a database on the ground and the observation sequence was assembled. Then, one or two
extra observations were added to the end of the 11-1/2 hour window to take advantage of faster-than-expected slew
and settle times. Global variables allowed the flight system to tell the sequence when the slew completed and
settling was accomplished, and were used to trigger observation start. If an observation was never started or did not
have time to complete, it was added back to the database and performed at another time.

VML made a major difference to Spitzer in the area of uplink volume. Sequences were uplinked to Spitzer only

once per week. With only 30 minute DSN contacts, uplink volume was severely constrained. Much of Spitzer's
observation strategy was highly repetitive. For some observations, the same command was issued over and over
with only one or two parameters changing throughout the observation. VML blocks are ideal for this commanding
style and in fact, Spitzer could not fit within its uplink limits without them. A study on the savings for Spitzer from
using VML blocks revealed a reduction in uplink volume of 90%.

Using VML and multiple engines also allowed new fault protection strategies. Spitzer employed a master/slave

sequence architecture. The master sequence ran on one engine and controlled the start times of science observations
that were spawned onto other engines as slave sequences. The master sequence also controlled all absolute timed
events such as DSN contacts and engineering activities. If a slave sequence ran into trouble or aborted, the master
sequence was unaffected and could continue, ensuring that the spacecraft still made its next DSN contact. A
sequence engine was also set aside for fault protection use. The fault protection engineers created VML blocks for
their own purposes and spawned them onto the reserved engine to react to faults or to speed recovery from a faulted
condition.

As Spitzer blocks were developed, the number of parameters in commands made holding all of the needed

parameter combinations inside a block, and selecting the correct version using conditional statements, very large and
unwieldy. Such commands needed to be built on the fly as the sequence executed. The concept of dynamic
commanding was added to VML to address this issue. Originally, this dynamic commanding took the form of bits
set within a local variable, but this approach also proved unwieldy, requiring large numbers of instructions to build a
handful of commands. The final form of dynamically built commands incorporated specially made flight software
and a data structure defining the format of every command in the mission. This approach allowed any command to
be written without requiring prior planning, and allowed the same checks on valid command parameter values as
were used on the ground. Dynamic command building found extensive use in instrument commanding, allowing the
spacecraft to be configured to certain observation modes for large sets of images, conserving uplink and simplifying
the sequence review process.

American Institute of Aeronautics and Astronautics

092407

11

B. The VML Gambit: Stardust / MCO / MPL Sequence Software Lockup Fix
As part of the Stardust / MCO / MPL flight software development process, Pathfinder lander code was used as

the development baseline for the sequencing capability. This activity proceeded in parallel with the VML
development undertaken for Spitzer, but did not initially include VML code. Instead, the Pathfinder sequence code
was to be enhanced with a comparison and branching capability. Implementation flaws in this code enhancement
caused deadlock conditions among the eight sequencing tasks that manifested themselves during critical MPL entry,
descent, and landing tests. The modified code was judged to be unsuitable for flight. Given the nature of the flaws
and the relatively short period of time between failure manifestation and launch (approximately eight months), a
whole-cloth emergency replacement of the sequencing flight code was deemed the lowest risk alternative available:
VML would take an earlier flight than its originally scheduled Spitzer mission.

The partially implemented Spitzer VML 1.0 code was cut down to meet a reduced requirement set in order to

speed production and deployment onto Stardust, MCO, and MPL. This version, referred to as VML 0, featured the
VM engine core, simplified integer data types of global and local variables, basic arithmetic, bitwise operators,
logical operators, and spawning of functions without any parameters. Approximately three months elapsed between
the spacecraft operations testing failures and installation of the new VML 0 sequencing code, beating the launch
date of the first mission by a scant five months. Experience on these missions would influence VML 1.0
development, providing flight time on the software and incorporating operations experience with the software base.

C. Odyssey: Spitzer's Other Testbed
After launch of Stardust, work resumed on the VML 1.0 flight code, and commenced on a second series of

missions. Mars Odyssey, Genesis, and the Mars 2001 Lander were all ramping up production. While the Spitzer
Space Telescope faced a variety of delays, operations teams were starting to identify the growing complexity of the
Odyssey aerobraking maneuver around Mars. Aerobraking is a process whereby atmospheric drag is used to lower
the apoapsis of a spacecraft, and requires precise timing and knowledge of orbital periapsis. A more capable
sequencer than VML 0 would be necessary to lower risks and complete the aerobraking phase of the Odyssey
mission. VML 1.0 provided a large set of data types, sophisticated block and parameter capabilities, loops, and
conditional statements, making it the ideal candidate to control aerobraking. The decision to fly VML 1.0 on
Odyssey first allowed aerobraking to be simplified, and later benefited the mapping mission. Spitzer also profited, as
the early deployment on Odyssey identified enhancements needed before Spitzer's launch.

