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Low-density parity-check (LDPC) codes are the state-of-the-art in forward error correc-
tion (FEC) technology that exhibits capacity approaching performance. The Jet Propulsion
Laboratory (JPL) has designed a family of LDPC codes that are similar in structure and
therefore, leads to a single decoder implementation. The Accumulate-Repeat-by-4-Jagged-
Accumulate (AR4JA) code design offers a family of codes with rates 1/2, 2/3, 4/5 and
lengths 1024, 4096, 16384 information bits. Performance is less than one dB from capacity
for all combinations.

Integrating a stand-alone LDPC decoder with a commercial-off-the-shelf (COTS) re-
ceiver faces additional challenges than building a single receiver-decoder unit from scratch.
In this work, we outline the issues and show that these additional challenges can be over-
come by simple solutions. To demonstrate that an LDPC decoder can be made to work
seamlessly with a COTS receiver, we interface an AR4JA LDPC decoder developed on a
field-programmable gate array (FPGA) with a modern high data rate receiver and mea-
sure the combined receiver-decoder performance. Through optimizations that include an
improved frame synchronizer and different soft-symbol scaling algorithms, we show that a
combined implementation loss of less than one dB is possible and therefore, most of the
coding gain evidence in theory can also be obtained in practice. Our techniques can benefit
any modem that utilizes an advanced FEC code.

Nomenclature

A signal amplitude
σ2 noise power
Eb/N0 energy per bit over noise power spectral density
n length of a codeword
k length of an information word
L length of an attached synchronization marker (ASM)
N length of a codeword frame and is n + L
s [s0, · · · , sL−1] ASM vector
c [c0, · · · , ck−1] codeword vector
y [y0, · · · , yn−1] received vector
Subscript

i index into a vector
Symbols

µ position in a codeword frame
µ̂ position of the first ASM symbol
λ log likelihood ratio
α combining ratio

∗The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology,
under a contract with the National Aeronautics and Space Administration.
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I. Introduction

Efforts are underway in National Aeronautics and Space Administration (NASA) to upgrade both the
S-band (nominal data rate) and the K-band (high data rate) receivers in the Space Network (SN) and the
Deep Space Network (DSN) in order to support upcoming missions such as the new Crew Exploration Vehicle
(CEV) and the James Webb Space Telescope (JWST). These modernization efforts provide an opportunity
to infuse modern forward error correcting (FEC) codes that were not available when the original receivers
were built. Low-density parity-check (LDPC) codes are the state-of-the-art in FEC technology that exhibits
capacity approaching performance. The Jet Propulsion Laboratory (JPL) has designed a family of LDPC
codes that are similar in structure and therefore, leads to a single decoder implementation. The Accumulate-
Repeat-by-4-Jagged-Accumulate (AR4JA) code design offers a family of codes with rates 1/2, 2/3, 4/5
and length 1024, 4096, 16384 information bits.1, 2 Performance is less than one dB from capacity for all
combinations.

Recently, the Tracking and Delay Satellite System (TDRSS) K-band Return Upgrade Augmentation
Project (TKUP-A) has completed a successful demonstration of LDPC codes using an integrated receiver-
decoder unit on a space link.3 Here, we take a different approach and show that a stand-alone LDPC
decoder can also be made to work well with a commercial-off-the-shelf (COTS) receiver. More specifically,
we interface a (n, k) = (2048, 1024) AR4JA LDPC decoder developed on a field-programmable gate array
(FPGA) with a modern high data rate receiver and measure the combined receiver-decoder performance.
Additional challenges arise when integrating an FEC decoder unit that is external to the receiver. For
example, the decoder would not have a reading of the signal amplitude, A, and the noise power, σ2, of the
system, parameters that are typically estimated by the receiver. LDPC decoding takes as input symbol
reliabilities scaled by the ratio of these two numbers. Without knowledge provided by the receiver, these
parameters would either have to be approximated by the decoder on-the-fly or by matching a distribution to a
histogram of receiver output (to be described in Section IV.B). Another example is codeword synchronization.
Conventional hard correlators employed by most receivers likely do not work well in the low signal-to-noise
ratio (SNR) region where LDPC codes are most beneficial. Through optimizations that include an improved
frame synchronizer and various soft-symbol scaling algorithms, we demonstrate that a combined receiver-
decoder implementation loss of less than one dB is possible and therefore, most of the coding gain evidence
in theory can also be obtained in practice.

