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The Cassini Attitude and Articulation Control Subsystem (AACS) Flight Software 
(FSW) has achieved its intended design goals by successfully guiding and controlling the 
Cassini-Huygens planetary mission to Saturn and its moons.  This paper describes an 
overview of AACS FSW details from early design, development, implementation, and test to 
its fruition of operating and maintaining spacecraft control over an eleven year prime 
mission.  Starting from phases of FSW development, topics expand to FSW development 
methodology, achievements utilizing in-flight autonomy, and summarize lessons learned 
during flight operations which can be useful to FSW in current and future spacecraft 
missions. 

Acronyms 
AFC = AACS Flight Computer 
ALF = Assisted Load Format 
ATLO = Assembly, Test, and Launch Operations 
BCIOU = Bus Controller, Input/Output Unit (the Bus Controller for the AACS bus) 
COTS = Commercial Off-The-Shelf 
dof = degree of freedom 
ECR = Engineering Change Request 
FSC = Flight Software Change report 
FSDS = Flight Software Development System 
FSTB = Flight Software Test Bed 
ITL = Integrated Test Laboratory 
J2000 = Earth mean equator coordinate frame and equinox at year 2000 epoch 
MIPS = Million Instructions Per Second 
MRO = Memory Readout 
MTA = Mono-propellant Tank Assembly  
OTM = Orbit Trim Maneuver 
PIU = Pixel Input Unit 
RCS = Reaction Control System 
ROM = Read Only Memory 
RTIOU = Remote Terminal Input Output Unit 
RTM = Requirements Test Matrix 
RTI = Real-Time Interrupt designated to establish an 8 Hz rate group 
RTX = Real-Time Executive Operating System from TLD 
RWA = Reaction Wheel Assembly 
SCCS = Source Code Control System 
SID = Star Identification 
SOI = Saturn Orbit Insertion 
SSR = Solid State Recorder (mass storage unit)  
TCM = Trajectory Correction Maneuver 
TRR = Test Readiness Review 
XBA = Cross-strap Bus Adapter 
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Nomenclature 
ΔE = Change in spacecraft energy (km2/s2) 
ΔV = Change in spacecraft velocity (m/s) 

I. Introduction 
ASSINI is the last and largest interplanetary spacecraft built in the twentieth century – arguably one of the most 
sophisticated robotic missions to date.  The end product is a testament to an impressive joint international 

partnership.  Cassini was built and is now managed for NASA by the Jet Propulsion Laboratory (JPL).  The 
European Space Agency (ESA) built the Huygens probe, which piggybacked its way to the second largest moon in 
the solar system – Titan.  The Agenzia Spaziale Italiana built the high gain communication antenna (HGA) which 
points to Earth practically every single day, since Cassini’s transition to use the HGA1 on 1 February 2000, to 
transmit or receive data to or from Earth.  Along with the three agencies, a total of seventeen nations contributed to 
the spacecraft and science instrument designs, fabrications, and analyses.   

C 

Just as impressive is the testament of symbiotic collaboration between software and hardware. Figure 1 is an 
illustration of the spacecraft and its instruments.  While Cassini stands at 6.8 meters in height and 4 meters in 
diameter (15 meters with magnetometer deployment) and is constructed with science instruments and engineering 
attitude control sensors and actuators, it is the software that becomes the glue to control and monitor the entire 
spacecraft.  In particular it is the Attitude and Articulation Control Subsystem (AACS) Flight Software (FSW) 
which is the scope of this paper.   

 
Figure 1. The Cassini Spacecraft. This is the final design of the Cassini-Huygens spacecraft with its twelve 
science instruments and Huygens probe.2  The spacecraft is shown without the hybrid Kapton-Mylar Multi-Layer 
Insulation (MLI) layer which thermally isolates it in space. 

As an introduction, a brief history of the mission and AACS responsibilities are presented.  This paper 
establishes a timeline of events from initial software consideration to current day software interactions in operations.  
Key details of the FSW design, development, and test methodologies used to lead up to launch are described.  After 
launch, the operations team took responsibility of Cassini.  As planned, AACS FSW continued to be developed and 
tested to support the interplanetary cruise, critical events at Saturn’s arrival and encounter at Titan, and to meet 
mission objectives in the Saturnian orbit.  A history of in-flight software updates is revealed which leads to lessons 
learned during FSW development with operations in mind.  Maintainability, FSW patching, parameter 
modifications, and legal range checking are some of the topics of choice.  The identification of actions taken 
throughout the development of Cassini AACS FSW solidifies key software philosophies which aid in the 
development and maintenance of a successful mission. 
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II. Mission Background 
Cassini-Huygens launched on a Titan IV-

B/Centaur in the early morning of 15 October 
1997 from Cape Canaveral.  This was the 
beginning of its interplanetary in-flight operations 
to the sixth planet in the solar system – Saturn.  
While previous missions were flybys, Cassini is 
the first to orbit the planet.  Cassini is the third 
heaviest (5,574 kilograms or 6 tons) spacecraft to 
be launched.  Because of the weight, there was 
not a launch vehicle powerful enough to send it 
directly to Saturn.  To aid in reaching its target 
and reducing fuel consumption, Cassini flew a 
Venus-Venus-Earth-Jupiter gravity assist 
trajectory to boost its velocity to reach Saturn in 
6.7 years (this period was considered to be the 
cruise phase of the mission.)  Figure 2 illustrates 
the interplanetary trajectory design.  The prime 
tour would begin after a successful Saturn Orbit 
Insertion (SOI) on 30 June 2004.  Six months 
later, Cassini successfully ejected the Huygens 
probe on 24 December 2004, where it finally 
reached its destination to Saturn’s largest moon 
Titan on 14 January 2005, and transmitted three hours and forty minutes3 of scientific data to Cassini.  The probe 
data from Cassini was relayed to ESA for analysis.  Cassini then embarked on a seventy-four orbit Saturnian prime 
mission. 

 
Figure 2. Cassini Spacecraft Mission Timeline. This time 
line describes the Cassini trajectory to Saturn from its launch, 
inner and outer cruise, to the beginning of its prime mission. 
 

Throughout Cassini’s four year prime mission, it has had forty-four encounters with Titan as well as three flybys 
of Enceladus.  The surprise discovery of water expulsion from the southern surface region of Enceladus prompted a 
redesign of the extend mission which was approved in April 2008.  Another twenty-seven Titan flybys and seven 
Enceladus flyby encounters are slated for a two year extension to July 2010. 

While it seems like all the excitement started at launch, there were prior decades of ingenious planning and work 
to get to the launch pad.  NASA’s Mariner Mark II program began in 1987. In 1989, the first two spacecraft 
missions were initiated from this program:4  Cassini-Huygens to Saturn and Titan, and the Comet 
Rendezvous/Asteroid Flyby (CRAF).   Both missions, with very different payloads and scientific objectives, were to 
be very similar in design goals.  Both spacecraft were to encounter an asteroid with objectives of having many 
shared components and common designs.  These goals initiated an object oriented software approach, to be modular 
and reconfigurable in design, which are described in the next two sections. 

In January 1992, budget constraints were imposed and CRAF was removed from the program.  The Cassini 
design and mission were both simplified.  A two-degree-of-freedom articulated High Precision Scan Platform, and 
one-degree-of-freedom probe relay antenna and continuous rotating turntable were removed from the design.  The 
mission no longer included an asteroid encounter.  All instruments and payloads became body fixed, which resulted 
in a restructure and component simplification of the software (with the removal of articulation architecture.)  All 
instrument, sensor, and antenna pointing would have to now be accomplished by reorienting the entire spacecraft.  
Simplification has its ramifications in that now, operations sequencing becomes more complex having to balance 
between maximizing science return and transmission of data back to the ground.    

III. AACS FSW Functional Design Background 
Several papers have been published describing the AACS FSW design methodology and architecture prior to 

software implementation and the launch of Cassini.5-6  For continuity, the pertinent highlights will be described and 
referenced with updated final designs throughout Sections III–VII of this paper.  The majority of the proposed 
CRAF/Cassini articulation (platforms, articulating antenna, and turntable) control aspects of the FSW capabilities no 
longer existed.  The Main Engine gimbals could be characterized in the category of articulation, which were still 
under FSW control; however with today’s standards, this is commonplace and industry would refer to the AACS 
subsystem as the Attitude and Control Subsystem (ACS).  This paper will refer to both acronyms to represent the 
subsystem. 

 
American Institute of Aeronautics and Astronautics 

 

3



From 1990 to mid 1991, prototype evaluations were performed which resulted in choosing an IBM MIL-STD-
1750A 1.28 MIPS microprocessor with 512 kilo-words of Random Access Memory (RAM), 8 kilo-words of 
Programmable Read Only Memory (PROM), supported by TLD Systems Ada cross-compiler and real time 
executive (RTX) operating system. These were the beginning steps to support the object oriented design philosophy 
to address the CRAF/Cassini missions.  Early in the design phase, Command and Data Handling Subsystem (CDS) 
and ACS were targeted to have their own dedicated processors. 
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Figure 3. AACS Functional Block Diagram. Illustrates the ACS-related hardware that needs to be supported
by the FSW. 

CDS is responsible for distributing commands to various subsystems and coordinating all onboard 
intercommunications.  The subsystem collects and packetizes all science and engineering telemetry, manages data to 
and from two 2.1 gigabit usable RAM Solid State Recorders (SSR), and stores all the onboard command sequences 
uplinked from the ground.   

For ACS, mission requirements mandated a full dual-redundant system which included redundant data buses, 
prime and backup (block redundant) AACS Flight computers (AFC), and cross-strapped redundant hardware 
configurations, as shown in Figure 3.  Cassini is a three-axis stabilized spacecraft and maintains control (typically 
+/- 2 milli-radians deadbanding) using four thruster clusters of four one-Newton RCS thrusters (eight are prime, 
eight are backup.)  For precision pointing control (typically +/- 40 micro-radians deadbanding), three RWAs are 
used.  The prime RWA configuration is three orthogonal (to spin axis) mounted wheels, and the backup RWA is 
mounted on an articulatable platform.  Illustrations of actuator configurations are shown in Figure 4.  The Attitude 
and Control Subsystem responsibilities are to: 

1) Perform attitude initialization by acquiring the Sun, using a two-dof Sun Sensor (SSA), following 
separation from the launch vehicle, or after a fault recovery. 

2) Perform attitude determination mapping identified stars, using a three-dof Stellar Reference Unit (SRU) 
and Star Identification (SID) algorithms. 

3) Perform attitude propagation between star updates, using an Inertial Reference Unit (IRU) which contains 
four Hemispheric Resonator one-dof gyroscopes. 

4) Perform attitude control using RCS thrusters, RWAs, or a 445-Newton gimbaled Main Engine (ME) for 
propulsive maneuvers. 

5) Perform control maneuvers to:   
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a. Point the fixed telecommunications antenna (high gain or low gain) toward Earth; detumble the 
spacecraft after probe separation; point the high gain antenna toward the probe for probe relay. 

 

 
Figure 4. AACS Actuator Configurations. Illustrates the position of RCS thruster clusters, Main Engine
gimbals, and RWA positions and alignments. 

b. Perform commanded slews (turns) of the spacecraft as required for Trajectory Correction 
Maneuvers (TCM), science observations, and science instrument calibrations. 

c. Point instruments on the remote science pallet toward targets that, in general, move relative to 
inertial space. 

d. Hold the spacecraft still for probe release and gravity wave measurements. 
e. Turn the spacecraft at a constant rate about the Z-axis while pointing the Z-axis at the Earth for 

fields and particles measurement with downlink. 
f. Point the main propulsion engine in the desired inertial direction during a Main Engine burn. 
g. Perform axial (Z-axis) TCMs using the RCS thrusters. 

6) Provide sufficient engineering data in the telemetry stream to support science data analysis and ground 
support operations. 

7) Provide Fault Protection for ACS and certain Propulsion Module Subsystem functions.  This involves 
detecting faults and implementing corrective actions to maintain performance and functionality of the 
spacecraft. 