D. Genesis: Not So Fast
Despite being part of the next quartet of missions, all featuring the full VML 1.0 capability in flight software,

mission managers on Genesis chose to continue with the limited ground system featured on Stardust. This decision
was based on an effort to cap costs by eliminating changes from previous missions, coupled with the operationally
simple nature of this solar sampling mission. Because of the decision, Genesis flew the binary translator originally
developed for VML 0 due to the lack of the VML Compiler. The use of the translator limited Genesis' ability to use
VML features. In order to maintain an identical flight software load across the four missions, the three full VML
missions also flew the binary translator, although it remained unused. To simplify the code base and encourage
operations personnel to share knowledge, the binary translator was eliminated from VML 2.0.

V. Missions, Missions Everywhere

A. VML 2.0: A Broader Audience
Early in 2001, the decision was made at JPL to target VML at more deep space missions across a larger range of

contractors. The effort started with the VML 1.1 code base developed for Spitzer after the launch of Odyssey and
featured uplink product size reduction features like string tables and time tag compression. New features included:

• a software abstraction layer for removing Lockheed-specific and VxWorks-specific service routines
• a new architectural layout to ease software integration
• a smaller memory footprint and incremental parsing of large files to distribute processor loading over time
• configurable alignment of data structures, configurable engine sizing, CCSDS compatibility
• for loops, trigonometric functions, compound expressions, optionally typed parameters
• removal of obsolete commands from VML 0 era, rename of commands, variable rename capability
• compatibility with Gnu tool chain, elimination of Solaris C compiler and non-standard compiler switches
• access to telemetry channels as read-only global variables, bringing more autonomy potential to missions
• reentrancy protection to prevent a block or sequence from running multiple copies simultaneously

American Institute of Aeronautics and Astronautics

092407

12

These features helped attract new missions to the code base, including Mars Reconnaissance Orbiter (Lockheed) and
Dawn (Orbital Sciences Corporation). Another mission using VML 2.0, the Hubble Robotic Vehicle mission, was
canceled before phase C development.

B. MRO
Mars Reconnaissance Orbiter (MRO) brought a new set of challenges, and with it, a new set of VML functions.

Its operational paradigm was to orbit Mars and allow the instruments to observe at will. Each instrument was
allocated its own VM engine, with instrument teams taking responsibility for all instrument commanding. Separate
virtual machines allowed partitioning of science activities from spacecraft engineering activities, reducing risk.
MRO used 20 engines sized for the differing purposes.

MRO engineering activities included trajectory correction maneuvers that were controlled by blocks, using

programmable delays and logic condition checking. As with Odyssey, blocks were used for aerobraking passes to
maneuver the spacecraft to its final orbital altitude. MRO profited by another VML 2.0 enhancement: the ability to
read and act on prechannelized telemetry. This allowed assembly and test engineers to run self-tests on the
spacecraft after major movement and assembly events, reducing the risk of undetected problems and saving time,
effort, and money.

C. Dawn
Dawn was a first for VML. Because of its heritage, VML had only been used on those missions with spacecraft

developed by Lockheed-Martin, but the spacecraft contractor for Dawn was Orbital Sciences Corporation. Orbital's
heritage software employed an old-school sequencing system that was incompatible with both Dawn's observing
needs and with JPL's multi-mission ground system. A trade study found that it would cost less to enhance Orbital's
heritage flight software with the VML flight code than it would cost to upgrade the onboard system or compensate
for the incompatibility in the ground tools.

The VML 2.0 flight code was delivered to Orbital and integrated with their heritage system by means of a VM

supervisor module. The supervisor allowed the VML code and the heritage flight software code to communicate
with only a few changes to each set. Minor adaptations were also made to deal with the lack of an onboard file
system and to add proper CCSDS headers to VM dispatched commands. The VML-Orbital collaboration was so
successful that Orbital has requested permission to use VML on upcoming projects.

D. Phoenix
With the cancellation of the Mars 2001 Lander after the loss of MCO and MPL, one of the VML 1.0 missions

failed to fly. Fortunately, the mission hardware and software were resurrected as the Phoenix mission after years in
storage. Due to the operational complexity of the surface phase and experience with VML 2.0 on MRO by LM
personnel, the mission chose to replace the VML 1.0 code in its inherited software baseline with VML 2.0. This
upgrade addressed a number of concerns, including the incremental loading of very large block libraries to avoid
starving lower priority tasks, the decreased memory footprint of instructions, the ability to size engines with
different storage space, extra built-in functions, and the repair of identified software flaws.