Our paper is organized as follows: in Section II we give a description of the IN-SNEC Cortex high-data
rate receiver and our integration setup. In Section III, we provide a background on the AR4JA LDPC code
family and our decoder implementation. In Section IV we list the challenges of integrating a stand-alone
decoder with a COTS receiver and explain our solutions to frame synchronization, symbol scaling, and soft-
bit de-randomization in detail. In Section V, we compare the combined receiver-decoder performance to the
standalone decoder performance and show that the combined implementation loss is less than one dB. In
Section VI, we summarize our findings and conclude with a few remarks.

II. Receiver-Decoder Integration Setup

A copy of the IN-SNEC Cortex high data rate receiver4 under consideration by the JWST project was
made available for our experiments. The Cortex receiver has an adjustable intermediate frequency (IF) set
at 720 MHz, is capable of data rates from 500 Kbps to 2 Gbps, supports phase-shift keying (BPSK, QPSK,
and 8-PSK) modulations, and carries Viterbi and Reed-Solomon decoding. The receiver also comprises
an Additive White Gaussian Noise (AWGN) source, but we use an external noise generator that offers a
more precise control of noise power. The receiver while in the Quadrature Phase-Shift Keying (QPSK)
mode could be configured to output soft symbols through two demodulator output boards (A and B). Each
output board provides four pairs of SMA connectors for interfacing with an external decoder. Each pair of
SMA connectors forms one of four differential Positive Emitter Coupled Logic outputs (PECL). The four
outputs are the symbol clock and the three bit soft symbol output. Since the hardware decoder is configured
to accept low-voltage differential signaling (LVDS), signal converter boxes are used to translate PECL to
LVDS. Demodulator output board A produces soft symbols for the in-phase component and demodulator
output board B produces soft symbols for the quadrature component. The Cortex receiver also provides a
test modulator that we use as our data source. Our test setup is illustrated in Fig. 1. In our experiments,
we randomly select a few messages and pre-compute a list of codewords using a MATLAB version of the
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(2048,1024) AR4JA LDPC encoder. We supply these codewords as a text file to the test modulator and
simply loop over this codeword list in a test run. Limiting the number of transmitted codewords will
not change the accuracy of the results. The test modulator produces IF signals from codewords and this
signal is fed into a digital noise generator where AWGN is applied. The noisy signal is then sent into the
demodulator input board in the Cortex receiver and soft symbol reliabilities are computed. The soft symbols
are subsequently forwarded from a demodulator output board (A or B) to an FPGA (2048,1024) AR4JA
LDPC decoder to recover the original codewords. Since we only have a single decoder running, we simulate
only BPSK and use one of two possible channels. The modulated codeword stream is simply repeated on
both (in-phase and quadrature) channels. Extension to the full QPSK case is straightforward and can be
achieved by applying two parallel decoders to both channels simultaneously.
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Figure 1. Receiver-Decoder Integration Setup

III. The AR4JA LDPC Code Family

Low-density parity-check codes (LDPC) were first proposed by Robert Gallagher of MIT in 1960.5 The
sparse nature of LDPC parity-check matrices demanded more processing power to work with than what
could be handled by computers at the time. Therefore, these codes were largely forgotten until a redis-
covery by David MacKay6 in the 1990’s when advancements in semiconductor technology had made LDPC
decoding feasible. LDPC codes are designed to operate at near-capacity SNR decoding thresholds and to
offer additional coding gains over legacy, for example concatenated Reed-Solomon and Convolutional, codes.
Andrews1 wrote an informative exposition on the history and development of LDPC codes.

The Consultative Committee for Space Data Systems (CCSDS) has an on-going effort to standardize
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LDPC codes for space communications. Under considerations are the family of accumulate-repeat-by-4-
jagged-accumulate (AR4JA) LDPC codes with various sizes and rates for both power and bandwidth con-
strained channels and the high rate C2 (8160,7136) LDPC code for only the bandwidth constrained channel.7

Moreover, NASA’s Constellation Program has selected the (2048,1024) AR4JA LDPC code as the FEC code
of choice8 for the new Crew Exploration Vehicle (CEV). Our work here was also motivated by the ques-
tion of whether LDPC decoders can be made to work with existing Integrated Receivers (IR) at NASA’s
White Sand Complex (WSC) to support Constellation. We answered this concern by first testing out a beta
FPGA decoder using the IN-SNEC receiver platform. After sorting out the bugs, we interfaced a robust de-
coder with an IR at the Electronics Systems Test Laboratory (ESTL), Johnson Space Center and measured
receiver-decoder performance. The demonstration was successful and results are published in an internal
NASA report.9

The AR4JA LDPC code family is built by connecting permuted copies of a protograph.2, 10 Each pro-
tograph can be treated by an independent decoding circuit. Therefore, this approach facilitates parallel
hardware implementation and enables a high speed decoder realization. Andrews1 has produced an efficient
hardware description of the AR4JA encoder and decoder. The AR4JA code family offers a desirable per-
formance and complexity tradeoff when compared to other FEC codes. This code family also has a very
low word error rate (WER) floor so every bit of additional transmission power used with this code in the
threshold region leads to a high decoding return. Andrews and Dolinar11 also analyzed the tradeoff between
complexity and performance.