The Attitude and Control Flight Software is responsible for implementing subsystem requirements in addition to 
timing, scheduling, and memory functions.  Responsible functions are: 

1) Attitude control. 
2) Autonomous attitude estimation and inertial vector propagation. 
3) Star identification. 
4) ΔV (velocity change) control. 
5) Message Handling:  ACS messages received and transmitted via the CDS bus. 
6) ACS telemetry. 
7) Memory usage including loading, mapping, protection and verification. 
8) AACS hardware configuration and interface management including AACS bus control. 
9) Timekeeping and scheduling. 
10) AACS mode control. 
11) Autonomous fault detection, analysis, and recovery. 
12) ROM (PROM) functions – Startup ROM which includes many of the memory usage functions, 

initialization, RAM physical mapping, RAM loading, and load verification. 
ACS FSW is a set of two software programs which reside in the AFC:  The PROM program and the RAM program.  
PROM is described above.  The RAM program performs all nominal and fault response functionality once loaded 
and verified in RAM.  Program attributes are described in detail in the Software Specification Document7 and in this 
paper. 
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IV. Software Architecture Background 
Rather than continuing to implement the historical software development approaches from past projects, which 

had software engineers piece together algorithms into flight code and adding fault protection as an afterthought – the 
architects for Cassini AACS adopted another approach:  The concept of interconnected state machines.  States 
capture mode, sequential and dynamic control, state dynamics, and discrete aspects that need to be represented in 
software.  State diagrams provided an avenue of understanding to others outside the software community.  This 
brought together and leveled the playing field between analysts, system engineers, and software developers.  Harel 
statecharts and transition diagrams8 were tailored to meet Cassini needs and became a requirement and deliverable to 
capture detailed design.  Since then, variants of Harel statecharts have become a vital part of the Unified Modeling 
Language.  State machines addressed inherent shortcomings of past missions where software functions would use 
shared or common data pools to communicate or react.  The testability of undesirable interactions was of concern 
with the manipulation of common data.  Advancing state in state machines is a well defined process.  Allowed 
transitions are explicitly defined and internal processes related to state history are hidden; which lend well to the 
object oriented methodology.    

Event-driven actions are explicit and lend to achieving synchronization.  For Cassini and JPL, all this was a new 
and evolving concept.  A great effort was focused 
on prototyping software development 
methodology including personnel interactions, 
product delivery, and development processes 
(both software and testbed related).  This effort 
eventually laid the groundwork for the object 
oriented approach used in the software 
development process.  An object refers to a set of 
related data and the operations which act on that 
data.  In other words, an object is made up of 
states where operations (processes) act on its 
attributes (data) and change its state.  The 
processes of an object are implemented as 
procedures or subprograms within Ada.  The most 
important paradigm for the object oriented 
approach is that the data in an object may only be 
modified by operations of that object where no 
data are shared that is common.  This results in 
isolation of algorithms and parameters for an 
object and minimizes coupling between objects. 

 
Figure 5. Flight Software Context Diagram.5 Software is 
represented as an oval, lines & arrows indicate data flow, 
boxes are terminators or external interfaces. 

A. Context Diagram Description 
Initial architecture design started with the FSW context diagram as depicted in Figure 5.  A context diagram 

simplifies the identification of FSW within the attitude control system.  Immediate benefits from these diagrams are 
that subsystem requirements analysis is aided by indentifying interfaces and dependencies.  The FSW has five 
primary interfaces:5  

1) The 1750A computer and its Operating System. 
2) The Command and Data Handling Subsystem (CDS) via the CDS bus. 
3) The Stellar Reference Unit (SRU) via the Pixel Interface and the AACS bus. 
4) Other AACS hardware via the AACS bus including: 

a. The Sun Sensors – Sun Sensor Electronics (SSE) 
b. The Accelerometer – Accelerometer Electronics (ACCE) 
c. The Gyros – Inertial Reference Unit (IRU) 
d. The Propulsion Module Subsystem (PMS) 
e. The Engine Gimbals – Engine Gimbal Assembly (EGA) 
f. The Reaction Wheels – Reaction Wheel Assembly (RWA) 
g. The Backdoor ALF Injection Loader – (BAM) 

5) AACS Support Equipment (SE), for testing, via the Direct Access Unit (DAU) which is disabled in flight.  
However, DAU memory is used in flight to store the Fault Protection (FP) event log and post-mortem data. 
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The primary interfaces also identified the next level of interfaces which were necessary since both buses and 
hardware support had to be represented in FSW.   The AFCs are remote terminals on the MIL-STD-1553B CDS bus, 
which can support up to 31 remote terminals.  Each AFC receives ground commands via the CDS bus.  The prime 
AFC interfaces with its peripheral hardware on a dedicated MIL-STD-1553B (electrical standards) AACS bus with a 
custom protocol that can support up to 255 remote addresses and bus transactions of up to 255 data words.9

There are three bus interfaces:5  The CDS bus interface, the Pixel interface, and the AACS bus interface.  The 
CDS bus manager sets up and maintains the protocol to the Bus Interface Unit and handles handshake interrupts.  
The Pixel Interface Manager sets up the Pixel Interface Unit (PIU) to store pixel data to an assigned address, enables 
writing to PIU memory, and services transmission error interrupts.  The AACS bus manager accepts packets from 
the hardware managers and prepares transmission packets for the bus. It handles packet transmission and receipt 
from memory shared with the Bus Controller as well as generating and servicing handshake interrupts. Reply 
packets from the hardware are distributed to the individual hardware managers. 

B. Level 0 Architecture Diagram 
The highest level of architecture diagram is the dependency diagram, as illustrated in Figure 6.  Early in the 

design process, control calls are not known and the Level 0 diagram helps establish hierarchy.  At the top is the 
external operating system which links to the FSW executive (FSX) as a result of an interrupt, system startup, or via 
system calls.  FSX services interrupts, handles timing services, schedules all execution, initiates each object’s 
execution, and performs tasking.  Telemetry, XBA Manager, Fault Recovery, Fault Analyzer, Command Handler, 
Configuration Manger, and Mode Commander are specific high-level FSW objects identified to fulfill functions 
required by lower-level objects.  The objects share no data. Only global type definitions and constants resolved at 
compile time are shared. 

To highlight a few FSW objects, the XBA is the AACS interface to the CDS bus which supports both receive 
and transmit transactions.   Telemetry can fetch telemetered data from any object which may be sent to CDS by 
interfacing with the XBA Manager.  Faults may be raised by any object and sent to the Fault Analyzer.  If recovery 
involves commands, fault commands take precedence over CDS commands.  Commands from CDS, routed through 
the XBA Manager, or Fault Recovery commands 
interface with the Command Handler for 
processing.  The Command Handler determines 
command priority, conflict resolution, and routes 
the proper commands to the Mode Commander 
(Software Configuration Manger) or Hardware 
Configuration Manager for execution. 

C. Level 1 Architecture Diagram 
Level 1 architecture is also referred to as the 

control architecture.6  The Mode Commander 
maintains the software configuration and 
allowable changes in the software configuration 
(mode changes).  A detailed description of mode 
transitions is captured in Section VII.  The Mode 
Commander sets goals for attitude control and 
manages the states of attitude determination.  
Figure 7 illustrates a three layer hierarchy:  The 
top level commander, mid level controller, and 
low level hardware mangers.  ACS functionally 
has two primary goals:  Attitude determination 
and Attitude control. 

Attitude determination is comprised of the 
Attitude Estimator and Star Identifier (SID), and 
estimates current attitude on data received by 
ACS hardware sensors via hardware managers.  
Attitude error is computed with the cycling of 
data between determination and control and 
comparing current attitude with 
commanded/desired attitude. 
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Figure 6.  Level 0 Flight Software Architecture Diagram. 5

Highest level FSW representation.  Rounded rectangles
represent objects, rectangles represent external interfaces or
terminators, arrows indicate direction of dependency, 
arrowheads indicate source or sink dependencies on all 
objects. 
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Attitude control is comprised of the Attitude Commander, Inertial Vector Propagator, and Attitude Controller.  
The Attitude Commander generates attitude command profiles (rate, position, acceleration) for pointing.  The 
Inertial Vector Propagator models time-varying inertial vectors in the inertial frame, and also serves as the 
repository of spacecraft fixed vectors, i.e. boresights, of interest.  The inertial vector and body vector tables are 
configurable.  The Attitude Controller responds to commands and controls the spacecraft attitude.  Control is 
performed using ACS equipped actuators made up of RCS thrusters, reaction wheels, or Main Engine gimbals.   

 
 
Figure 7. Level 1 Flight Software Architecture Diagram.6 The next level of architecture to show control by 
indicating direction of event call functions between objects.  The small arrows indicate direction of data flow. 

There is a governing Constraint Monitor which checks estimated and desired attitudes for geometric violations 
that may potentially harm the spacecraft payload such as prolonged Sun exposure. 

D. Object and State Transition Diagrams 
From the Level 1 architecture diagrams, the lowest level nodes are termed an object.  Object diagrams depict 

detailed control and data flows not captured in the Level 1 diagram.  

E. State Transition Diagrams 
State transition diagrams capture both state and data flow in one diagram.  A state transition occurs when an 

event labeling that transition occurs.  The procedure and function calls represented in the object diagram are the 
events of the state transition diagram.  The event triggers the state transition and continues to completion without 
interruption.  Datum is represented by a state variable allowing the variable to take on an arbitrary number of states.  
A state can host an entire state machine within it by partitioning.  Nested state machines can run in parallel with 
machines in other partitions. 

V. ACS FSW Development Strategy 
Cassini FSW development and testing for the ACS kept to strategies described in JPL’s legacy D-4000 Software 

Management Standards Package.  Cassini FSW requirements and practices have influenced JPL’s current Software 
Development Requirements (SDR) plan and Flight Project Practices. These documents describe the “whats” that are 
needed for software development.  Currently, JPL software development is going to Software Development 
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Standard Processes (SDSP) which allows tailoring of project development goals to comply with the SDR.  The 
SDSPs describe the “hows” to develop software.  Figure 8 identifies JPL’s project life cycle phase development.  
Cassini is considered a legacy JPL project which met most if not all of JPL’s current development standards.  Some 
documentation and review requirements were different, but Cassini’s philosophy of design, development, and 
testing were consistent with today’s standards and frameworks. 
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Figure 8. JPL Life Cycle Phases. Phase development also applies to Cassini, however considering Cassini is a
legacy project, some review names and requirements have evolved to meet today’s standards. 
 

For many missions, FSW development ends at launch, where it then goes into a maintenance or sustainment 
phase.  Cassini ACS FSW design and development took on a two phased approach.  For the first phase, in the 
allotted time, FSW code would be ready for launch and early cruise operations.  The second phase involved outer 
cruise, critical sequence, and prime mission support FSW development, which would be deferred and uplinked in 
flight during the 6.7 year cruise phase of the mission and beyond. 

VI. Pre-launch Phase FSW Development, Implementation and Test Methodology 
Cassini ACS FSW was based on an incremental 

development model as shown in Figure 9.  The object 
oriented development approach created an 
environment with minimal and clearly defined 
interfaces which improved future design and 
integration efforts.  FSW development and testing 
spanned over six years prior to launch.  Modifications 
to ACS FSW are ongoing to meet current mission 
objectives for the prime and extended mission phases, 
which are explained in Section VIII.  These 
methodologies will reveal the FSW development and 
test philosophy used to establish one of the most 
successful interplanetary missions to date. 

A. Pre-launch FSW Development Methodology 
Software development officially starts after the 

Preliminary Design Review (PDR), which marks the 
beginning of the Implementation phase of a project’s 
lifecycle.  Within the Implementation cycle are 
Detailed Design; Fabrication, Assembly, Test & 
Launch Operations; and the Operations & Sustainment 
phases.  These phases are commonly known as Phase 
C, D, and E, respectively at JPL.  Cassini is now in 
Phase F which is designated for closeout.  Cassini 
refers to this phase as extended mission operations and 
support.   