Phoenix features a very challenging mission phase: Entry, Descent, and Landing. Responsibility for EDL

activities was divided between attitude control flight code for high-rate monitoring and actuation, and VML blocks
for everything else.

The approach taken within the VML sequences is state-driven. A series of 24 blocks, as a group, compose the

mainline set of EDL activities. The mainline blocks (or segments) make use of both timed and event-driven
sequencing, using programmed delays for times prior to atmospheric entry, and taking events from flight software
for activities starting with parachute deployment and ending with touchdown.

In parallel with the mainline sequence, all non-critical EDL activities execute on five other engines. These

activities include communications, instrument management, CPU monitoring, uplink loss protection, and battery
charge optimization. The mainline segments set sequencing global variable values during descent in order to signal
to the secondary blocks and coordinate activities. This approach was so successful during testing that the EDL
mainline segments have remained unchanged since before launch. The reduction in risk of using the same mainline

American Institute of Aeronautics and Astronautics

092407

13

segments unmodified for a year before landing has been tangible, as all testing done in this period has the same
known timing and subset of configuration.

In keeping with the close coupling between flight and ground that was part of VML's origins, VML's creator and

principle author of this paper served as the sequence developer for EDL. This placed both the author and the mission
in a unique position, allowing a more in-depth understanding of its operations use. The lessons learned in EDL
sequencing are being applied to VML 2.1.

VI. VML 2.1: Anticipating needs

A. New Features
VML 2.1 features major incremental upgrades relative to VML 2.0. Like other VML versions, these changes are

based on inputs from VML 2.0 missions like Phoenix and MRO, the author's own experiences developing blocks for
Phoenix and other missions, and the need to address new instrument-oriented projects. The feature set in VML 2.1
includes full upward compatibility with VML 2.0, to the point where blocks and sequences developed for VML 2.0
missions load into VMLFC 2.1 and behave identically. Like other VML versions, VML 2.1 also enables missions to
come up to speed rapidly by baselining previous mission capabilities, then extending them.

B. State Machines
The success of the state-oriented approach to sequencing complex, mission-critical activities like EDL on

Phoenix has led to the inclusion of
state machines in the syntax of VML
2.1. State machines consist of named
states that transition to other states
when conditions become true. A
partial example appears in Figure 8.
State machines introduce a local scope
for attributes, states, and transitions
fully internal to themselves.

A well-defined transition called

enter exists in order to specify the
starting set of activities for the state
machine. This also allows states of
state machines to themselves be state
machines, without any sort of entry
and exit point complexity.

State machines contain attributes,

identical to the module-level variables
featured in previous versions of VML.
These attributes provide persistent
storage during the execution of the
state machine.

State transitions may be performed

via JUMP_TO or TAKE statements.
JUMP_TO is used when the transition
from one state to another is simple and
does not have side effects as spacecraft
commands may, and does not need to
coordinate across state machines. TAKE
is used when a named transition with
the given type is available. This named
transition may share synchronization signaling conditions with other state machines, and will only be taken when all
state machines are ready. All state machines then simultaneously follow the transition to end up in new states. The

STATE_MACHINE flight_director

ATTRIBUTES
 DECLARE COLLECTION manager_list := {
 #orbit_det_manager, #imaging_manager, #att_est_manager,
 ...}
 DECLARE LOGICAL maneuvering := FALSE
END_ATTRIBUTES
...

TRANSITION enter
BODY
 JUMP_TO quiescent
END_BODY

STATE quiescent
BODY
 SELECT_LOOP
 WHEN gv_fd_next_state = #launch JUMP_TO launch
 ...
 WHEN gv_fd_next_state = #orbiting JUMP_TO orbiting
 END_SELECT_LOOP
END_BODY

STATE orbiting
BODY
 CALL enable_managers {#orbit_det_manager, #imaging_manager}
 SELECT_LOOP
 WHEN gv_fd_next_state = #quiescent JUMP_TO quiescent
 WHEN gv_fd_next_state = #safe TAKE safe_spacecraft
 WHEN maneuvering && gv_fd_next_state = #otm JUMP_TO otm
 END_SELECT_LOOP
END_BODY

...
end_state_machine

Figure 8. State machines. These sample states for a notional mission
contain commands and other side effects, and transition to other states
when programmed conditions come to pass.

American Institute of Aeronautics and Astronautics

092407

14

JUMP_TO and TAKE implementation is very similar to removing execution of the current state from the engine and
SPAWNing the new state or transition to that same engine. SELECT_LOOP is used to detect conditions and take actions
in response to those conditions. In a state machine, the SELECT_LOOP enforces logical conditions as being true before
jumping to other states or taking transitions.