IV. Receiver and Decoder Integration

Many challenges exist in building a modem back-end out of available hardware components. Some of
these problems arise only because we are interfacing a stand-alone decoder to a COTS receiver, for example
handing soft information from the receiver to the decoder. Other issues apply to LDPC decoding as a
whole, for example, estimating the soft symbol scaling factor. Here, we describe possible solutions to these
challenges.

IV.A. Frame Synchronization

LDPC codes are block codes. Decoding of block codes requires synchronization of the codeword boundaries.
In practice, each codeword is prefixed by a predetermined pattern or an attached synchronization marker
(ASM). A frame synchronization algorithm would then be applied to the demodulated stream to search
for ASMs, identify codeword boundaries, and supply the decoder with properly aligned codewords. The
following discussion assumes a nonreturn-to-zero-level (NRZ-L) signal format.

The conventional approach to frame synchronization is to cross-correlate the received data stream with
the ASM. The correlation metric M (µ) for each position µ in an ASM prefixed codeword frame is computed12

and the position µ̂ over a frame length that gives the largest metric marks the beginning of a codeword frame.
An alternative approach is to compare the correlation metric to a predefined threshold. In another word, set
µ̂ to the first µ such that M (µ) > threshold. Although simpler, this method creates the need to manually
adjust the threshold for varying SNR levels. In our initial testing, we adopted this simple strategy. However,
in the low SNR region where the Constellation (2048,1024) AR4JA LDPC code is most beneficial, frame
synchronization based on a threshold was not able to find codeword frames consistently for proper codeword
error rate measurements. Therefore, the low SNR operating points of low rate LDPC codes demand the use
of high performance frame synchronizers.

Massey12 proposed an optimum frame synchronization for the AWGN channel. His work was ahead of
its time and not commonly used because until recently conventional correlators were sufficient for most FEC
systems operating at SNRs at least a couple of dBs above the decoding threshold of low rate LDPC codes.
The Massey metric is a cross-correlation minus a correction term. The correction term for optimal frame
synchronization is a summation of hyperbolic cosine terms. Implementing cosh (·) in hardware is costly.
However, a suboptimal yet simple approximation yields minimum loss. We compute the suboptimal Massey
metric as12

M (µ) =

L=1
∑

i=0

(siyi+µ − |yi+µ|) , (1)

where L is the ASM length, si is the ith symbol of the ASM, and yi is the ith symbol of the received
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data stream. Like before, the beginning of a codeword frame is marked by the position µ̂ such that µ̂ =
argmax0≤µ<NM (µ), where the frame length N = n + L. The Massey metric of (1) is designed for BPSK
and QPSK transmissions with perfect coherent reception and no phase ambiguity. To resolve a potentially
unknown phase in BPSK, we simply run two synchronizers simultaneously with each 180 degrees apart in
phase and pick the one with the largest metric. To do so in QPSK, we run four synchronizers in parallel with
each 90 degrees apart in phase. Therefore, the frame synchronizer not only identifies codeword boundaries
but also resolves phase ambiguities.

In addition to applying an improved algorithm, the frame synchronizer performance can also be enhanced
by increasing the ASM length. The longer the ASM the more reliable the frame synchronizer. This solution
incurs a bandwidth penalty, since the ASM communicates no information other then the beginning of a
codeword. Another approach is to average over multiple frames. Averaging over multiple frames relies
on the fact that the ASMs occur a frame length apart. So instead of searching for one ASM, the frame
synchronizer can search for two consecutive ASMs that are a frame length apart. This effectively increases
the length of the ASM without wasting additional bandwidth. For example, averaging over three frames
provides approximately the same performance gain as tripling the length of a single ASM. This performance
gain comes at the cost of implementation complexity and delay. Searching over multiple frames before
making a decision requires the frame synchronizer to buffer more data or to drop data until synchronization
is achieved. To balance the performance and bandwidth tradeoff, Constellation decided to adopt the 64-bit
CCSDS ASM for LDPC codeword frame synchronization.13