 
Figure 9. Incremental Development Model. Also 
known as a multi-build model, the first build has a subset 
of planned capabilities and following builds add 
capabilities.  Cycles can repeat without deliveries to 
operations. Flow-up arrows represent feedback from 
prototyping. 
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For CRAF/Cassini, the PDR was held 
in November 1991.  Due to project descope 
activities, a delta Cassini (without CRAF) 
PDR was held in November 1992.  The 
Critical Design Review (CDR) was held in 
December 1993.  Incremental software 
builds were released from September 1994 
to October 1997.  Each build entailed 
detailed design peer reviews, software 
design reviews, code peer reviews, unit test 
plans and testing, unit test peer reviews, 
integration and acceptance testing, and test 
readiness reviews before delivery to 
system-level integration and testing.  
Figure 10 can be referenced that illustrates 
the implementation flowchart.  Software 
development guidelines were established 
which identify, for each review in the build 
strategy, the focus of the review, materials 
needed to be reviewed, needed participants, 
and actions taken following action item 
closure.  All processes were adhered to and 
repeated when necessary. 

Since FSW development and deliveries 
were based on the incremental 
development model, the incremental FSW 
builds were separated and identified as 
follows: 

1) Builds A1 established the skeleton 
structure. 

2) Builds A2 introduced Control 
Algorithm capabilities.   

 
Figure 10. FSW build strategy for development and test. 5 This 
is the final build strategy established by early prototyping. 

Table 1. ACS FSW Pre-launch Builds 
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A2f+ (1/15/96)
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• Control algorithms and other mid-level processing were stubbed out 

SkeletonA1
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3) Builds A3/A4 integrated Fault Protection (FP). 
4) Builds A5/A6 were full functionality builds.  The BAIL functionality was added in A5 to address deep 

under-voltage AFC recovery, and contained other fixes to FSW.  Build A6 was the ACS FSW launch load. 
Table 1 captures key FSW build capabilities.  

B. Pre-launch FSW Test Methodology 
It is common that software testing begins before PDR by developing the test requirements and plan.  After PDR, 

FSW tool development begins and test cases are defined which also includes initial unit testing.  After CDR, unit 
and interface testing begins and continues to test FSW functionality and interface verification and validation.  This 
testing approach is used to support Test Readiness Reviews (TRR) and deliveries to Assembly, Test, and Launch 
Operations (ATLO).  Test milestones10 are:  Requirements Trace Matrices (RTM) development, test plan 
development, test case design, test case and procedure development, Test Readiness Review, test case execution, 
test anomaly reporting, test analysis, and test result reporting. 

Essential to the test program was the Software Test Plan.  The mode and state driven architecture established the 
method for how unit testing was performed and what the verification methods would be for pass/fail criteria.  Unit 
testing involved low-level verification of functions, monitoring of state or mode transitions, and boundary condition 
testing.  Future FSW interfaces were stubbed (simulation of called components not yet implemented) to allow the 
proper verification of each unit test.  Interfaces were un-stubbed once they became available.  All unit test results 
were peer reviewed for content, functionality validity, and results. 

Concentration was on testing interfaces between objects and requirement conditions specified in the AACS 
Functional Requirements Document, Software Specification Document, Interface Control Document, RTMs, safety 
requirements, and fault protection requirements.  Requirements could then be traced to the specific scenario or 
function tests.  Integration testing was tied to the planned number of FSW builds.  The integration testing process 
was divided into phases and was repeated for each build.  Integration tests comprised of four phases:11

1) Phase 1 (Package Specification Testing):  This was a skeleton of specification stubs constructed and 
compiled together.  This was the first test of interface definitions. 

2) Phase 2 (Package Body Testing):  Using the FSW executive, the code specifications and bodies were 
compiled together.  This was the second test of interface definitions. 

3) Phase 3 (Informal Thread Testing):  This phase was accomplished in parallel with phase 2.  As more 
objects were added, more functionality could be tested.  This controlled increase in complexity as well as 
the testing of new interfaces and functionality was achieved using an environment which allowed testing of 
individual threads.   

4) Phase 4 (Scenario and Functional Testing):  Using a full set of integrated objects, scenarios and functional 
tests would test the full functionality of the build to validate the implementation of prescribed interfaces 
and required functionality.  The distinction between scenario and functional tests was that the scenario tests 
were based on inputs from the AACS systems engineering group, and the functional tests were developed 
by the FSW group without such inputs.  Both sets of tests were developed in the form of test scripts. 

At the completion of each integration test phase, an integration test baseline was established.  The baseline was 
configuration controlled which included tested software, test drivers, and test stubs.  Regression testing consisted of 
rerunning selected unit test for the objects and rerunning selected scenario and/or functional tests from phase 4 of 
the integration testing.   

Acceptance testing started with the verification of the RTM to the requirements for FSW.  Any requirements not 
validated by scenario testing had one or more functional tests developed to validate them.  The final approval of 
acceptance testing was the successful completion of phase 4 scenario and functional testing. 

Just as important as testing were the reviews for test readiness and reviews of test results.  TRRs marked the 
release and acceptance of FSW for integration testing.  Problem reporting databases were established with the 
AACS subsystem-level Flight Software Change (FSC), system-level Problem Report, and system-level Engineering 
Change Request (ECR) database documentation systems.  The ATLO Readiness Review (ARR) marked the release 
and acceptance of the final FSW build for system-level testing.  AACS subsystem test plans were integrated into 
system test plans.  RTMs, test trace matrices, test plans, and test cases were all utilized to test and validate interfaces 
in the spacecraft system environment.   ARR testing and reports led to the support of Operation Readiness Tests and 
the final review before launch, the Operations Readiness Reviews.  This review established the readiness of ground 
and flight support, facilities, plans, processes, procedures, and verification & validation status to meet the mission 
objectives. 
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VII. Keys to Final Design and Implementation 
While there are hundreds of examples that make the ACS FSW noteworthy, there are key outstanding attributes 

that have really contributed to its success:   

 
Figure 11. FSW Mode Transition Diagram. FSW states and modes can be traced by identifying needed
resources, modes of attitude determination and control, and mode commander actions. 

A. Software Control 
The state and mode driven software architecture and design have made the FSW quite manageable and 

quantifiable.  Cassini software personnel created an ingenious representation of the software that establishes its 
execution state throughout the life of the Cassini mission.  Software attitude determination and control can only be 
in one mode at a time, which establishes clear and quantifiable pathways.  Each mode enables a unique subset of 
functional capabilities.  Figure 11 expresses the software state and mode driven architecture and the resources 
required for support. 

A mode dictates the types of goals that ACS will attempt to achieve and the hardware resources that are required 
to meet these goals.  Many AACS mode transitions occur autonomously (driven by events). Others are commanded.  
Autonomous mode transitions always drive ACS toward re-establishment of the Home Base Mode.  Within Home 
Base Mode, ACS provides the operator with two independent degrees of freedom. These sub-modes allow the 
operator to select a sensor complement for attitude determination (“Celestial-Inertial” using the SRU + IRU or 
“Celestial-Cruise” using the SRU alone) and an actuator complement for attitude control (RCS or RWAs).  A mode 
transition will not occur until all resources above the dashed line which are not already required in the present mode 
are ready.  The flight software does not wait for resources already required in the present mode, or for resources 
below the dashed line.  The software is tolerant of temporary operation without resources below the dashed line. 

Except for fault responses, mode transitions are the only case where flight software automatically requests 
resources in order to honor a command.  Commands to remove resources required by a mode are rejected.  If a fault 
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causes loss of a required resource below the dashed line, Fault Protection will often try to resolve the problem 
without changing modes.  However, if a fault causes loss of a required resource above the dashed line, Fault 
Protection will generally command a mode that does not require the affected resource. 

The central part of the AACS mode transition diagram is a grid showing combinations of attitude determination 
and control options. Attitude determination options progress from top to bottom, and attitude control options 
progress from left to right.  Many of the actions performed by the Mode Commander are indicated by the diagram. 
These include requesting and reserving resources, and directing the attitude determination and control functions.  
The bottom row of the AACS mode transition diagram gives information on other important actions initiated by the 
Mode Commander and on tasks the Mode Commander performs in each mode’s specific “During:”  This term is 
used to refer to activities performed cyclically (generally once per rate group) during a mode’s operation. 

Attitude determination is in Idle until Ready mode where it switches to Inertial Relative (3R).  An initial inertial 
reference frame is created and relative attitude is subsequently propagated from gyro data.  After star tracker data 
becomes available, attitude determination switches to Celestial (3J) Inertial where a change to J2000 provides an 
absolute reference frame.  Attitude is propagated from gyro and star tracker data.  From there, attitude determination 
may be switched to Celestial (3J) Cruise which requires only the star tracker. 

Attitude control is in Idle until Detumble mode where it switches to RCS control, using thrusters.  This is used 
for most activities until ΔV or finer control is required.  RCS ΔV is provided for smaller burns; ME ΔV for larger 
burns.  RWAs are used for precise control during many science observations. 

B. Fault Detection, Isolation, and Recovery 
Some call it Failure Detection, Analysis, and Recovery, to others it is known as Fault Protection.  Regardless of 

the connotations, its one major goal is to protect the spacecraft, establish telecommunication to Earth, and save the 
mission.  Cassini approached this notion with autonomy.  Mission design and requirements imposed a number of 
constraints on the spacecraft.  At Saturn, there is an approximate 1.5 hour one way light time constraint for data to 
reach, or be transmitted back from, Cassini to the ground.  Ground track support is not available twenty-four hours 
of the day.  There are long periods of off-Earth pointing for science observation and collection.  One of the most 
important requirements is the spacecraft’s ability to recover and resume from a fault scenario during a critical event.  
These are but a few examples of why autonomous control capability needs to be very robust in FSW.  This 
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Figure 12. FSW Fault Protection Architecture Diagram.12 Key components of the FP algorithms to identify 
Error Monitors, Activation Rules, Response Scripts, and Repair Managers. 
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establishes two fault tolerant objectives:  Fail safe and fail operational. 
Fail safe is the term used to insure the spacecraft is safe after a fault and to maintain its safety for up to two 

weeks without ground intervention.  There are several key attributes associated with fail safe:  The FSW shall 
autonomously identify and isolate failed or faulty equipment.  Safing-critical equipment shall be replaced.  A 
thermally safe and commandable attitude shall be established.  Once safe, the FSW shall wait for further ground 
instructions.  FSW has the ability of keeping the spacecraft thermally safe for an indefinite period by pointing the 
HGA to the Sun using the two-axis Sun sensor.  With the aid of System Fault Protection, a HGA Safing algorithm 
will command the spacecraft to Earth point after an hour of sustained conditions of no additional faults. 

Fail operational is the term used when mission sequences must continue in the event of a fault during time-
critical events.  Events of Launch, Sufficiently High Orbit (if the launch vehicle failed, achieve a high enough orbit 
for disposal), SOI, and Probe Relay were all critical events which fall into this category.  However, SOI was the key 
motivation in adding additional autonomy beyond FSW’s fail safe objectives.  Key attributes associated with fail 
operational are:  The FSW shall autonomously identify and isolate failed or faulty equipment.  Equipment necessary 
to complete time-critical activities shall be replaced.  There shall be the ability to handle general processor resets, 
and ability to rollback and resume the onboard time-critical command sequence.  If the Main Engine fails, and the 
spacecraft fails to achieve orbit during SOI, the prime mission is over.  In that regard, the autonomous continuation 
of a Main Engine burn has to proceed after a quick and accurate fault diagnosis.  FSW has the ability to restart the 
burn if terminated for any reason.  Fail operational is dependent on ground-commanded critical command 
sequences.  Upon detection of a fault, CDS will suspend a critical sequence and restart at the last achieved 
checkpoint.  Checkpoints are designated throughout the sequence and insure all goals are met before continuing on 
with the critical sequence.  

After the establishment of control algorithms, fault algorithms were integrated into FSW.  Figure 12 reveals 
there are four primary architecture components to the FSW’s fault protection design:12  Error monitors, activation 
rules, Response scripts, and Repair managers.  

Error monitors test local performance measures against expectations, apply discriminating filters, and then 
output color-coded opinions.  Opinions range from:  No opinion (color black), expected performance (color green), 
unexpected performance which does not merit autonomous response (color yellow), and anomalous performance 
which merits immediate autonomous response (color red).  Opinion color generation is dependent on evaluation of 
thresholds, and persistence & duration limits during each computation cycle.  Error monitor color output results are 
based on FSW generated performance measurements or ground-commanded tailored mask states.  Masking a 
monitor will prevent autonomous responses by reporting a no opinion (color black).  There are 317 different error 
monitors implemented in FSW.  