The implementation of VML state machines mirrors specifications available in UML state machines. Because of

their discrete states, state machines can be analyzed for correct behavior much more easily than can procedural
languages. Rather than act as a model to be implemented on top of a procedural language, VML state machines are
able to execute directly on a virtual machine, removing any possibility of miscoding the state transition behavior.
Doing so also reduces development time and constrains the potential set of actions down to a manageable, easily
analyzed number.

It should be emphasized that the standard procedural approach utilizing blocks and sequences is still available,

and can be intermixed with state machine use. Such an approach is better suited to a wide number of problem
domains than are state machines alone, and is in keeping with VML's "evolution, not revolution" strategy.

C. Objects
Like state machines, objects provide a naming scope that allows capabilities to be packaged together. They

feature attributes and locally scoped blocks. An example appears in Figure 9. Objects frequently have a thread of
execution associated with them, but
are not required to have such a thread,
and may instead be used as a
convenient package for functionality
akin to a library.

Object methods are visible globally

using a reference that includes dot
structure much akin to C structures or
Ada records. This allows the methods
within different objects to feature the
same local names, but be explicitly
unique. For example, an object
corresponding to running a
spectrograph might feature methods
for powering the instrument up and
down called on and off. So might the
telecom object shown in the example.
From within the object, the methods
could be invoked using the short
names on and off. From outside the
object (e.g. from an absolute sequence)
the full name of the methods would be
given in the form telecom.on or spectrograph.on in order to differentiate between the two. Potential naming
conflicts between globally visible blocks and object method short names are resolved using scope. The method is
local to the object, so the method is locally matched first before a wider global search. Therefore, a local method
overrides a global block. This mirrors typical object-oriented design found in languages like Smalltalk.

D. Collections

Collections are arrays of heterogeneous data. Rather than requiring all elements to be of the same data type, each

element of the collection can be of whatever data type the user desires. This allows collections to serve in two
capacities: as an array (e.g. numbers representing a vector), and as a data structure of related fields. Collections
containing heterogeneous and homogeneous data types are shown for a notional block of a notional mission in
Figure 10.

OBJECT telecom

ATTRIBUTES
 declare string side := "side_a" tlm_id TELECOM_SIDE_TLM_ID
 declare uint bit_rate := 40 tlm_id TELECOM_BIT_RATE_TLM_ID
 declare string antenna := "omni"
END_ATTRIBUTES
...
METHOD start_contact
 INPUT new_bit_rate
BODY
 call on
 bit_rate := new_bit_rate
END_BODY
...
END_OBJECT

ABSOLUTE_SEQUENCE day_702
...
 CALL telecom.on
 IF telecom.bit_rate > 100 THEN
 CALL telecom start_contact 100
...

Figure 9. Objects. Objects provide a convenient abstraction for
functionality. Scoping is provided by the object name. Attributes are
accessible using dot notation similar to C and Ada.

American Institute of Aeronautics and Astronautics

092407

15

Like all other VML data types, the literal representing a collection has an unambiguous format. Like a set in

discrete mathematics, collections are bounded by pairs of open and close braces {}, permanently specifying the
dimensions of the
collection even when
copies of it are made and
passed as parameters. The
default value also serves to
specify the collection
format, since each of the
fields is defined by a literal
having a known type. There
is no need for a separate
data type definition
statement, a departure from
syntax in traditional
strongly typed procedural
languages such as Ada or
C.

Collections may contain

collections, making it
possible to pass complex
data representations as
single parameters between
functions. Elements of a
collection are accessed
using open and close
brackets [] and an index,
as in Ada and C. Collection elements are numbered starting at 0. Figure 10 demonstrates dereferencing the obs
collection. An assignment is made from side to obs[0]. Assigning to ra is made from a collection within obs: the
element at index 1 is accessed, then the element at index 0 of that collection is accessed. Results in this case are
passed back via input/output variables, and quaternion is passed back as a return value.

The calling function observations contains a collection definition q for a four-element collection, all the

elements of which are doubles. This local variable receives a copy of the quaternion local variable when the
observe block returns. Since collections, like other data types, can coerce to all data types , a mismatch between
collection sizes is handled gracefully: extra elements would be ignored, and missing elements would be set to the
value UNKNOWN.