Fig. 2 compares performances of the conventional hard-decision and soft-decision argmax correlators with
the performance of the (2048,1024) AR4JA LDPC code. Hard-decision correlator hard-limits the received
symbols yi’s to 0’s and 1’s before the correlation metric is computed. Because the LDPC decoding curve
slopes downward like a waterfall, error rates of the conventional correlators intersect the LDPC curve at an
Eb/N0 of approximately 2 dB. The system performance is dominated by the greater of the two curves over
all regions. So at an Eb/N0 below the intersection, the power of the code is realized and at an Eb/N0 above
the intersection, frame synchronization limits system performance.

Figure 2. Comparing frame synchronization algorithms.14 The Massey approach averages over two frames. Sum of the
top 4 entries in the first frame together with the corresponding positions in the second frame determines the location
of the ASM.
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To obtain the full benefit of this LDPC code, we apply the Massey frame synchronization algorithm
and average the metric over two codeword frames.14 We plot the performance of this near-optimum frame
synchronizer in Fig. 2. We point out that the quantization loss due to the receiver 3-bit soft output is less
than 0.2 dB. Moreover, the Massey synchronizer offered a 3 dB performance gain over conventional correlators
and would intersect with the LDPC decoder curve at a codeword error rate much below 1e-7. The full power
of the (2048,1024) AR4JA LDPC code can be harnessed with the Massey frame synchronization.

IV.B. Receiver Soft-Symbol Scaling

Decoding of LDPC codes uses an iterative procedure that are sometimes referred to as the sum-product
algorithm (SPA), message passing algorithm (MPA), or belief propagation (BP). Similar to maximum a
posteriori (MAP) symbol-by-symbol decoding15 of trellis codes, LDPC decoding computes the a posteriori
probability (APP) that a bit in the transmitted codeword equals 1 given the received data (or channel
observations). Hardware LDPC decoders are commonly implemented in the logarithmic domain where
multiplications are mapped into additions. Ryan16 wrote a lucid tutorial on LDPC decoding.

For BPSK and QPSK transmissions on the binary-AWGN channel, each channel symbol at the LDPC
decoder input is initialized to a log likelihood ratio (LLR) given by

LLR (ci) =
2A

σ2
yi = 2αyi, (2)

where ci is the ith codeword symbol, A is the amplitude of PSK transmission, and σ2 is the noise power.
The ratio α = A/σ2 is sometimes referred to as the combining ratio and is used together with a multiplicative
factor of 2 to scale the received (or channel observed) symbol. Note that this ratio does not represent the
SNR of the system which is given by A2

/σ2. LDPC code performances in literature are almost always obtained
by assuming an exact knowledge of α. In practice, this factor can only be estimated.

Many algorithms are available to compute the combining ratio α in real-time from received symbols, a
few are described in a memo.17 Here, we only consider the approach of estimating α a priori by matching a
randomly generated distribution to a soft-symbol histogram collected from the receiver PECL output using
a logic analyzer. In hardware, we face the additional problem that receiver soft symbols are quantized and
clipped at the extreme edges of the histogram. For example, the IN-SNEC Cortex receiver outputs 3-bit soft
symbols with indices from 0 to 7. Symbols with high confidence are binned at the extremes 0 and 7. So in
BPSK the receiver soft symbol histogram will not resemble two Gaussians and instead looks like a bathtub
like curve. The tails of the Gaussians are wrapped into end indices 0 or 7. Moreover, the decoder would
have no idea of the signal amplitude observed by the receiver in order to properly map the indices (0, · · · , 7)
to LLR values. These additional hurdles are not prohibitive. We are given a three parameter estimation
problem, i.e, to approximate A, σ2, and the receiver clipping point for the Gaussian tail distribution. We
attempt to match a Gaussian distribution generated with the first two moments A, σ2, and modulated by
±1 then clipped at an arbitrary value (1 + f)A, where 0 ≤ f ≤ 1, with the recorded receiver histogram.
We do so for a set of possible combinations of A, σ2, and f over the entire search space. We discovered
that fine step sizes are not needed to find a good match so the time-to-search is reasonable even with this
brute force method. For example, a progression of A : [0.25 : 10], σ : [0.05 : 0.025 : 4], and f : [0 : 0.1 : 1] is
sufficient to arrive at a fine match. A comparison of a sample receiver histogram and a Gaussian distribution
generated from the parameters, A = 1.75, σ2 = 0.85563, and f = 0.4, found in this sample search is given in
Fig. 3. The y-axis indicates the frequency of occurrence for each index from 0 to 7. Out of all the receiver
soft symbols recoded on the logic analyzer, about 22% of the symbols are index 0. This ratio is close to
that computed according to the distribution found where 23% of the symbols are index 0. Measurement and
prediction in this case match well. Furthermore, the estimated Es/N0 is 2.5276 dB and is close to the receiver
reading of 2.3 dB.