Activation rules evaluate subsets of the color-coded error monitor outputs dependent of the conditions of current 
ACS hardware configurations or goal activities.  Rules diagnose the most likely cause of anomalous behavior and 
activate one or more appropriate response scripts.  Activation rules are dependent on the output colors of the error 
monitors, current subsystem configuration and goal activities, or ground-commanded tailored mask states.  Masking 
a rule will prevent autonomous responses to a diagnosis.  There are 320 different activation rules implemented in 
FSW. 

Response scripts isolate faulty or failed equipment and respond to recover to a desired level of subsystem 
functionality.  Response scripts are dependent on response script activators from the activation rules, states of the 
repair managers, or current subsystem configuration and goal activities.  Recovery attempts are performed by 
issuing commands directly to the command hander, directing the activities of the autonomous repair mangers, and/or 
requesting external assistance from CDS-collected alert messages.  There are 221 different fault responses 
implemented in FSW. 

Repair managers track the success or failure of past corrective measures for ACS equipment.  Managers 
determine the most appropriate corrective action to take.  Repair managers are dependent on action requests from 
response scripts.  Manger actions are exercised by issuing commands to the subsystem and can be thought of as 
specialized response script subroutines. 

Error monitors are integrated throughout the FSW in routines that can establish the earliest test point.  This 
distribution allows test performance and opinion generation to occur anywhere throughout each computation cycle 
(RTI).  The other three FP components; activation rules, response scripts, and repair managers are all centralized and 
are executed at the end of each computation cycle.  Response scripts are prioritized, in the event of two or more 
response scripts simultaneously being active; the higher priority script takes precedence and can delay the lower 
priority scripts. 

FP architecture is designed to handle single fault and unrelated double fault scenarios.  Combinations of 
monitors can handle multiple fault scenarios that tie redundant hardware to the repair managers which can 

 
American Institute of Aeronautics and Astronautics 

 

14



autonomously exercise several independent paths of repair allowed by hardware and software constraints i.e., 
independent prime hardware sets selection, independent bus selections, and composite (mixed-mode) prime sets.   
Other notable FP management attributes are the resilience to tolerance of:  Single Event Upsets (SEU), failure of 
other subsystems such as CDS, power interruption, corruption or loss of status information, and operator error.  In-
depth details of these tolerances are referenced in previous papers.12-13  

C. Software Objects 
Identification and separation of FSW into distinct 

and unambiguous objects created program set 
reliability, maintainability, adaptability, and to an 
extent – reusability.   The object oriented approach 
reduces coupling and increases cohesion.  Objects are 
relatively independent and can therefore be more 
easily developed, verified, and modified as a result of 
a change in requirements.  Interfaces to the operating 
environment and peripheral devices are also localized 
and minor changes can be accommodated in isolated 
objects.  Changes to algorithm equations and their 
parameters are also isolated to specific objects.  
Changes to subsystem modes can have broader effects.  
Table 2 lists the objects which make up the RAM 
FSW program load. 

Missing from the RAM program list is the RAM 
Verification Block (RVB), which is generally 
considered part of the FSX object; however, its 
functions are independent of FSX.  The RVB performs 
initial preparation of the FSW prior to passing control 
to the RTX and verifies the integrity of FSW 
execution codes and constants in RAM.  It will also 
perform remapping if necessary, and performs RAM 
codes/constants patching if so specified in a table in 
RAM – which allows patch table updates described in 
Section IX. 

Besides the RAM program, ACS FSW is also 
responsible for the PROM program.  The PROM 
control (Startup ROM – SUROM) program was 
written in 1750A assembly language and burned into 
PROM chips.  SUROM is tasked to configure and load 
RAM, accept commands from CDS to load memory 
and to send memory load request to CDS.  Interface 
responsibilities include generation of heartbeat data, 
state table data, recovery data, ancillary data, and 
telemetry to send to CDS.  The first program run after 
any AFC power up or reset is the SUROM to initialize AFC hardware and waits for commands from CDS to 
perform memory loads.  If CDS synchronization signals are not present, the SUROM has a self-AFC startup 
capability.  

Table 2. Final RAM FSW Modules 
 

ACC Accelerometer Manager 
ACL Attitude Controller 
ACM Attitude Commander 
ATE Attitude Estimator 
BAM BAIL Manager 
CFG Configuration Manager 
CMD Command Handler 
CMT Constraint Monitor 
EGA Engine Gimbal Actuator Manager 
FPA Fault Protect - Analyzer 
FPR Fault Protect - Recovery 
FSX Flight Software Executive 
GBL Global Types and Utilities 
GBM Global Hardware Manager 
IOU AACS  Bus Manager 
IRU Inertial Reference Unit (Gyro) Manager 
IVP Inertial Vector Propagator 
MDC Mode Commander 
PMS Propulsion Module Subsystem Manager 
RWA Reaction Wheel Assembly Manager 
SID Star Identification 
SRU Stellar Reference Unit Manager 
SSA Sun Sensor Assembly Manager 
TLM Telemetry Manager 
XBA CDS Bus Manager 

D. Software Glue 
ACS FSW is designed with five task groups to control and execute software.  An interrupt task is the highest 

priority task, followed by the RTI (timer task), foreground task, background task, and the lowest priority Error 
Detection And Correction (EDAC) task.  The Flight Software Executive (FSX) initiates foreground and background 
task execution activities, services all interrupts, provides timing and memory read/write services to other objects, 
and initiates periodic memory scrubs. 

The foreground task is the main Ada task which invokes all of the FSW objects in a prescribed order and on 
average takes up 60% of the CPU usage.  When foreground processing suspends, FSX starts or resumes background 
tasks.  The background task is allowed to run until the previously delayed foreground task is scheduled to resume.  
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This orderly and deterministic processing is interrupted only by fault conditions.  The background task group 
includes IVP, ATE, CMT, SID, and EDAC background tasks, and on average may take up 4% CPU usage not 
including EDAC (a measure of idle time.)  EDAC averages 30% CPU usage.  The RTI task to set the rate group 
takes less than 1% CPU usage.  The interrupt group BCIOU, PIU, and 1750A timers average 6% CPU usage.  The 
Ada runtime environment provides an interlock mechanism to control asynchronous access of state data by multiple 
tasks, and provides subprograms for suspending the foreground task while waiting for timed events or interrupts. 

FSX’s primary job is to provide timekeeping and scheduling services.  FSX starts an infinite loop which 
establishes the 8 Hz (0.125 second) rate group.  There is only one rate group for the FSW.  Besides the FSW internal 
clock driven off of a 1750A timer, FSX maintains both an AACS clock and a RTI clock.  The RTI clock is a low 
cost 32-bit clock that is incremented (ticks) once every RTI.  AACS time is synchronized with spacecraft time 
provided by CDS. FSX is also responsible for making time corrections, handling cycle slips, rate group overruns, 
and controlling RTI timing jitter. 

E. Tool Sets 
1. Flight software testbeds 

A key factor throughout the FSW development 
process is the validation of FSW before delivery.  The 
Flight Software Development System (FSDS) was 
realized as a necessity for FSW throughout the 
development and implementation cycles of the 
mission.  It was deemed applicable to have a fully 
emulated high-fidelity ACS subsystem testbed that 
could be developed in parallel to ACS FSW to provide 
validation of changing FSW capabilities throughout 
the entire mission.  FSDS implementation started in 
early 1993 and the testbed was operational in late 
1994. 

The key to FSDS is that it was created to support 
the validation of FSW in the ACS subsystem 
environment.  Features were added to FSDS to closely 
emulate the attitude control subsystem.  The redundant 
ACS subsystem, with dual-redundant data buses and 
dual AFCs, can run prime and backup FSW 
simultaneously.  FSDS accurately modeled the 
redundant architecture as illustrated in Figure 13.  
Millisecond and microsecond level hardware behavior 
was simulated to create a virtual real-time execution 
environment.  This keeps the correlation of events that 
happen in real-time, but executes faster due to the host 
workstation processor.  The order of events would 
occur at the same time as a corresponding real-time 
testbed.  This feature is vital to the realism of actual 
spacecraft performance.  FSW must synchronize to the 
simulator, and duration of activities must be modeled 
correctly. 

 

The benefit of this environment is that ACS FSW 
was required to be in the loop, which gave FSW 
developers the fidelity needed to test in a pseudo-
realistic atmosphere that was comparable to the actual 
spacecraft environment with respect to ACS concerns.  
FSDS was found to be the workhorse for functionality 
testing.  

 
Figure 13. Detailed FSDS Object Oriented 
Architecture and Model Diagram.15 Coded in C with 
layered organization where top-level initializes all 
modules, modules initialize and interconnect models, and 
model libraries supply methods and utility functions.  The 
architecture model focuses on the actual hardware 
configuration.  

Besides having a strictly software emulated test 
environment (softsim), the Flight Software Test Bed 
(FSTB) was developed during the same time period to 
have FSW exposed to real-time behaviors and 
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environment using a COTS processor and AFC board 
during development.  Actual flight processors were 
very expensive and would have to be shared with CDS 
FSW development.  The FSTB was a valuable real-
time equivalent test environment during the pre-launch 
phase. 

For the operations phase, FSTB was retired due to 
hardware maintenance and expense issues.  However, 
real-time testing fidelity was not in jeopardy.  Cassini 
has two high-fidelity hardware-in-the-loop testbeds for 
software and hardware integration:14  Cassini AACS 
Test Station (CATS) and the Integrated Test 
Laboratory (ITL).   

Flight Software Change (FSC) Process

New FSC opened:  
description of problem stated and likely  
objects, interfaces, impacts, and retests selected 

Preliminary Disposition:  
responsible engineer assigned and objects, 
interfaces, impacts, and retests refined 

Formal Approval:  
detailed design changes presented by 
responsible engineer for approval 

Version Control, Integration, & Delivery:  
changes made to code and delivery of new FSW  
version. FSC form updated appropriately.

Peer Code Review:  
code changes inspected by someone other than 
the FSW  developer who made the changes.

Closure:  
satisfactory completion of documentation, review, 
retest approved by Subsys. Engr & FSW Cogee

Retest:  
all tests assigned must be run and documented 
in the verification  layout of FSC form.
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These embedded testbeds run in real-time and 
require timely setup procedures and human resources 
to utilize.  The ACS FSW team had to be able to test 
and verify algorithms and functionality quickly and 
not be constrained to a few tests per day.  At times, 
there were a dozen FSW engineers developing code, 
and each requiring a valid test environment.  Having a 
software-based closed-loop softsim running on a 
desktop workstation that could run faster than real-
time at any time with no supervision was a key to 
timely and accurate testing with little of the overhead 
associated with the maintenance of keeping up real 
hardware models.  Testbed architecture and operations 
benefits have been previously published.15   

2. FSC Database 
There was a well-defined process for changing 

flight software starting with the A2 control-algorithm 
capability FSW builds.  Figure 14 describes the 
process.  This process started in 1996 to track FSW 
relevant issues which were discovered through ATLO 
or system-level testing.  The Flight Software Change 
(FSC) report database became the FSW team’s 
tracking mechanism for issues to be fixed, not fixed, 
or deferred to be fixed in future builds.  To this day, 
the FSC process has been followed and FSCs are 
tracked and reported in test reports, reviews, and 
release documents.  The FSC database is a subsystem-
level tracking tool, where the ECR database is 
considered a system-level tracking tool. 

 
 

Figure 14. FSC Database Process to change FSW. 
Key status inputs are:  Red – represents the FSW status, 
blue – represents the FSC document status. 
 