E. Reconfigurable On-The-Fly
One of the most vexing problems in any general purpose software system is to make sure that components are

sized correctly. Sizing in VML includes the number of engines, the number of instructions on each engine, the
number of operands on each engine's stack, the amount of space for storing strings and spacecraft commands on
each engine, and so forth. In preceding versions of VML, all of these values have been fixed at compile time of the
underlying flight component. VML 0, 1.0, and 1.1 flight components all featured identically sized engines. This was
problematic if block libraries grew, because the memory footprint of the flight code was magnified by the number of
engines, even if the need was specific to one engine. VML 2.0 improved upon this by allowing different memory
allocations on different engines, but the operations development teams frequently outgrew the allocations. In order
to resolve these problems, VML 2.1 allows the sizing of each engine to be changed at runtime. The overall number
of instructions and operands, and the amount of string and command space, are fixed at compile time, but may be
reallocated among engines in order to more suitably meet unanticipated needs.

F. Command Interface Enhancements
Controlling the activities of the VML 2.1 Flight Component requires only a few extensions over the existing set

of commands for 2.0. All of the commands shown in section III J are supported in VML 2.1. Commands have been

BLOCK observe
 INPUT side
 INPUT_OUTPUT ra
 INPUT_OUTPUT intensity
 DECLARE COLLECTION quaternion := {0.0, 0.0, 0.0, 1.0}
 DECLARE COLLECTION obs := {"side_a", {0.0, 0.0}, 0 }
BODY
 quaternion := CALL get_camera_quat
 obs[0] := side
 CALL take_picture quaternion, obs
 ra := obs[1][0]
 intensity := obx[2]
 RETURN quaternion
END_BODY

RELATIVE_SEQUENCE observations
 DECLARE COLLETION q := {0.0, 0.0, 0.0, 1.0}
 DECLARE UINT value := 0.0
 DECLARE DOUBLE angle := 0.0
BODY
...
 q := observe "side_b", angle, value
...

Figure 10. Collections. These sample collections within a block for a notional
mission contain a variety of different data types. The local variable quaternion is an
example of uniform data types, similar to an array. The local variable obs is an
example of non-uniform data types, similar to an Ada record or C structure. Note that
the format of the collection is implied by its initialization value, and no separate data
typing is required. Field dereferencing is numerical.

American Institute of Aeronautics and Astronautics

092407

16

added to allow setting flight software attributes which govern elements like access timeouts and command modes.
This feature is also generalizable to flight software variables outside of the VML flight component. In addition,
commands have been added to support dynamic reallocation of engine attributes. The new commands are listed
below.

VM_ATR_SET_DBL: set an attribute to a given double floating point value
VM_ATR_SET_INT: set an attribute to a given integer value
VM_ATR_SET_STR: set an attribute to a given string value
VM_ATR_SET_UINT: set an attribute to a given unsigned integer value
VM_ALLOC_INSTR: set the instruction allocation count for a given engine
VM_ALLOC_STR: set the sting space allocation for a given engine
VM_ALLOC_CMD: set the spacecraft command allocation for a given engine
VM_ALLOC_RESET: remove all preceding allocations received
VM_ALLOC_APPLY: apply all allocations received in preceding commands

VML 2.1 Missions

A. AutoGNC
This technology demonstration program builds on the optical navigation work for the successful Deep Space 1

and Deep Impact missions. The name stands for Automated Guidance, Navigation, and Control, and intends to
create prototype hardware to allow any spacecraft to self-navigate to any given body, following an ephemeris model.
Target missions include orbiters, landers, asteroid body interceptors, and cometary interceptors. Different modes of
operation are supported, including stellar navigation, inertial navigation, and optical navigation.

VML 2.1 serves as the executive of the overall software system. A flight director implemented as a state

machine enables and disables managers of various system subcomponents, depending on mission phase. The
managers coordinate together using rules and global variables in order to issue commands to instrument
components. VML treats the AutoGNC instrument as its own small spacecraft, with commands, uplink, and
telemetry. This approach has allowed rapid implementation of very complex control logic.

B. Juno
Juno, the Jupiter Polar Orbiter, will be a VML mission. Juno is in the early stages of development and system

engineers are performing a trade study to decide whether to use VML 2.0 or advance to VML 2.1. There has also
been interest in the possibility of installing VML in one or more of the instruments as an instrument executive. The
work continues.

C. GRAIL?
GRAIL, the Gravity Recovery and Interior Laboratory lunar mission, has recently been approved to proceed with

Phase B. It will be a Lockheed-Martin built pair of spacecraft with non-NASA heritage hardware but NASA-
heritage software. JPL will be starting the process of assessing VML inclusion in the project plan in the next few
months.