Examining the randomly generated soft symbols, we note that the samples fall into 8 bins marked by

q = [−2.1437,−1.5312,−0.9187,−0.3062, 0.3062, 0.9187, 1.5312, 2.1437] .

The scaling factor for this receiver state is 2α = 4.0906 and therefore, the bin mapping at the decoder input
is 2αq. For our fixed-point FPGA decoder with an internal 3-bit decimal precision, the LLR input is in fact
16αq rounded to integers.
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σ

Figure 3. Matching a distribution generated by estimating A, σ2, and f to the receiver soft-symbol histogram. Receiver
Es/N0 reading is 2.3 dB.

IV.C. No Soft-Symbol Scaling

Decoding of LDPC codes iteratively refines the LLRs of the received symbols through a so called min∗

function. The binary min∗ of two LLRs λ1 and λ2 is expressed as16

∗
min (λ1, λ2) = sign (λ1λ2)min (|λ1| , |λ2|) + s (|λ1| , |λ2|) (3)

where
s (λ1, λ2) = log

(

1 + e−|λ1+λ2|
)

− log
(

1 + e−|λ1−λ2|
)

. (4)

The positive term of s (λ1, λ2) can be ignored with little effect on decoding performance. The negative term
is in the range of [0, log (2)]. The lower range occurs when λ1 and λ2 are far apart in magnitude and the
higher range happens when λ1 and λ2 are close in value. So this adjustment factor in LDPC decoding
depends on the LLR values which in turn are functions of the combining ratio as seen in (2). So to maximize
decoder performance, an accurate estimate of combining ratio is required as discussed in IV.B.

However, if some performance loss can be tolerated, we could avoid the need to approximate the combining
ratio. This simplification is obtained by ignoring the adjustment term s (λ1, λ2) entirely and applying the
min approximation to the min∗ function. Even though the min operation still involves LLRs, but now
the combining ratio common to all LLRs can be factored out of the min comparisons. In another word,
computing the min operations on the channel LLRs with an arbitrary scaling factor would lead to the same
decisions on the code symbols just as if the true factor were used. This behavior would only be invalid if the
output of the min function is clipped to some limit and we will discuss this case with more detail in Section
V.D. The amount of decoding loss varies for different LDPC codes.

Some of the loss through the min approximation can be recovered. Notice that min∗ is, in fact, min
adjusted by a negative value that is in the range of [0, log (2)]. So the LLR confidence at the output of
the min∗ is min reduced by some number between 0 and 0.6931. The adjustment can be set to a constant
for all LLRs. This approach is known as “offset-min”18, 19 and can lessen the unfavorable performance gap
induced by the min approximation alone. The optimal constant and amount of performance gained back
will vary with different LDPC codes. Another way to approximate this negative adjustment factor for the
min function is by scaling the min output by a weight less than 1. The adjustments for both offset-min and
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scale-min are made at the check nodes over all the input messages (excluding the targeted update message)
and not at the binary level.

For the (2048, 1024) AR4JA LDPC code, we compare the software simulated error rate curves produced
by the min∗, min, offset-min, and scale-min decoders in Fig. 4. The min approximation (green-triangle)
incurs a one dB loss compared to min∗ (blue-square). About 0.8 dB SNR loss is recovered by “offset-min”
with the constant adjustment factor set to 0.25. This constant is dependent on the signal amplitude, A, and
is assumed to be ±1 in this simulation. About 0.7 dB SNR loss is recovered by scaling the min output by a
weight of 3/4. The scaling in this case is independent of signal amplitude.
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Figure 4. Comparing soft-symbol scaling algorithms in decoding of the (2048,1024) AR4JA LDPC code.