Figure 15 plots a graphical history of FSCs that 
were opened and closed since 1996. The freeze for 
launch was around two and a half months before 
launch day.  Table 3 isolates FSCs tracking to FSW 
build versions.  Presently, there are 1523 FSCs in the 
database.  1437 FSCs were addressed during FSW 
development.  After initial investigations, 86 FSCs 
were identified as not applicable to address in a FSW 
build change.  The pre-launch development timeframe 
deferred 167 FSCs to post-launch FSW builds to 
address future mission specific events or development.  
See Sections VIII–IX for post-launch FSW 
development details.  For A8 FSW builds, seven FSCs 
remain open:  Five FSCs are associated with active 
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Figure 15. Open/Closed FSC History. Starts from 
first FSC implementation to show FSC progression of pre 
and post launch FSW changes. 
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parameter patches that could be 
implemented in FSW, if a full FSW 
upload is deemed appropriate by the 
project, to update corresponding default 
parameters.  One FSC is left open for 
monitoring in case of a hardware failure, 
and the remaining open FSC is a RTX 
operating system bug which is left open 
for inspection verification after each 
FSW build release (there are no plans to 
have TLD fix this issue.) 

Table 3. FSC Breakdown by FSW Build 
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64

53

11

26

1

17

8

No Fix

386

144

242

954

167

608

179

Fix

-980980Pre-Launch Build Totals

-168168Launch, Inner CruiseA6

-253253Outer CruiseA7

7197204Critical Sequences, Prime & 
Extended Mission SupportA8

450

625

187

FSCs
Closed

457

625

187

FSCs
Opened

-Fault Protection and 
Constraint MonitoringA4

OpenCapability
FSW 

Version

7Post-Launch Build Totals

-Full FunctionalityA5

64

53

11

26

1

17

8

No Fix

386

144

242

954

167

608

179

Fix

-980980Pre-Launch Build Totals

-168168Launch, Inner CruiseA6

-253253Outer CruiseA7

7197204Critical Sequences, Prime & 
Extended Mission SupportA8

450

625

187

FSCs
Closed

457

625

187

FSCs
Opened

-Fault Protection and 
Constraint MonitoringA4

OpenCapability
FSW 

Version

7Post-Launch Build Totals

-Full FunctionalityA5

F. Software Collaboration 
Early collaboration between guidance and control analysts and software engineers established a solid well-

defined foundation to develop FSW.  In the early stages of defining and designing the mission, people had their 
established roles and software specialists were in the minority.  Cassini could have taken the road of inheriting 
development strategies and approaches from past projects, but there were too many lessons learned that could not be 
ignored.  Architects pushed for changes and new ideas were introduced early on to the entire Cassini team.  Rather 
than the serialization of past development efforts, objectification was the breakthrough needed to establish how 
software and Cassini did its job.  During the software prototyping process, a well-defined coordination between 
analysts and software was established. 

A key factor was early software involvement before algorithm deliveries.5  A software unit (module) engineer 
was appointed months before analyst algorithm delivery.  Once the control analyst drafts the algorithm delivery, the 
software unit engineer presents the algorithm in review.  This establishes that the software engineer has the 
knowledge, understanding, and ownership of the algorithm before applying coding techniques.  A key individual 
was appointed to be responsible for the software-analysis interface.  Co-location of FSW, analysts, and subsystem 
groups was also a key to minimizing interpretation errors and enhancing collaboration within the subsystem. 

VIII. Post-launch Phase FSW Development, Implementation and Test Methodology 
FSW development and testing spanned another seven years for post-launch development to address outer 

planetary cruise, and critical sequence support for SOI and the Huygens Probe Release and Relay activities which 
occurred during the 2004 to 2005 timeframe.  After achieving orbit, another four years of FSW updates were 
performed to address prime and extended mission sustainment.  The sustainment effort is still in progress and is 
currently planned to extend to 2010.  Throughout the post-launch phase, the same development and test strategies 
are used to insure compatible software designs and methodologies.  Variations on these themes (focused on reviews 
and testing) are explained below. 

A. Post-launch FSW Development Methodology 
It became apparent after launch that the planned deferred FSW development would be separated into two FSW 

build versions.  One to support the spacecraft cruise phase of the mission, and the other to support the execution of 
critical event sequences. 

1) Builds A7 (Outer Cruise):  These builds contained FSW fixes and updates to support Jupiter campaign 
activities and the remaining four-year outer planetary cruise to Saturn.  FSW version A7.7.6 was the first 
in-flight full image uplink of software.  New capabilities were incorporated to help monitor and detect 
leaks16 for the main control mechanism during cruise – RCS thrusters.  While attitude control using RWA 
capability was developed prior to launch, before project management decided to enable the RWA control 
functionality for science observations during the Jupiter flyby campaign, additional features were added to 
the RWA control capability to allow for faster recovery if certain in-flight anomalies were to occur.  
(Several system-level testbed anomalies resulted in additional quick-recovery algorithms for rate, 
acceleration, and torque limiters to the RWA attitude and wheel rate controllers.)  To support the overall 
mission, the SID algorithm was enhanced to handle extended bodies.  To support SOI fault recovery, a 
deluxe Attitude Initialization capability was added.  To support probe relay and tracking, an inertial vector 
propagation rotating coordinates functionality was added.  
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2) Builds A8 (Critical Event Sequences and Prime Mission Support):  A8 was divided into several planned 
full image version uploads.  A8.6.7 supported Saturn Orbit Insertion, A8.7.1 supported Probe Release and 
Probe Relay.  During the prime mission, the project management took a more conservative approach to 
updating software.  Full image uploads and resets to the AFCs took operational hits to science and other 
subsystems on the spacecraft, and the AFCs and FSW architecture had various work-arounds to update 
FSW.  Therefore, A8.7.2 and its variants, which support the prime and extended missions, are patch loads.  
Further details are explained in Section IX. 

Post launch reviews were held to monitor if FSW development adhered to the appropriate standards and that the 
proper testing methods were followed.  FSW development and testing included fixes to issues encountered pre-
launch and deferred, parameter fixes and inconsistencies encountered during flight, deferred capabilities, new 
capabilities, and capabilities delivered as part of the launch load but were not completely tested or were known to 
not function properly.  An example of a major capability that was addressed post-launch:  A robust Main Engine 
control functionality developed for SOI – which resulted in an energy burn algorithm. 

The deferred FSW development and test programs were targeted for two major post-launch reviews.  The SOI 
Critical Events Readiness Review (CERR) was held in April 2004.  The FSW was frozen nine months prior to 
uplink to provide a steady base for critical sequence development and regression testing.  Extensive testing did 
reveal an error in the fault protection burn restart logic and a redelivery was made.  Several papers have been written 
on SOI and the efforts in FSW development and testing.17-18  SOI successfully occurred on 30 June 2004. 

The Probe Relay CERR was held in October 2004.  The FSW was frozen eight months prior to uplink, however 
due to a change in the navigation reference trajectory; pointing errors for the Huygens Probe Relay tracking 
increased and were beyond the tolerance for probe data relay success if FSW, incase of an AFC reset, used the 
previous default trajectory data.  Therefore, FSW default attitude vectors supporting Probe Relay had to be updated 
to support the new reference trajectory design.  The vectors were changed and the final Probe Relay build was 
frozen four months prior to upload.  Even with the resultant compressed schedule, the full suite of testing to verify 
and validate FSW for the critical event sequence was achieved.  The Huygens Probe Relay with Cassini was 
successfully accomplished on 14 January 2005.19  

After the execution of the in-flight critical sequences, the prime mission was under way.  In order to support 
prime mission events such as low-altitude Titan flybys, Monopropellant Tank Assembly recharge affecting thruster 
magnitudes, and orbit trajectory changes, FSW had to be updated to support the effects of these events.  A symbiosis 
between FSW and operations teams was achieved by updating necessary FSW parameters in flight and finding 
ground operation work-arounds for software issues that were not deemed essential for an update.   

B. Post-launch FSW Test Methodology 
The test methodology for post-launch activities followed the pre-launch methodology.  The method consisted of 

incrementally increasing complexity and functionality through the phase of integration testing for each build, which 
culminated with scenario and functional testing of the complete set of software.  To support the post-launch stage of 
the mission, additional testing had to be considered for full and partial FSW uplinks and contingency planning.  
Testing and validation of these activities became critical additions and major foci for the operations testing 
philosophy. 

For A7 builds, regression, scenario, and functional testing were performed to verify and validate changes to FSW 
to support the interplanetary outer cruise to Saturn.  New FSW functionality was unit/FSC tested.  FSW went 
through subsystem and system level testing before being uplinked to the spacecraft.  Uplink Readiness Reviews 
(URR) were the major milestones to approve FSW for uplink.  The FSW development status, FSW testing (both on 
the subsystem and system level), FSW test reports, and uplink procedures were presented to review boards.   

For A8 builds, the same A7 build test philosophy was followed.  An abundance of additional testing was focused 
on the critical events of SOI and Probe Relay.10,17-19  To support the prime mission, parameter and uplink procedure 
testing continued under the same test philosophy.  During the prime mission, key science objectives were tested 
extensively which included post-event reconstruction i.e., Titan low-altitude flybys,20 and low-altitude Enceladus 
flybys.   

The ACS operations group has anticipated and evaluated potential problems and determined mitigation strategies 
where appropriate.  Environmental circumstances established the need to evaluate Safing attitude changes due to 
orbit inclinations, and potential ACS hardware failure scenarios.  Appropriate measures were taken to keep the 
spacecraft as safe as possible and the only way to verify scenarios was through testing.  All of the strategies were 
tested in subsystem and system level test environments.   
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Table 4. ACS FSW Upload History since Launch (15 October 1997) 
 

October 30, 1997
• A6.4.15 (launch load) on default SSR partition, A6.5.6 (cruise load) on non-default SSR partition
• IVP, S/C time update, AFC swap

Venus Cruise
Patch/SSR/BAIL 

(A)A6.5.7

May 1, 1998
• IVP, S/C time update
• Fix Backup AFC telemetry collection period, changed default Accelerometer nominal drift, adjusted 

SRU-B alignment quaternion (due to 3/4 mrad misalignment)

Earth Cruise & 
SRU-B 

alignment

Patch/SSR/BAIL 
(A)

A6.5.8

March 7, 2000
• IVP rotating coordinates & conical radar scan capabilities
• SID extendend bodies, deluxe attitude initialization capabilities
• RWA celestial only attitude estimation

Jupiter CruiseFull Load (B)A7.7.6

April 13, 2001
• IRU, IVP, RWA, and default thruster magnitude updates
• BAIL FSW A6.3.B patch (mass properties, Cassini-Sun vector, cruise updates)

Parameter & 
BAIL update

Patch/SSR/BAIL 
(B)A7.7.7

Patch/SSR (A)

Patch/SSR (A)

Patch (A)

Patch (A)

Full Load (A)

Full Load (B)

Full Load (A)

Upload* 
Classification

April 11, 2006• Post-MTA recharge default thruster magnitude updatesMTA-RechargeA8.7.4

January 30, 2007

• Default secondary Safing vector pair update
• Default thruster magnitudes for 2007 tour updates 
• IRU-A scale factor error updates
• RWA phantom momentum FP tier count change

2007 Safing 
AttitudeA8.7.5

Upload DateKey Update DescriptionCapability
FSW 

Version

May 26, 2005
• Finer telemetry resolution to external torque for Titan flyby density reconstruction
• Finer telemetry resolution for Delta-V telemetry
• Detumble acceleration Z-axis update 

Titan flyby & 
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October 2, 2004
• Parameter updates to support Probe Release and Relay
• Reference trajectory updates for Probe Relay

Probe Release 
& TrackingA8.7.1

April 27, 2004
• Parameter updates to support SOI
• FSW/FP updates for SOI
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February 16, 2003• In-flight proof-of-concept for new Energy burn algorithm performing TCM-19bEnergy BurnA8.6.5
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• Finer telemetry resolution to external torque for Titan flyby density reconstruction
• Finer telemetry resolution for Delta-V telemetry
• Detumble acceleration Z-axis update 
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Tour TelemetryA8.7.2
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October 2, 2004
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* - Full Load   = Full FSW image loaded to SSRs with Prime/Backup AFC resets 
 - Patch    = AFC patch-table patch, Active RAM patches, Backup AFC reset 
 - Patch/SSR   = Patch + SSR ALF patch (parameters survive load from SSR) 
 - Patch/SSR/BAIL = Patch + SSR ALF + BAIL patch (parameters survive load from SSR) 

- (A or B)  = Which AFC (A or B) is Prime after the update 

IX. Flight Software Operations 
The mission operations team has to address FSW practically every single moment of every single day.  FSW 

interacts with every facet of the spacecraft which in turn affects ground operations support.  Moments after launch, 
ACS FSW telemetry and the FP event log were monitored and updates to FSW were planned and performed.  
Eleven years later, the same exact concerns besiege an ever-changing/high-turnover rate operations team.  
Established and/or the establishment of processes and procedures are key in retaining the history, knowledge, and 
know-how of FSW operations. 