VII. Arcs of Development

A. Arcs
At each step of the way, VML has been carefully crafted to provide features required by missions without

imposing one-off implementations. Every VML feature has been created with an eye toward generic capabilities
useful on current and potential future missions. Features are not removed. Rather, as the arc of deep space missions
has proceeded, VML has been extended where necessary without sacrificing past capabilities.

Up to this point, we have examined the story of VML from the point of view of missions. We will now look at

VML from the point of view of arcs of development, presented in Figure 11. VML features may be considered as
groupings of data structure elements, language elements, and execution elements. Each of these elements is
interesting in its own right, and shall be examined separately. The figure the points in time at which development
arcs are considered complete, and correlates these features with the various missions using versions of VML.

American Institute of Aeronautics and Astronautics

092407

17

Data arc elements include data types, name scopes, externalized data access, spacecraft command parameter
types, and structuring of data. The language arc includes the VML scripting directives used by operators to express
executable concepts, including function
layout, timing, programming constructs,
and expressions. The execution arc
encompasses the hidden implementation
details that allow the data and language
arcs to be implemented as real software
running on real platforms, including
processor requirements, sizing, memory
alignment, and support software needs.

B. Data Arc
 Over the past decade, the data types

supported by VML have grown in
number and complexity. Variable scopes
and the ability to access data from the
overall flight software build have been
added. Constant parameters for
spacecraft commands and support for
CCSDS header fields have been folded
into currently flying missions. The
concepts of objects, object-level scoping,
data structures and array elements have
also been introduced.

The basic VML 0 sequencing

capability featured only the data
constructs necessary to replicate the
intended functionality of the original
Stardust, MCO, and MPL requirements.
Data was expressed as globally
accessible integers, plus a small per-
engine set of locally accessible integers.
Variables had no names, but were instead identified using indices within the simple pre-VML sequence
specification. Integers represented absolute times to a resolution of seconds, or relative times to a resolution of
tenths of seconds. Integers also performed as logical values, with 0 indicating false and non-zero indicating true. No
floating point or string representations were available.

Under VML 1, a wide variety of different data types was incorporated, allowing integers, unsigned integers,

Boolean logicals, double precision floating point values, strings, and time. In addition a special value "unknown"
was available to represent missing parameters. Time was represented by two 32 bit unsigned integers taken together
to represent mission time in ticks, allowing absolute and relative times to be known to the same resolution, and
therefore to be easily compared and calculated. All conversions between variable types were legal and defined,
including conversions from numbers to strings and vice versa, making polymorphism during function calls simple
and safe. Default values were required as part of all variable declarations, removing the potential for errors due to
uninitialized variables. Variable scopes were enhanced with local, module level, and global variables. The module
level variable scope allowed variables to hold values between invocations of functions in which they were assigned.
This capability was useful in its own right, but would form the basis for objects later on.

A minor enhancement to VML was made to address Spitzer uplink concerns. Incorporating an optional table of

strings and a specialized compressed time format for small time values saves roughly 50% of the uplink bandwidth
for the mission by reducing the size of blocks and sequences. This allowed Spitzer to live within its uplink allocation
while simultaneously maintaining compatibility with the original in-line string format used in test products.

Figure 11. Arcs of development. The basic elements of VML data,
language, and execution features are listed in order of development, along
with a list of mission time spans showing use of the various versions.

American Institute of Aeronautics and Astronautics

092407

18

Experience on the Odyssey and Spitzer missions led to further data enhancements under VML 2.0. Managing
global variables on these missions consisted of creating a set of named global variables with specific data types for
known uses, then adding spare variables whose use was to be determined during flight. All sequence global variable
definitions had to be complete before compiling and linking the final spacecraft flight software load. Because the
name of the spare did not reflect its eventual use, some confusion arose about the meaning of spare global variables
that were decided on well into the mission. Therefore, a VM command was added to rename global variables during
runtime, allowing the names of these spare variables to be changed in flight. This feature has been exploited on
MRO and especially on Phoenix, as Phoenix surface operations blocks were designed and implemented primarily
after completion of the final flight software build.

Much of the need for sequencing global variables is driven by the need for blocks to respond to flight software

conditions. However, it is difficult to anticipate all such interactions ahead of time. Therefore, MRO operators
requested the ability to map telemetry data into VML global variables. Since knowledge of spacecraft state is
ultimately pushed into telemetry, direct access to that information allowed blocks to respond to any element of
spacecraft state without modifying the flight software to push that information into global variables. This external
data access capability allows any spacecraft flight software data to be accessed in a generic fashion.

