DSN Antenna Arraying; Its Past, Its Contributions to Achieving the Spitzer Space Science Mission Objectives, and Its Future Promise

Ivy Luong
Systems Sequence Engineer
Jet Propulsion Laboratory
California Institute of Technology
Overview

• Introduction
 – DSN Antenna Arraying History
 – DSN Antenna Arraying Advantages

• Missions Experiences
 – Voyager’s Experiences
 – Galileo’s Experiences
 – Spitzer’s Experiences,
 – Casini, Deep Impact, Stardust Experiences

• Future Arraying
 – Large Small Antennas Arraying Network
 – Uplink Array

• Conclusion

• Questions
History

• Antenna Arraying was introduced to Deep Space Network in early 1980s
 – alternative for the over subscriptions and single point of failure of the 70-meter antenna.
 • An antenna failure in an array would only degrade the performance but not halt the service as a single 70M would.
 – accommodate the high mission data return required to adequately investigate the outer planets.
 • Antenna Arraying can exceed the effectiveness of a singular 70 meter antenna, allowing for an increased in affective aperture beyond the present 70M capability.
Arraying Advantages

- Antenna Arraying holds possibilities for better performance, increased operational robustness, and implementations cost saving
 - Antenna Arraying has wider beam-width which allows greater pointing error tolerances.
 - allows for an increase in effective aperture beyond the present 70M capability
 - DSN system operability can be increased with a multiple aperture configuration
 - Malfunction in an array would only degrade the performance but not halt the service.
 - Maintenance flexibility which allows for little to zero downtime.
 - Smaller antennas are cheaper to build than larger ones.
 - Process for building multiple smaller antennas can be automated to reduce cost
Voyager’s Experiences

- Voyager has been using arraying service since the early 1980s
 - Currently DSN is still supporting VGR array passes twice a year
- Voyager required large numbers of images to perform global atmospheric fluid dynamics studies of Jupiter, Saturn, Uranus, Neptune, and Pluto
 - Arraying optimized the speed for real-time image returns
 - Large volume and image frequency exceeded anything that could be recorded on the digital tape recorder (DGT) for played back
- Earth’s distances from Jupiter multiplied drastically as VGR move to Saturn, then Uranus, and Neptune
 - Arraying enabled real-time return of edited images as frequent as every 4.8 minutes
Galileo’s Experiences

- Galileo planned to use its High-Gain Antenna (HGA) to enable high rates of science data return from Jupiter
 - Galileo’s HGA failed to deploy during its cruise phase
 - Low-Gain Antenna (LGA) can support at 10-20 bps vs 134 Kbps
- Galileo changed its mission plan of using 8.4-GHz X-Band to 2.3-GHz S-Band
 - DSN enhanced its three Deep Space Communication Complexes (DSCCs) to add new telemetry subsystem to handle Galileo’s low-signal conditions called DSCC Galileo Telemetry
 - Enhancements were made to the Block V Receiver (BVR) and Telemetry Channel Assembly (TCA) to provide Doppler and spacecraft emergency support
Canberra Deep Space Communication Complex (CDSCC) performed arraying techniques to enhance Galileo’s downlink signal

- Intercontinental arraying of Goldstone 70M and Canberra 70M
- Added two 34M to existing array of two intercontinental 70M
- Added a 64-meter radio telescope at Parkes to existing array
- This resulted an increased by a factor of ten to the data return of Galileo S-Band mission.
Spitzer’s Experiences

• Spitzer Space Telescope launched in 2003 and expected high science data return rate with desired 2.2 Mbps for downlink rate
 – Starting October 2005, single 34M can no longer support 2.2 Mbps, leaving to only 70M for downlink support
 – In 2006, DSN expected high contentions for 70M supports from Mars and other critical missions
 – Madrid Deep Space Communication Complex (MDSCC) 70M was planned for antenna hardware maintenance up to 3 months period

• Spitzer’s key operational objective is maximizing its science viewing efficiency due to its limited lifetime
 – Since launched, Spitzer has maintained a 90% science viewing efficiency
 – Spitzer’s downlink passes play very critical roles to maximize its science viewing times which is to have shorter downlink passes.
Spitzer’s Experiences (cont.)