A. Key In-flight FSW Update Events 
The AFC and SSR configurations, having redundant block and multiple partition configurations, provided the 

opportunity to have multiple versions of FSW loads.  When an AFC is prime it exhibits full ACS FSW capabilities.  
A backup AFC exhibits minimal software functionality and maintains telemetered status.  During critical events the 
backup AFC will become a hot backup which allows the backup AFCs to continue processes of the prime AFC if a 
fault anomaly results in an AFC swap.  At launch, the prime and backup AFCs contained the launch FSW load 
which was inhibited from performing maneuvers using thrusters or actuators, but actuators were allowed to have 
some minimum parking abilities.   

One day after launch, via ground commands, the backup AFC (AFC-B) was loaded from the non-default 
partition of the SSR with the Cruise FSW version (A6.5.6).  After a brief checkout, the AFCs were swapped and the 
new backup AFC (AFC-A) was updated with the Cruise load.  The one-day turnaround of updating FSW without a 
full image in-flight upload could only be effortlessly accomplished with the SSR partition concept, which is 
explained in detail in the next section. 

Fourteen days later the patch table capability was first used in flight.  Patches containing A6.5.7 FSW patch table 
updates were uplinked to update the SSRs, and the AFCs were reloaded and swapped.  AFC-A was designated the 
prime AFC.  Table 4 identifies all of the in-flight changes to FSW from launch to the end of prime mission. 
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The first full in-flight software upload was FSW version A7.7.6, which had the second highest total of software 
fixes.  Factors that contributed to the amount of fixes were keeping a core software development team from the pre-
launch team to address a majority of the deferred software FSCs.  The load addressed several key functions needed 
to support future mission objectives. 

FSW version A8.6.5 addressed a first-time JPL event demonstration of an energy algorithm to perform a burn 
cutoff during TCM-19b on 2 October 2003.  This algorithm was developed for the upcoming critical event of SOI.  
The algorithm, commands, telemetry and overall concepts and capabilities were in-flight tested, verified, and 
validated nine months before SOI. 

Critical events were performed on two different full in-flight uploads.  SOI was performed on FSW version 
A8.6.7.  Probe release and tracking were performed using FSW version A8.7.1.  These events were covered 
extensively in the previous section. 

The next four updates were patch table uploads to support prime and extended mission objectives.  These FSW 
builds represent a more conservative approach taken by the project.  From an operations point-of-view, the best 
approach was to minimize disruptions to science observations and effects to other subsystems.  From a software 
point-of-view, the FSW architecture allowed for variations of updates and patches which ideally mimics a full in-
flight upload with less system impacts.  Also, the sum total of all the parameter updates did not exceed the limitation 
of the patch table.  These update variants and limitations are explained in the next section.  The program’s 
conservative approach was to also lessen the possibility of errors that could be introduced after a full FSW upload 
with extensive functional modifications.  If a situation ever occurred, where FSW logic had to be changed, technical 
justification does overtake programmatics.  A major driver on the number of updates needed during this phase was 
the changing inclination in the orbit trajectory.  Practically every year during the prime mission, the default Safing 
attitude needed to be updated to assure that the spacecraft be in a safe attitude both thermally to science payloads, 
and physically to protect the star tracker from bright bodies such as the rings or Saturn.     

B. Strategies for Updating and Loading FSW 
The intentional modular design of FSW provided the architecture to support planned in-flight FSW updates.  The 

form of uploads range from full image to patch table uploads.  The type of updates can range from full build changes 
to default parameter, and active parameter patches.  The prime mechanism used to store FSW images on the 
spacecraft are the two 2.1 gigabit (usable memory) SSRs under the control of CDS.  SSRs contain volatile memory 
and 64 megabits per SSR are reserved to store FSW images.9  Both CDS and ACS can store two sets of their 
programs within the allocated memory partitions.  There is a default program set and non-default program set.  
Default and non-default partitions provide a fail proof method to update FSW. 

Ground operators can upload a new version of FSW to the non-default partition of the SSR and then command 
the AFC to load from the non-default partition.  During the load, the AFC will go to ROM, SUROM will initialize 
the AFC to accept the new load and then transition to RAM.  If a checksum problem or other unforeseen run-time 
problems occur, the AFC will stay or go to ROM.  Either ground commanding or autonomous FP response will 
reload a good version of FSW from the unchanged default partition.  The data format used to store FSW images in 
the SSR are Assisted Load Format (ALF) blocks.  An ALF is made up of twenty-two 16 bit words with even/odd 
word checksum validations. 

There are five locations where ACS FSW is stored:  Two SSRs, the prime and backup AFCs, and the Backdoor 
ALF Injection Loader (BAIL).  Only the BAIL has a stripped-down version of FSW stored in 16 megabits of non-
volatile Electrically Erasable Programmable Read Only Memory (EEPROM), which provides the capability for 
FSW to command the spacecraft’s HGA to Sun point.  Power converters in the SSRs and AFCs provide at least 37 
millisecond of capacitive power to retain software in volatile memory and therefore can not retain software after an 
extended power outage.  To address possible deep under-voltage conditions, the BAIL functionality was added to 
assure a thermally safe and commandable attitude during ground-assisted CDS recovery.  Without contact from the 
prime AFC, a thirty minute watchdog timer will expire in the BAIL and it will start transmitting its program 
contents to both AFCs on both AACS buses in the hope that these FSW programs can be accepted and loaded by a 
healthy AFC.9   

To account for parameter updates during Cassini’s lengthy mission, other mechanisms were provided to update 
FSW.  A number of FSW ground parameter commands were added to update RCS attitude controller parameters, 
attitude estimator parameters, constraint monitor parameters, ME thruster parameters, mass properties, and various 
FP-based parameters.  Parameter commands have been validated during both pre and post launch phases.  However, 
for operations, the command arguments are highly scrutinized before transmission to the spacecraft.  

There are two forms of memory write commands.  One modifies logical addresses and the other modifies 
physical addresses.  The logical address command has a constraint to match the FSW version.  The physical does not 
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and is ground-restricted from use in flight.  Since the 
SUROM has the capability of remapping the FSW 
memory map when loading into RAM, using a 
physical address to change data is highly susceptible 
to remapping error.  The use of logical addresses 
eliminates the remapping concern.  Unlike established 
parameter commands, the arguments for memory 
write commands are highly susceptible to error 
uncertainty, unless properly handled.  The next section 
addresses this concern.   

Parameter and memory write commands affect the 
RAM program which is considered the active 
parameter set.  If a reset occurs or the FSW is 
reloaded, the changed active parameters will not 
survive.  Due to the changing environmental effects or 
spacecraft consumables, which need to be accurately 
represented in software, there are some parameters 
that need to survive reset/reload conditions to aid in a 
recovery process.  These parameters are considered 
the default parameter set. 

To address a permanent change to the default 
parameter set, the AACS patch table enables FSW 
patches to be applied across the different load 
locations (AFCs and SSRs) and if necessary, across 
different version of FSW.  The patch table is located at 
a fixed logical address common to all ACS FSW 
versions and is capable of updating up to specified 
length data words.  See Figure 16 for the patch table format.  Any change requiring more than the allowable number 
of words will have to be re-planned to a full FSW image upload.  The Ram Verification Block (RVB) checks if 
anything occupies the addresses of the patch table.  If the patch table FSW version ID matches the recipient FSW 
image, the RVB will apply the patches before activating the RAM program.  The RVB contains logic to check a 
completion flag if the patch table patches have already been applied; it will not attempt to apply the same patches 
twice.  The completion status flag will only be set after the entire content of the patch table is applied.  Therefore, if 
it is interrupted during the patching process, the RVB will recognize that patches still need to be applied at the next 
AFC reset attempt.  The patch table method is a way to safely preload code changes and apply the changes in one 
complete activity.   

Patch Completion Status 

FSW Version ID 

16 bits 

 
up to 

304 words 
total 

Checksum 

Total Number of Patches 

MSW of Patch 1 Address 

LSW of Patch 1 Address 

New Value for Patch 1 Address 

• 
•

•
•

Other Patches 

MSW of Patch N Address 

LSW of Patch N Address 

New Value for Patch N Address 

3 words 
per patch

Figure 16. Patch Table Format.9 Allows words to be 
modified through the ACS FSW memory map. 

Figure 17 shows the concept and patch steps taken to apply a patch table patch to the SSR and the prime AFC.  
The SSR patch table patch is to address the situation if the AFC needs to take a FSW load from the SSR.  For this 
scenario, the AFC requests a load from the SSR, the full FSW image plus patch table are loaded in the AFC.  When 
the RVB is run during startup, the FSW executive will recognize that a patch table patch is present and the patch 
will be applied resulting in FSW that reflects the latest FSW version.  This process is done to the backup AFC which 
does not partake in nominal spacecraft modes and therefore does not affect operations.  This accomplishes two 
objectives, to verify the SSR patch and to update the backup AFC to the latest FSW version.  If an AFC swap were 
to ever occur, the operations team would be confident that the latest FSW would be in use during recovery 
operations.  

In order not to affect operations and other subsystems, the prime AFC is not reset nor is there a swapping of 
AFCs.  Active patches are applied to the FSW running in RAM on the prime AFC.  The active patches equate to the 
changes of the default parameters of the latest FSW version, so even though the FSW version still registers as 
A8.7.1 (an older version of FSW); the RAM FSW is equivalently A8.7.6 (the latest version of FSW).  With the 
patch table applied to the prime AFC, if an AFC reset were to occur, the patch table would be applied during the 
next startup process and the latest FSW version would be registered in RAM.  

C. FSW Parameter Patching Techniques 
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Patching with memory write commands require user-supplied hexadecimal arguments.  There is always an 
associated risk of software failure when patching FSW.  Several missions have experienced software mishaps 
associated with patching.  ACS mitigates risk when patching a FSW parameter by following a strict process of 
identification, ground verification, and in-flight verification.  Any patch that involves software shall be identified by, 
provided by, and verified by a knowledgeable ACS FSW engineer.  These values will be certified by another FSW 
engineer or FP engineer. 

 
Figure 17. Simplistic representation of a SSR ALF patch and Patch-table patch to update a FSW version 
without having to reset the Prime AFC. FSW version A8.7.1 was the last full upload.  Since then, patch updates 
have only been applied to update the FSW version.  A8.7.6 is the latest patch build to be uploaded in flight. 

Identification/Classification of a patch: 1. 
1) Identify a parameter as a variable or constant and determine the current value associated with it.  There are 

established procedures to update variables or constants.  Data classifications are explained in the Software 
Data Definitions of the Lessons Learned Section. 

2) The current onboard FSW version Memory Map is used to determine logical addresses for patching.  The 
FSW version is verified through telemetered data before proceeding with a patch. 

2. Thorough ground verification, validation, and test: 
3) Verification and testing involves using the exact memory write command and patching process used to 

update the FSW in flight. 
4) System-level ground testing in ITL is done using the same configuration state as the actual spacecraft. 
5) Effects of the patch in FSW and the spacecraft environment are verified in both subsystem and system level 

testbeds. 
3. In-flight verification and validation: 

6) Establish a baseline value incase a patch needs to be undone by checking and verifying the initial state of 
the parameter on the spacecraft. 

7) Verify that the MROs match the expected pre-patched value state – if it is not, something is wrong i.e., the 
wrong address was patched. 

8) Perform the patch using ground-validated commands. 
9) Perform post-patch verification for correctness. 