Spacecraft operations on both Dawn and MRO required the ability to dynamically build and dispatch commands

featuring unchanging parameters. In Dawn's case, these parameter values represented fields of CCSDS packets,
whereas for MRO, the fixed constant parameters were needed for instrument commands. The needs in both cases
were identified within five days of each other, and in keeping with VML's generic implementation approach, the
same underlying implementation applied to both.

The modern concept of objects with attributes made its way into VML 2.1, built on module variables and a

simple nested naming convention similar to record access in C and Ada. Similarly, states for state machines built
around UML state transition diagrams use the object baseline. Collections, the single most-asked-for feature, are
aggregations of data similar to data structures or arrays, created using object-like aggregation techniques to maintain
cohesion.

C. Language Arc
The VML 0 language facilities included a programmable delay, branching on true / false conditions to labels

expressed as integers, branching unconditionally to labels, and evaluating simple unary and binary operators.
Spacecraft commands were isolated from the language definition in order to reuse code between missions. The
existing ground software produced binary sequence loads, so a translator was incorporated into the flight software to
dynamically translate these binaries into a runtime load acceptable to the VML flight parser. No compiler was
necessary for VML 0.

With the deployment of VML 1.0 on Odyssey, Spitzer, and Genesis came the full set of initial VML capabilities

in both flight and ground. The VML Compiler translated fully implemented human-readable VML script into
uplinkable binaries, replacing the onboard binary translation in VML 0. (The translator remained installed in the
flight code in order to accommodate Genesis mission design demands for a ground system identical to Stardust's,
however.) Arithmetic and comparison operators were extended to operate on the new data types. Built-in functions
for string manipulation were added, including sizing, concatenation, and substring extraction. Names for blocks and
sequences allowed more than one per file, giving rise to the concept of libraries of reusable on-board blocks that
could be invoked repeatedly. WHILE loops and IF statements allowed structured programming and testing of
conditions using simple expressions with one comparison operator.

VML 2.0 built up capabilities with FOR loop constructs and compound expressions. Spitzer's need for

trigonometric functions had been met somewhat clumsily with finite series calculation blocks, so built-in functions
for trigonometry were added to VML 2.0 for simplicity and convenience. Protection was added against spawning
blocks and sequences more than once, unless explicitly allowed using a REENTRANT flag. The binary translator for
backwards-compatible support of the obsolete Stardust and Genesis ground system was removed with concurrence
of the VML 2.0 missions.

VML 2.1 continues the enhancement. Intrinsic time tags make VML look more like mainstream languages,

allowing time between statements to be assumed rather than explicitly stated. The implementation of entry, descent,

American Institute of Aeronautics and Astronautics

092407

19

and landing blocks on Phoenix as cooperating state machines led to the implementation of direct language support
for UML-like state machines. Waiting on more than one event via compound event detection grew directly from
language support for these state machines. So too did the implementation of SELECT_LOOPs, allowing a very dense
representation of possible code branches.

D. Execution Arc
The VML 0 execution engine core supported spawning sequences (either absolutely or relatively timed) to run in

parallel on identically sized engines, but no facility was made for passing parameters. Instead, global variables held
any values passed between sequences, requiring operators to exercise care to prevent collisions in variable use when
spawning multiple parallel sequences. The engine core was compatible only with VxWorks running on PowerPC-
derived processors with big-endian byte ordering. A parsing buffer was incorporated to allow large sequence loads
to be incrementally parsed from memory rather than directly from the file system, increasing the speed of loading.

VML 1.0 introduced the use of named functions to represent sequences and reusable blocks, enabling more than

one block to be present in a file loaded onto an engine. Hand in hand with named functions came the CALL operation
with parameters, whereby information could be passed into and out of reusable blocks in order to affect block
behavior. The CALL functionality eliminated the need for complicated user-written synchronization mechanisms
using global variables, implicitly causing the calling function to remain suspended until the called sequence
completed. Block library routines were used extensively by Odyssey for aerobraking and mapping. Spitzer also
made considerable use of block libraries for performing observations and commanding communications passes.
Dynamic commands were used in conjunction with blocks in order to allow the spacecraft to substitute calculated
variable and parameter values into spacecraft commands, coupling the VML sequencing system directly to
command dispatch and dramatically simplifying block development.

Event detection allowed VML 1.0 to efficiently recognize spacecraft conditions represented by the flight

software, and allowed non-deterministic timing in blocks. This facility found use aboard Spitzer to allow
observations to proceed as quickly as possible after completing slews and settling the spacecraft. Odyssey used
event detection during the completion of aerobraking as well. The event detection facility would act as the basis for
compound event detection and command completion in VML 2.1.