IV.D. Soft-Bit De-Randomization

A long run of constant 1’s or 0’s are often avoided in transmission in order to promote accurate symbol
timing recovery.20 To do so, sender data excluding the ASM is bit-randomized by XORing with a pseudo-
random number (PN) sequence before transmission. This operation is undone at the receiver by XORing the
incoming data with the same PN sequence in hard-decision decoding and by modulating signs of the code
symbol LLRs according to the PN sequence in soft-decision decoding. PN randomization also has an added
benefit of protecting quasi-cyclic LDPC codes from undetected decoder errors caused by receiver symbols
slips.21 We have implemented both the bit-randomizer and the soft-bit de-randomizer to comply with the
CCSDS standard.

V. Performance Results

We incorporate the topics covered in this paper into an FPGA hardware decoder and present the error
rate performances measured from the stand-alone decoder and the integrated receiver-decoder system in this
section.

V.A. Stand-Alone FPGA Decoder Performance

We have implemented the (2048,1024) AR4JA LDPC decoder on a Xilinx Virtex II-8000 FPGA. The fixed-
point decoder has an internal precision of 8-bits. Since the IN-SNEC Cortex receiver only outputs 3-bit
soft-symbols, we compare the performance of both an 8-bit input quantization and a 3-bit input quantization
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stand-alone FPGA decoder to a floating-point software decoder. For a 3-bit quantization, we simply map
the 28 possible input values to 23 numbers. A stopping rule is applied in decoding with a maximum of 200
iterations allowed. The stand-alone configuration has a higher iterations ceiling because a software AWGN
channel is used to generate the received (codeword) frames. A software channel has a much lower throughput
than the data rate capable by the FPGA decoder. Therefore, for each received frame, the decoder can run
many iterations before the start of the next software generated frame. In Fig. 5, we see that an 8-bit input
quantization (green-square) led to a 0.1 dB gap and a 3-bit input quantization (red-circle) led to a 0.3 dB
gap from the floating-point (blue-diamond) software decoder. These error rate curves are obtained assuming
perfect knowledge of the combining ratio A/σ2. In practice, this ratio will carry some estimation error. We
plot the effects of imperfect estimation on decoder error rate performance also in Fig. 5. The SNR (or
Eb/N0) at the decoder input is related to the combining ratio and computed as A2

/σ2. Three curves, each
gathered by assuming a fixed combining ratio across the SNR operating range between 1 dB and 3 dB, are
plotted. The cyan-triangle curve assumes a combining ratio that corresponds to a 0 dB SNR. The purple-x
curve assumes a combining ratio that corresponds to a 1.25 dB SNR. And the gold-diamond assumes a
combining ratio that corresponds to a 4 dB SNR. We see that decoder performance degrades gracefully
with an overestimation of the combining ratio. That is, for a slight overestimation (purple-x), the decoder
performance is almost indistinguishable from one that has perfect knowledge of the combining ratio. Even
with a larger overestimation (gold-diamond), the additional performance gap is only 0.3 dB. Whereas, the
decoder performance degrades much more rapidly with an underestimation of the combining ratio as seen
in the 1 dB gap marked by the cyan-triangle curve. If we have only a rough idea of the operating point, we
can be aggressive in using a stronger approximation of the combining ratio in practice and still produce an
error rate curve that is close to that generated with a perfect knowledge of the signal amplitude and noise
power parameters.

σ

Figure 5. Stand-alone FPGA decoder performance for the (2048,1024) AR4JA LDPC code.

V.B. Integrated Performance with a Conventional Frame Synchronizer

Our first integration attempt with the IN-SNEC Cortex receiver involved the use of a conventional hard-
decision frame synchronizer. The decoder would hard-limit the 3-bit soft-symbols into binary decisions and
cross-correlate the decisions with the 64-bit CCSDS ASM and compare the correlation metric to a predefined
threshold. For any single fame of data, if the metric sums to a value greater than the threshold, the frame

9 of 14

American Institute of Aeronautics and Astronautics



synchronizer declares a codeword found and flags the start of LDPC decoding. The measured receiver-
decoder error rate performance is plotted (green-square) in Fig. 6. A codeword boundary is declared when
56 out 64 bits match. We also provide the stand-alone 8-bit FPGA decoder curve as a benchmark. We
point out that this combined curve exhibits a behavior that matches exactly to that predicted by software
simulation as discussed in Section IV.A and seen in Fig. 2. This green-square curve traces the outline
of two curves that intersects at an Eb/N0 of 3.5 dB. To the left of the intersection, the decoder error rate
dominates and to the right of the intersection, the frame synchronization error rate dominates. Clearly,
an improved frame synchronization algorithm is required to garner the full power of this LDPC code. A
measurement error bar is also drawn in the plot due to the difficulty of measuring system Eb/N0 accurately in
the laboratory especially when the SNR is low. The IN-SNEC receiver provides a reading but this number
fluctuates frequently in low SNR regions. Measurements by the power meter is also unstable. Generally, the
fluctuations are within ±0.5 dB in both cases.
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Figure 6. Integrated receiver-decoder performance with a conventional frame synchronizer.