All MROs are performed three times to anticipate any loss of data during telemetry downlink.  MROs are captured 
in both real-time and record telemetry.  Every active parameter patch is performed using this exact process.  
Established ground parameter commands, mentioned in the previous section, can utilize steps 2-3 for a verification 
process if deemed applicable.   

D. Design Maintainability 
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From the beginning of FSW development, the maintainability aspect was always a key goal for the end product.  
These efforts consisted of: 

1) Simplicity by providing definitions and implementing functions in the most non-complex and 
understandable manner as possible.  E.g., coding, design, flow, software development guidelines, and 
simple architecture. 

2) System Clarity by providing a clear and understandable description of the program structure.  E.g., 
programming style, coding guidelines and peer reviews, and a Software Specification Document. 

3) Modularity by providing a structure of highly cohesive modules with optimum coupling.  E.g., object 
oriented approach to maximize cohesion, minimize coupling, hide information, and well defined interfaces. 

4) Self Descriptiveness by providing an explanation of function implementation.  E.g., comments, identifiers, 
layered diagrams and Software Specification Document descriptions, well named objects and descriptive 
names for data and procedures. 

5) Exactness by insuring software code performs desired requirements, and eliminates code not supporting 
required functionality.  E.g., RTMs and optimizing the compiler. 

These attributes have contributed to the success of software maintainability in the operations phase, and especially 
helps when code needs to be analyzed for functionality and/or compared to requirements.  This allows non-software 
engineers to understand the interactions and intent of modules and functions without understanding the coding 
language. 

E. Configuration Maintainability 
Using the patch table upload process in the latter part of the mission, results in greater ground responsibility to 

maintain accurate version control.  Patching without full uploads or intentional post-upload AFC resets results in 
multiple versions of FSW on the spacecraft.  The prime AFC has an older version of FSW (however, with active 
patches it is equivalent to the latest FSW version), the backup AFC has the latest version (loaded from the SSR), the 
SSRs have patched older versions of the FSW (when loaded to the AFC, the resultant image is the latest FSW 
version), and BAIL has an even older version of FSW.  It becomes apparent that accurate records need to be 
maintained to identify FSW versions on the spacecraft and the parallel development versions on the ground. 

Records take the form of version control and documentation.  The version control mechanism used by the FSW 
team continues to be SCCS.  While new JPL projects use more complex versions of configuration management 
which allow modeling and document requirements tracking techniques, the process established during the Cassini 
FSW development phase is quite adequate for operations.  As long as the process is documented and there is a 
method to retrieve any version of FSW, keeping it simple contributes to maintainability.   

The Release Description Document (RDD) is a required document that describes new functionalities available in 
FSW as well as the build process.  It incorporates all test reports, and identifies all problem reports written and fixed 
by individual FSW versions.  The results of the Software Requirements Certification Review (FSW delivery and 
certification of flight readiness) are also captured.  The RDD is a key document for delivery, integration, test, and 
identification. 

F. Software Procedures 
With a reduction of workforce in the operations phase, FSW procedures become a key component of fulfilling 

the FSW process.  Having procedures for generic FSW tasks allows for procedure tailoring, and as long as the 
tailoring effort is understood, the process is sound.  Therefore, the concept for tailoring must be applied to every 
FSW procedure, which must result in reviews and validation for each procedure.  Until recently, each FSW upload 
entailed different objectives, and if care is not taken, the use of old procedures may not result in the desired actions.   
This verification and validation technique is applied to all ACS FSW related procedures.  ACS FSW has established 
procedures for:     

1) Full FSW uploads.  These procedures cover the upload of a full FSW image to the SSRs, loading the 
backup AFC from the SSR and swapping the prime/backup states of the AFCs.   

2) Patch table parameter updates to address changes to constants and default parameters when an AFC reset 
occurs.   

3) SSR ALF patching to capture constants/default parameter changes in FSW that survive a load from the 
SSR.  

4) Active RAM parameter patching to address changes to variables.  These procedures apply to patches that 
do not have a requirement to survive an AFC reset condition. 

There are system-level procedures that are specific for recovery efforts, which are continually updated to be used 
in general spacecraft recovery, and these system-level procedures are meant to be used “off-the-shelf.”   

 
American Institute of Aeronautics and Astronautics 

 

24



G. Testbeds 
Post-launch management adopted the same pre-launch philosophy of maintaining the FSDS softsim and 

hardware-in-the-loop testbeds.  This is a needed capability for continuing FSW development.  Cassini, with its 
deferred FSW development, placed high value on maintaining its testbeds.  However, this is a key component to the 
success of any mission.  Testbed capabilities need to be developed and added in parallel to FSW to support events 
during the mission timeline.  Major efforts occurred to update FSDS and ITL by implementing a Titan atmospheric 
torque model to simulate the effects Cassini would encounter during low-altitude flybys.15  With the anticipation of 
upcoming events, another major effort was taken to implement an Enceladus plume density model to support and 
test spacecraft controllability during Enceladus flybys as low as 26 kilometers.   

The operations FSW team is considerably smaller than the pre-launch development team.  During pre-launch, as 
many as fourteen developers supported the team.  At the end of the prime mission, that number has reduced to two 
team members.  A softsim (FSDS) was invaluable to making a small team very productive at development, test, and 
problem investigation.  Having the capabilities of simulating these stressful environments allows an abundance of 
testing for nominal and off-nominal scenarios to establish margin envelopes for spacecraft safety.  The services of a 
full system-level ITL was a key factor in finding, understanding, and fixing software anomalies early and on ground-
based flight or engineering hardware rather than the spacecraft.  Having results from both softsim and hardware-in-
the-loop testbeds provide a self-checking pair capability, which is an invaluable resource to have when testing FSW 
functionality.  Testing result differences indicate discrepancies that need to be further studied to determine if there 
are FSW problems or issues with the testbeds.  

H. Regression Testing 
Regression tests that were established pre-launch are still part of the regression tests during post-launch FSW 

verification.  Regression tests that no longer apply due to the mission phase have been replaced by tests that capture 
current mission scenarios.  Tests that verify and validate new FSW functionality have been incorporated into the 
regression test suite.  Whether it is a parameter change or functionality change, a core regression test suite is always 
executed on new FSW builds.  This process is used to catch the possibility of undesired effects to the subsystem and 
system due to FSW changes. Regression testing details have been covered in previous papers.10,21   

I. SLOC Comparisons 
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Figure 18. Historical SLOC Comparison of Flown Missions.22 JPL-gathered data on past 
missions(development language) and how missions have increased in complexity and reliance on software. 
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In general, Industry measures software complexity, cost, and effort by Source Lines Of Code (SLOC) counts.  
SLOC metrics are established methods which allow scope comparisons to previous missions, and to an extent 
provide a means to predict future mission FSW effort and cost.  Figure 18 plots logical SLOC counts for fourteen 
different NASA missions.  For planetary orbiters, the trend shows how newer missions are more reliant on software-
intensive systems.   More autonomy creates more complex software, and among orbiters, Cassini SLOCs almost 
tripled the previous orbiter missions.  The pre-launch ACS FSW logical SLOC (not including CDS FSW) estimate 
was 48,000 SLOCs.  At the end of the prime mission, the ACS FSW logical SLOC estimate was 55,000 SLOCs.                         

X. Lessons Learned 
The following are observations that have been discerned in support of ACS FSW during the mission operations 

phase.  
1) Importance of adopting FSW design, development, and testing techniques and evaluating their impacts to 

the system and subsystem during operations. 
2) Importance of the operations FSW team to commit to FSW ownership and the responsibilities associated 

with it, and not to only rely on past software personnel support.  
3) Importance of honing the techniques of averting FSW risk in mission specific environments. 
4) Importance of maintaining accurate records for software versions.  These methods help to keep corporate 

memory during longer missions (described in the previous section.) 
5) Importance of having robust methods to update/patch FSW (described in the previous section.) 
6) Importance of retaining and maintaining testbeds for FSW development and test during longer missions 

(described in the previous section.) 
7) Importance of verifying and validating new FSW capabilities in flight before the functionalities are needed 

during critical events. 
8) Importance of understanding impacts of data definition types to memory protection, and importance of 

legal range checking in flight and ground software. 
9) Importance of reevaluating basic FSW capabilities and improving key attributes or proposing work-

arounds, i.e., ability to retain data across resets, and catching exceptions to good coding techniques. 
Details of the lessons learned from these observations are described below: 

A. Success is in the Details 
This is by far the most important point that one should take away from this paper.  The quality and time spent on 

details during the design and development phases of ACS FSW has provided a software suite that has stood the test 
of mission objectives.  When the responsibility of the spacecraft shifted to operations, the methodology and the 
practice of in-depth attention to detail continued.  Anticipating what may or may not go wrong with upcoming 
events, or preparations to respond to possible anomalies have continued to make Cassini successful to the end of its 
prime mission and beyond.  Sweating the small stuff is a necessity for operations to minimize complacency and 
ensure mission success.  Much of the merited and rational paranoia was directed at FSW because of its importance 
to the spacecraft and mission objectives.  Attention to detail must happen first before achieving success.    

As an example:  While procedures were written for software uploads and maintenance prior to launch, the 
engineers who wrote the procedures usually did not continue into the operations phase.  The authors did not see the 
procedures to fruition.  To take procedures at face value without the understanding, know-how, confidence or effect 
it has in software can lead to failure.  Pre-launch processes and procedures were either revalidated or rewritten post-
launch to capture details gained from in-flight experience. 

No matter which phase the mission is in, the practice of evaluating technical scope, performing trade studies, 
analyzing risks, monitoring system performance, and handling schedule conflicts must be in the forefront.  The 
project, spacecraft operations office, and ACS group have balanced these attributes and applied them to every type 
of software change which contributed to the success of the mission.         

B. System-level Considerations in Subsystem-level Development 
Early considerations of high-level system-level interactions with the ACS subsystem benefited the design and 

development aspects throughout the mission.  Prototyping between subsystems not only consisted of the hardware 
and software interface designs, but the human elements as well.  Group interactions were thought out between 
analysts, software developers, integrators, and testers.  Prototyping resulted in a software life cycle that was unified 
within the affected groups.  Work agreements, schedules, and document templates were established and refined 
throughout software prototyping.  The collaboration between groups took time, but once a consensus was reached, 
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the work expectancy and commitment was solid.  Regular working groups and frequent reviews were instrumental 
in keeping with development commitments and a unified design.     

As examples:  Early system evaluation revealed that fault protection had to be considered at the start of the 
project.  Cassini started FP design a year earlier than previous JPL missions.  This allowed for a systematic approach 
to requirements generation, design aspects, and test planning.  Early scoping resulted in the establishment of testbed 
support and development.  As a result models were unified between different hardware and software testbeds. 

Considering the full scope of the system and its impact to the subsystem resulted in early establishment of self-
imposed requirements that contributed to the success of the mission.  

C. Software Collaboration and Ownership during Operations 
While the development processes remain consistent throughout new and old projects, each project is very 

different and FSW is the one element that needs to adapt the most to achieve mission goals.  Having a software 
community that shares acquired knowledge of their experiences within the different projects establishes a concept of 
software collaboration.  This also means; once a FSW engineer supports a project, that engineer may be called upon 
to support it again long after he or she has moved on to newer projects.  There should always be a sense of 
responsibility when dealing with FSW.  Because of the Cassini legacy and sense of continual collaboration, the 
initial analysts, architects, and FSW developers have provided the necessary support.  This has provided Cassini 
with the best available help.  

However, due to the length of the mission, the expectation for people to remember nuances cannot be assumed.  
This realization has stressed the need and importance of taking ownership/responsibility of the FSW during 
operations.  During the pre-launch architecture, design and implementation phase, FSW engineers firmly understood 
the software and the concept of ownership.  If they did not perform their job to satisfy engineering goals, the 
spacecraft would not launch.  The operations FSW team is also subjected to supporting growing scientific goals.  
Whether objectives are engineering or scientific, the operations team needs to value this same concept.  Whether a 
FSW engineer was assigned to lead initial development, to provide post-launch algorithm support, or to test FSW 
compatibility with extended mission scenarios – without ownership, the depth of responsibility is not perceived.  
Delegation grants authority, but not responsibility.   During operations, Cassini has been fortunate to retain FSW 
engineers who took the ownership responsibility and responded accordingly.  Software collaboration and 
responsibility have contributed to the success of the mission. 