- Spitzer requested for a study by the DSN to analyze the ability to provide 70M support for the mission in 2006
 - DSN concluded the study with recommendations for Spitzer to receive DSN arraying supports
 - Arraying supports of multiple 34Ms can easily be accomplished with no conflicts for Spitzer’s minimal requirements and moderate viewperiod

- Spitzer is required to modify its operational process and ground software to support DSN antenna arraying
 - Changes needed in sequence generation (SEQGEN) adaptation tools/software
 - Read updated DSN schedules with additional arraying keywords
 - Generate array compliant DSN keyword file (DKF) for DSN arraying supports
Spitzer’s Experiences (cont.)

- Spitzer is required to modify its operational process and ground software to support DSN antenna arraying
 - Changes needed in multi-mission sequence generation (SEQGEN) adaptation tools/software
 - Read updated DSN schedules with additional arraying keywords
 - Generate array compliant DSN keyword file (DKF) for DSN arraying supports
 - Changed the processing procedures of the Spitzer Science Center (SSC), Mission Sequencing Team (MST), and Flight Control Team (FCT)
 - New schedule format, new DKF format, new uplink processes
 - By end of 2005, Spitzer was ready to support 2, 3, and 4 stations arraying
Spitzer’s Experiences (cont.)

• Spitzer was named the most productive NASA mission in 2007 Science News metric
 – Quarterly reviews in 2006 and 2007 reported Spitzer with above 90% science efficiency
 – Spitzer warm mission will required the use of arraying to receive higher data rate and/or at lower elevation angles
 – Spitzer is looking forward to continue receive support from arraying to maximize its science efficiency.

• Spitzer has experienced and overcome all of the 70M downtimes due to maintenance, hardware failures, and other mission contentions period
 – Possible lower data rate to 1.65 Mbps or 1.1 Mbps with arraying versus 550 Kbps with a single 34M
Other Missions’ Experiences

• Cassini committed to 4Gb of data per day during its orbital phase in Saturn orbit
 – Arraying of a 70M and 34M to produce sufficient margin required
 – Increased the data return by 25 percent in comparison to a single 70M

• Stardust’s encounter with Wild 2 comet avoided data lost from single-event risks
 – Arraying of two 34M to cut transmission time in half

• Deep Impact’s single event observation of the impactor released into the asteroid was speedily received
 – Assured data playback or the highest-valued arrived in a short amount of time to avoid data loss due to possible mishap
Future Arraying

- **Smaller antennas array network**
 - Arraying of small 6-12 meters antennas to achieve large aperture
 - Using automation to support monitor & control operations
 - Help fulfill high reliability, reduced cost, and high level of adaptability to evolving mission needs.

- **Uplink Arraying**
 - Arraying 2 identical uplink antennas can resulted four times the power of a single antennas.
 - Current technology still have some problems needed to be resolved.
 1) How to calibrate phase N numbers of uplinks in the far field using a target with short round trip light time
 2) How to repoint the uplinks at the desired target S/C without losing the calibration
 3) How to maintain stable phase for an 8 hours tracks

DSN has experiments with bouncing two uplinks off the Moon and receiving the reflection back at a station.
Conclusions

• Antenna Arraying has successfully support DSN communication & tracking operations for decades
 - Missions with arraying supports: Voyagers, Galileo, Cassini, Stardust, Deep Impact, Spitzer
 - All have successfully used antenna arraying for different purposes
 - Missions have demonstrated that arraying is indeed needed

• Antenna arraying will be an increasingly integral strategy for supporting NASA’s future missions
 - Future mission requirements will demand additional innovation in the DSN.
• QUESTIONS?