V.C. Integrated Performance with the Massey Frame Synchronizer

We proceed to remove the frame synchronizer error floor and harness the full error-correcting power of the
(2048,1024) AR4JA LDPC code by applying the Massey frame synchronization algorithm and averaging over
two frames. To avoid the need to save a frame length of correlation metrics, we consider only the top four
candidates every two frames. Our approach is described in Section IV.A. Notice that no SNR-dependent
threshold is needed because the algorithm always declares the position in a frame length of data with the
maximum Massey metric as the start of a codeword frame. Therefore, this improved frame synchronizer is
automatic and does not require configuration.

We plot the integrated receiver-decoder performance curve in Fig. 7. This curve is measured assuming
a constant combining ratio which is estimated from histograms collected at the 3-bit soft-output of the
IN-SNEC receiver with an Eb/N0 of 2.5 dB. The steps to approximating a combining ratio are explained in
Section IV.B. The absence of a premature error floor in the plot when compared to Fig. 6 confirms the
effectiveness of the improved frame synchronizer. The true error correcting power of the (2048,1024) AR4JA
LDPC code is observed and the sharp downward slope of measurement highlights the code’s waterfall region.
The combined receiver-decoder implementation loss is less than 0.8 dB at a WER of 1e-7. A stopping rule is
applied to the decoder and a maximum number of 70 iterations is allowed. The limit on the iteration ceiling
is due to the high information rate at the output of the receiver. Compared to the stand-alone case, the 0.8
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dB SNR gap comprises both receiver and decoder implementation loss. Decoder degradations include going
from an 8-bit to a 3-bit input precision as well as running less than the 200 iterations used in simulations
with a slower software channel.

σ
σ

Figure 7. Integrated receiver-decoder performance with the Massey frame synchronizer.

V.D. Integrated Performance with min∗ and Scale-min

We plot the measured IN-SNEC receiver-LDPC decoder performance with the scale-min and min∗ algorithms
in Fig. 8. A randomly generated distribution that best matches to a histogram of the receiver soft-symbol
output collected at an Eb/N0 of 2.5 dB is first found by sweeping through the estimation parameters, A, σ2,
and f . A combining ratio is then computed from the best estimated A and σ2. The LLR scaling factor is
again 2A/σ2 or 2α. To emulate the effects of inaccurate combining ratio estimation, we scale the soft-symbols
by 0.5x, 1x, 1.5x, and 2x the scaling factor or equivalently by α, 2α, 3α and 4α. The best performance is
of course given by min∗ with the 2α combining ratio scaling identified by the dash-* curve. Note that even
this curve is not the optimum because the proper combining ratio changes once the operating point deviates
from 2.5 dB. However, this is what we can best do in practice.

In the plot, scale-min curves are solid and the min∗ curves are dashed. We see that the scale-min behavior
is in general invariant to scaling by different combining ratios. In fact, scale-min with the best guess ratio
offers a performance almost identical to min∗ with the same ratio. Scale-min performance with 1.5x and 0.5x
does not change much either. However, scale-min with 2x exhibits a floor likely caused by saturation of the
LLRs due to the larger starting values of the LLR messages. We observed that decoding failures in this case
almost always comprise only a few rogue bits in the punctured positions with high check degrees. All of the
information bits are in fact correct. We conjecture that some of the higher degree messages might be pinned
prematurely to an incorrect decision not allowing progressive refinements of the code symbol reliabilities.
More study is required to fully explain this behavior. Nonetheless, We could avoid this floor by initializing
the decoder LLR mapping to small starting values.

We observe that min∗ is much more sensitive to the combining ratio accuracy. With the exception of
scale-min 2x (red-triangle), all of the min∗ curves except the best lie to the right of the scale-min curves.
Moreover, underestimating the combining ratio could incur a large penalty as indicated by the min∗ 0.5x
(gray-square) curve. Best LDPC decoding performance can be obtained by min∗ if the combining ratio can
be estimated, otherwise, a robust decoding performance can be achieved by using the scale-min approach.
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Figure 8. Comparing min
∗ and scale-min. Here the min of the check nodes are scaled of a factor of 3/4.