VML 2.0 added a number of enhancements to simplify the deployment of VML on non-Lockheed missions by

using an interface layer and an abstraction of real-time operating system calls. Four-byte alignment made the
underlying data structures compatible with Dawn's flight computer, and allowed the flight code to run within the
OLVM program on Sun workstations without the use of non-standard C compiler flags. Compile time sizing
allowed engines to be specifically tuned for uses, letting some engines be oversized in order to hold block libraries
and others to be sized for simple instrument operations: MRO, Dawn, and Phoenix all made extensive use of tuned
sizes. Based on operations experience, protection kept important elements like block libraries from being
accidentally unloaded. Reservation allowed engines used in specifically-targeted mode to be separated from engines
used in first-available mode, reducing the number of engines needed by allowing certain activities to be allocated
from an available engine pool. Incremental parsing reduced the allowed CPU time used for loading to be spread out,
reducing the load on the system, removing the possibility of starving lower priority tasks during file loads, and
allowing larger files with more blocks to be loaded.

With the advent of VML 2.1, the concept of command completion was borrowed from the Mars Exploration

Rovers, allowing function timing to be inherently coupled with command execution timing and simplifying block
implementation In response to operations requests, runtime resizing of engines and commands allowing the direct
setting of attributes has been added. Finally, to increase the number of compatible target platforms, the newest code
base supports Intel-type little-endian byte ordering.

These arcs of development do not exist separately from one another. They intertwine and support each other,

giving rise to the overall set of reusable capabilities that is VML.

American Institute of Aeronautics and Astronautics

092407

20

VIII. Conclusions
Virtual Machine Language is a powerful tool. Through its eleven-year life to date, it has provided a modern,

flexible, scalable software set, enhancing mission success over a large range of missions. The simple abstraction of
complex spacecraft operations into parameterized, reusable blocks streamlines operations and reduces uplink
volume and risk while enhancing science efficiency. The configurable sequencing capability allows missions to
customize the software suite to their needs while operating within the multimission environment and experience
base. The high level capabilities of VML and the tight integration of the flight and ground components speed
development time while fostering "test-as-you-fly" conditions. The ability to read and act on prechannelized
telemetry opens the door to many kinds of onboard automation.

Increasingly more capable versions of VML are flown with each new set of missions. Lessons learned come

from testers and operators with real flight experience, leading to the incorporation of modifications and
enhancements based on those lessons. Missions use a preceding mission's flight software and configuration as a
starting point, significantly reducing the amount of time required to produce the first functional flight software build.
Operations builds upon blocks created for preceding missions, making modifications as appropriate, and applying
the same sequencing architecture. For sequence software, at least, the era of parallel yet separate software
development is over. With the coming capabilities of state machines, new platform compatibility, and instrument
based executives, it is clear that VML's arc of development will continue on for quite some time to come.

Acknowledgments
The work described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of

Technology, under an agreement with the National Aeronautics and Space Administration.

References
Reports, Theses, and Individual Papers

1Grasso, C. A., “The Fully Programmable Spacecraft: Procedural Sequencing for JPL Deep Space Missions Using VML
(Virtual Machine Language)", 2002 IEEE Aerospace Applications Conference Proceedings, March 2002.

2Grasso, C. A., “Techniques for Simplifying Operations Using VML (Virtual Machine Language) Sequencing on Mars

Odyssey and SIRTF”, 2003 IEEE Aerospace Applications Conference Proceedings, March 2003.

3Peer, S. and Grasso, C. A., “Spitzer Space Telescope Use of Virtual Machine Language”, 2003 IEEE Aerospace Conference

Proceedings, December 2004.

4Grasso, C. A., “Virtual Machine Language (VML)”, NPO 40365, JPL Commercial Programs Office, Innovative Technology

Asset Management Group, Docket Date: 12-May-2003.

5Grasso, C. A., “Virtual Machine Language (VML) NASA Board Award”, NASA Inventions and Contributions Board,
NASA Technical Report 40365, Award Date: September 7, 2006.

6Riedel, J. A., Grasso, C. A., et. al., “AutoNav Mark 3: Engineering the Next Generation of Autonomous Onboard
Navigation and Guidance”, 2006 AIAA Guidance, Navigation, and Control Conference, August 2006.

7 J. Chapel et. al., “Aerobraking Safing Approach for 2001 Mars Odyssey”, 2002 American Astronautics Society Guidance

and Control Conference, Feb 2002.

Related web sites

Blue Sun Enterprises VML Website http://www.bluesunenterprises.com/vml

Mars Reconnaissance Orbiter Website http://mars.jpl.nasa.gov/mro/

Dawn Mission Website http://dawn.jpl.nasa.gov/

Juno Mission Website http://juno.wisc.edu/