D. Risk Aversion 
During operations, there is a perception that the FSW team becomes reactive rather than proactive.  During the 

pre-launch design phase, new concepts and ground-breaking strategies are welcome; during operations, a 
conservative approach may suppress creative designs.  The perception focuses only on the idea that operations react 
to anomalies.  While some of the operations FSW team’s abilities may become dated with certain design techniques, 
risk aversion techniques become cutting edge.  As a result, the operations FSW team is more proactive than any of 
the past teams.  Supporting operations will result in a well-rounded FSW engineer.  FSW has already proven itself 
by successfully guiding Cassini throughout the prime mission.  However, the question that still needs to be asked 
and addressed is:  “What else needs to be done to keep the FSW anomaly-free in upcoming mission scenarios?”  
Cassini ACS has focused on averting risk by trying to prevent the likelihood and adverse consequences of future 
anomalies, and not just react to problems.  This has been accomplished by continually exercising fault scenario tests, 
evaluating parameter selections, being aware of current mission environments, monitoring current spacecraft health, 
and establishing FSW work-arounds.  While problems may have been kept to a minimum, the tasks of addressing 
risk aversion are never complete.     

E. Major First Time Software Events  
If major functions are added to software to perform critical activities, ground testing alone should not be 

considered adequate.  A proof-of-concept should be performed in flight whenever possible.  FSW changes to 
attitude determination and control can usually be verified in flight.  FP changes may not be programmatically 
feasible to test in flight; however, the verification of FP parameter values can still be performed.   

FSW version A8.6.5 was uploaded sixteen months before SOI, and a major driver for such an early uplink was to 
validate a first-time implementation of an energy cutoff algorithm to terminate a ME burn.  TCM-19b was 
designated to be the first maneuver using the new algorithm.  The algorithm was an ACS-intensive addition in FSW.  
The energy cutoff concept was possible due to the object oriented design of the FSW which allowed additional 
modifications without having to redesign the software architecture.  All the hooks necessary for a new energy burn 
design were available in FSW. 
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The measure of energy was the answer to address SOI critical burn restart issues that plagued a previous pre-launch 
smart burn algorithm implementation.  The variables for current spacecraft velocity (VNoSOI) relative to Saturn 
(without the burn), which utilized existing cubic spline conic vector propagation, and spacecraft acceleration (ASOI) 
as measured by the accelerometer (due to the burn), already existed to calculate the estimated change in specific 
energy using Eq. (1).  For burn cutoff, ideal energy achieved was used as the terminator given min and max target 
values.  The software hooks for Main Engine force magnitude (Fideal) and on-board time-varying best estimate of 
spacecraft mass (MS/C) already existed for ideal changes in specific energy using Eq. (2).  In addition to the 
algorithm verification, this was the first time a time-varying burn vector was used.  Other first-time events were 
using a new command to issue the burn and the downlink of new telemetry that capture burn details.  The success of 
TCM-19b provided the confidence that SOI was technologically achievable using an energy burn cutoff algorithm.   

The concept of post-update checkout sequences should always be considered after an upload of FSW.  Cassini 
operations performs tedious ground testing before uplink of FSW or sequences of extreme importance.  Steps are 
taken on the ground to mimic the actual spacecraft environment.  However, nothing beats the real thing.  The 
Cassini program tries to eliminate as many first time events as possible on new software.  This provides the time to 
adequately monitor and evaluate FSW functionality before being invoked to support spacecraft and science 
sequences.  There were two major checkouts after the full A7.7.6 and A8.6.5 in-flight uploads. 

For A7.7.6, the checkout activities lasted twenty days.  Checkout activities verified that all phasing was correct.  
RWA performance in both rate and attitude control modes were per expectations, and per-axis attitude control errors 
were better than the requirements.  With the validation of FSW capabilities, remember to address the closure of 
applicable flight rules.  Sixteen flight rules were deleted and eleven others were modified. 

For A8.6.5, the checkout activities spanned over a month.  New FSW algorithm functionality performance was 
verified to support upcoming critical sequence activities such as SOI and critical ring plane crossings.  Waivers were 
written to perform checkout activities on backup ACS hardware. 

In-flight checkouts were used to verify and validate new FSW functionality performance, and interactions with 
backup devices which could be potentially invoked in fault conditions for critical events.  The in-flight data 
collected from these activities were invaluable and provided confidence by experience that FSW could perform the 
necessary tasks when required. 

F. Software Data Definitions and Memory Protection 
The difference between variables and constants is that constants are validated by a checksum routine and 

variables are not.  For ACS FSW, the checksum routine is only exercised once during the FSW executive startup’s 
RVB routine.  Execution placement of checksum routines may hide issues which will not become evident until 
exercised during some future event.  This allows the possibility for a constant to be modified accidentally without 
showing any ill-effects in the software.  The only time this would be caught in FSW is after an AFC reset where the 
RVB routine is executed.  When a checksum fails, the AFC keeps the FSW in ROM and does not transition to 
RAM.  If an actual anomaly occurred, this could complicate recovery or exercise unnecessary tiers of fault 
protection to load FSW from the SSR.  Newer missions may reset their computers every time an update is 
performed, which will catch checksum errors early.  For missions not practicing this technique, management of 
checksum data needs to be monitored.    

Telemetry parameters such as scale factors and range definitions are defined as constants.  Pre-launch perception 
is that these parameters need to correctly account for their integrity by the method of checksums.  In post-launch 
scenarios telemetry resolutions or ranges may adjust to changing mission objectives.  It may be more practical to 
implement telemetry parameters as variables which are not checksumed.  Telemetry is monitored daily and has high 
visibility.  If a problem were to occur, it could be tracked and easily changed without the multitude of activities 
associated with updating constants.  Major efforts are focused on the verification of parameter selections; however, 
extra attention is needed when identifying FSW data as variables or constants. 

 
American Institute of Aeronautics and Astronautics 

 

28



Legal range checking is another method to insure that erroneous data values are not used in commands or FSW 
conditional checks.  There are instances where the FSW does legal range checking on some commands but not 
others.  Attention to consistency needs to be practiced.  All of the ground parameter commands do not implement 
range checking.  While the original intent may have wanted to give flexibility to updating commandable parameters, 
if care is not practiced, an ill-chosen value could result in undesired FSW interactions.  Pros and cons need to be 
weighed between flexibility and parameter range checking to ensure that valid values are within parameter operating 
ranges.  Solutions must be well documented in command dictionaries.  Whether the FSW does this range checking 
or not, the ground support software must not assume that FSW will catch commanding errors.  Ground software 
must be resilient enough to range check all commands sent to the spacecraft. 

G. Recovery Data 
Many patch table updates were performed to insure that the default RCS thruster magnitudes were updated to 

closely match actual physical (active) values.  The default updates were performed to reduce a mismatch between 
FSW and physics, and insures that certain thruster-related FP monitors not hinder recovery efforts.  RCS thrusters 
are the key attitude control mechanism during recovery efforts i.e., performing Sun search.  ACS FSW has a 
recovery data set that is stored in CDS.  If the prime AFC is reset or a swap of AFCs occurs, then the SUROM will 
request the recovery data from CDS when ACS FSW is reinitialized.  Recovery data consists of key data that takes a 
snapshot of the most recent state.  If the data requested in the recovery set are corrupt, default values will be used.  
There are two sets of defaults, one for FSW contained in the SSRs and another for FSW contained in the BAIL. 

If RCS thruster magnitudes and Safing attitudes (and other data related to mission phases or data key to 
spacecraft recovery) were captured in recovery data, a robust management of recovery data could ease or eliminate 
the need to update default values via the patch table.  Having methods to capture previous states of FSW parameters 
and making them available at FSW initialization are invaluable, especially during recovery efforts.  Updates to key 
parameters via recovery data could replace FSW parameter patches if a method to modify or add additional recovery 
data were in place.  This would simplify the operations process by eliminating the need to generate new FSW builds 
to update default parameters.  

H. Software State Monitoring 
There are several instances in the FSW, where the masking of FP error monitors disables and bypasses the entire 

monitor code block.  While the original intent may have wanted monitors to be completely disabled, in-flight 
operations experience has revealed that it may be better to allow error monitor code block execution (which provides 
greater visibility into FSW and error monitor thresholds) without reporting an opinion or activation of a response 
script.  This effect would still disable the monitor.  The exit criteria for masking should not completely bypass the 
error monitor code or code that will give insight into threshold encroachment.  For Cassini, an example of this would 
be high-water mark data.  There are several error monitors that if masked, simply bypass code which captures high-
water mark data which would be very useful to 
reconstruct events of interest during the masked event.   

Beware of mismatches which may occur in FSW 
when states change unexpectedly.  Ideally, this should 
not occur in an object oriented paradigm.  However, 
this is an example where minimal coupling of objects 
and data scope enforcement were loosely coupled.  
FSW Fault Protection responses related to hardware 
anomalies can load-shed (power off) non-vital 
hardware such as RWAs that are non-vital in recovery 
efforts.

FSW momentum after 
Safing

Actual physical 
momentum decay

13  Software associated with the hardware states 
may no longer update data which other objects use or 
monitor which may cause stale state data.  The 
instantaneous powering off of hardware devices 
without proper momentum unloading can result in a 
discrepancy between physical hardware properties and 
the FSW knowledge.  Therefore, software variables 
may contain the last known values before hardware is 
powered off unexpectedly.  An AFC reset will 
initialize software variables to and initial state which 
also causes a discrepancy for non-zero physical 
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Figure 19. Graphical Concept of RWA FSW 
Phantom Momentum. Illustrates two scenarios of FSW 
discrepancy.  Blue arrow discrepancy occurs when a 
Safing or FP-related RWA to RCS transition is invoked, 
Red arrow discrepancy occurs when an AFC reset is 
invoked.
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hardware states.  Figure 19 illustrates the discrepancies.  Software logic should be more robust in checking states 
before utilization of interdependent data.  There are operational work-arounds to address these issues, which do not 
require a fix to FSW logic to eliminate the “phantom” or erroneous data sources.  

The more autonomous and complex the software becomes, the harder it becomes to verify and validate.  While 
state machines and object oriented methodologies simplify architecture and exhibit attributes of extensibility, 
modifiability, and maintainability – once implementation diverges from this paradigm, interfaces become nebulous 
and testing becomes more difficult.  The practice of implementing simplicity in a complex environment is an 
attribute which a developer needs to embrace and cultivate.   

XI. Conclusion 
Cassini made history becoming the first spacecraft to orbit Saturn.  For the general public, this was the first time 

Cassini became a household word.  For the JPL community, Cassini was the center of technical achievement for 
over ten years of design and development.  It brought together the best of the best associated with hardware, 
software, and support personnel.  During the operations phase, the philosophy and commitment to excellence made 
Cassini one of the most successful missions ever flown.  With Cassini nearing the end of its mission, this paper 
reflects and celebrates the numerous ACS FSW design, development, test, and operational achievements. 

Initial stages of FSW prototyping began in 1990.  The first official delivery of FSW was 30 September 1994 
with version A1.1.0.  The accelerometer and Sun sensor hardware managers were the only modules not stubbed.  
Over 100 builds later, the last scheduled FSW build – version A8.7.7, will be uplinked to the spacecraft in June 2009 
to support the remainder of the extended mission.  The final build will contain a twenty-year heritage of AACS 
control architecture and state machines objectified into commanders, controllers, estimators, software managers, 
hardware mangers, fault managers, and glue code.  Testament to the FSW success is the abundance of test results 
review findings, procedures, processes, and performance.  The sustainment of methodologies and rigorous 
adaptations to improve methodologies in the operations phase have resulted in lessons learned that give insight into 
design and development philosophies, verification of first time events, memory protection techniques, and future 
software design strategies, all which may not be obvious without in-flight experience.  

While this paper contains a deluge of information about ACS FSW from its beginning to its operability in flight, 
hopefully it will enlighten – without too much bewilderment – the amount of work and effort needed to make 
Cassini a success. 
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