V.E. Integrated Performance with a Legacy Code

To get an idea of the additional coding gain offered by LDPC, we compare the Constellation selected
(2048,1024) AR4JA LDPC code with the legacy concatenated Reed-Solomon and Convolutional Code (RS+CC)
currently implemented in the Space Network (SN). The legacy Reed-Solomon code is defined over GF(28)
so every code symbol is a byte. The codeword length is n = 255 bytes and the information length is k = 223
bytes. The legacy Convolutional Code has a constraint length 7 and rate 1/2. SN supports concatenation
of the two codes with various interleaving depths (ID) between one and five. The reason for interleaving is
to distribute continuous errors across many codewords and therefore, increase the code’s immunity to error
bursts. A longer interleaving depth also leads to an increase in the effective code length. And longer codes
perform better at a cost of higher decoding latencies.

The IN-SNEC Cortex receiver has a built-in decoder for both Convolutional and Reed-Solomon codes.
We configured the receiver with legacy settings and collected an error rate curve. We plot the measured
receiver-decoder curves of the 1024-bit AR4JA LDPC code and the 1784-bit RS+CC code with ID=1 in
Fig. 9. Legacy code with this simple interleave already has a decoding latency that is 1.7x longer than the
AR4JA LDPC code. Any interleave depth higher than one will incur a much longer latency. Moreover, the
legacy RS+CC code has a rate 0.43 less than that of the rate 1/2 AR4JA LDPC code. A lower code rate
corresponds to a higher codeword redundancy. A proper comparison between codes should normalize the
effects of codeword length and code rate. Even without these normalizations, the AR4JA LDPC code offers
a 1.2 dB coding gain over legacy RS+CC with ID=1.

V.F. Decoder Throughput and FPGA Resource Usage

To illustrate that the AR4JA decoder can be implemented on a readily available FPGA, we provide the
utilization of each decoder component in Table 1. We did not list numbers for the soft-symbol de-randomizer
because it took much less than 1% of the total FPGA resource. As expected, the AR4JA decoder core
consumes the most logic. The Massey frame synchronizer is simple to implement. But the buffer used to
average over two codeword frames in codeword synchronization takes up a moderate amount of logic. This
buffer could be transferred to an off-chip memory that is located on the FPGA motherboard to save logic.
Other functions such as DMA transfer and firmware interface also incur a small amount of resource. The
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Figure 9. Integrated receiver-decoder performance with (2048,1024) AR4JA LDPC and legacy RS(255)+CC(7,1/2)
with ID=1.

overall decoder implementation requires less than 60% of available logic slices and less than 38% of available
Block Random-Access-Memories (BRAMs).

Our decoder can support a clock speed of 60 MHz and performs a single decoder iteration in 72 clock
cycles. At 25 Mbps information rate, the K-band throughput requirement for Constellation, our decoder
can run on average 35 iterations per codeword. The average number of iterations for LDPC decoding varies
depending on the code construction, code rate, and operating region. Generally, the average number of
iterations in the decoding threshold region is about 14 iterations. So our prototype decoder developed on a
COTS FPGA board is already able to meet mission requirements.

AR4JA Massey Buffer Others Total/Avail Percent

Slices 21,900 220 5,590 117 27827/46592 59.7%

BRAM 30 0 0 33 63/168 37.5%

Table 1. Xilinx Virtex II-8000 FPGA resource utilization.

VI. Summary

Much progress has been made in the last decade in developing advanced forward error-correcting (FEC)
codes that approach the Shannon Capacity. Encoders and decoders for these new codes could be built to
work with existing transmitters and receivers to manage the cost of deploying new equipment. In this work,
we describe the challenges of integrating a stand-alone FPGA decoder with a COTS receiver. Some of the
challenges arise only because we are connecting two existing components, for example the need to build a
receiver-decoder interface. Other challenges apply across-the-board to both integrating COTS components
and building a custom modem from scratch, for example, the need to adopt an improved frame synchronizer.
For each challenge we propose a solution that can be practically implemented. To demonstrate our designs
and capabilities, we interface an AR4JA LDPC decoder developed on a FPGA board with a COTS high
data rate receiver and measure the combined receiver-decoder performance. Through repeated experiments,
we confirm that an implementation loss of less than one dB is possible and therefore, most of the coding gain
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evidence in theory can also be obtained in practice. Our techniques can benefit any modem that utilizes an
advanced FEC code. With this work, we provide a modular platform for continued hardware evaluation of
new FEC codes and also prune a low-cost path that enables phasing-in of new FEC technologies into existing
NASA infrastructure.
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