
Cassini Attitude Control Flight Software: From
Development to In-flight Operation

Jay Brown1

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, 91109

The Cassini Attitude and Articulation Control Subsystem (AACS) Flight Software
(FSW) has achieved its intended design goals by successfully guiding and controlling the
Cassini-Huygens planetary mission to Saturn and its moons. This paper describes an
overview of AACS FSW details from early design, development, implementation, and test to
its fruition of operating and maintaining spacecraft control over an eleven year prime
mission. Starting from phases of FSW development, topics expand to FSW development
methodology, achievements utilizing in-flight autonomy, and summarize lessons learned
during flight operations which can be useful to FSW in current and future spacecraft
missions.

Acronyms
AFC = AACS Flight Computer
ALF = Assisted Load Format
ATLO = Assembly, Test, and Launch Operations
BCIOU = Bus Controller, Input/Output Unit (the Bus Controller for the AACS bus)
COTS = Commercial Off-The-Shelf
dof = degree of freedom
ECR = Engineering Change Request
FSC = Flight Software Change report
FSDS = Flight Software Development System
FSTB = Flight Software Test Bed
ITL = Integrated Test Laboratory
J2000 = Earth mean equator coordinate frame and equinox at year 2000 epoch
MIPS = Million Instructions Per Second
MRO = Memory Readout
MTA = Mono-propellant Tank Assembly
OTM = Orbit Trim Maneuver
PIU = Pixel Input Unit
RCS = Reaction Control System
ROM = Read Only Memory
RTIOU = Remote Terminal Input Output Unit
RTM = Requirements Test Matrix
RTI = Real-Time Interrupt designated to establish an 8 Hz rate group
RTX = Real-Time Executive Operating System from TLD
RWA = Reaction Wheel Assembly
SCCS = Source Code Control System
SID = Star Identification
SOI = Saturn Orbit Insertion
SSR = Solid State Recorder (mass storage unit)
TCM = Trajectory Correction Maneuver
TRR = Test Readiness Review
XBA = Cross-strap Bus Adapter

1 Sr. Software Engineer, AACS FSW Cognizant Engineer, Guidance & Control Software and Flight Software
Testing Group, 4800 Oak Grove Drive, M/S 230-104, Member AIAA. E-mail: jay.brown@jpl.nasa.gov

American Institute of Aeronautics and Astronautics

1

Nomenclature
ΔE = Change in spacecraft energy (km2/s2)
ΔV = Change in spacecraft velocity (m/s)

I. Introduction
ASSINI is the last and largest interplanetary spacecraft built in the twentieth century – arguably one of the most
sophisticated robotic missions to date. The end product is a testament to an impressive joint international

partnership. Cassini was built and is now managed for NASA by the Jet Propulsion Laboratory (JPL). The
European Space Agency (ESA) built the Huygens probe, which piggybacked its way to the second largest moon in
the solar system – Titan. The Agenzia Spaziale Italiana built the high gain communication antenna (HGA) which
points to Earth practically every single day, since Cassini’s transition to use the HGA1 on 1 February 2000, to
transmit or receive data to or from Earth. Along with the three agencies, a total of seventeen nations contributed to
the spacecraft and science instrument designs, fabrications, and analyses.

C

Just as impressive is the testament of symbiotic collaboration between software and hardware. Figure 1 is an
illustration of the spacecraft and its instruments. While Cassini stands at 6.8 meters in height and 4 meters in
diameter (15 meters with magnetometer deployment) and is constructed with science instruments and engineering
attitude control sensors and actuators, it is the software that becomes the glue to control and monitor the entire
spacecraft. In particular it is the Attitude and Articulation Control Subsystem (AACS) Flight Software (FSW)
which is the scope of this paper.

Figure 1. The Cassini Spacecraft. This is the final design of the Cassini-Huygens spacecraft with its twelve
science instruments and Huygens probe.2 The spacecraft is shown without the hybrid Kapton-Mylar Multi-Layer
Insulation (MLI) layer which thermally isolates it in space.

As an introduction, a brief history of the mission and AACS responsibilities are presented. This paper
establishes a timeline of events from initial software consideration to current day software interactions in operations.
Key details of the FSW design, development, and test methodologies used to lead up to launch are described. After
launch, the operations team took responsibility of Cassini. As planned, AACS FSW continued to be developed and
tested to support the interplanetary cruise, critical events at Saturn’s arrival and encounter at Titan, and to meet
mission objectives in the Saturnian orbit. A history of in-flight software updates is revealed which leads to lessons
learned during FSW development with operations in mind. Maintainability, FSW patching, parameter
modifications, and legal range checking are some of the topics of choice. The identification of actions taken
throughout the development of Cassini AACS FSW solidifies key software philosophies which aid in the
development and maintenance of a successful mission.

American Institute of Aeronautics and Astronautics

2

II. Mission Background
Cassini-Huygens launched on a Titan IV-

B/Centaur in the early morning of 15 October
1997 from Cape Canaveral. This was the
beginning of its interplanetary in-flight operations
to the sixth planet in the solar system – Saturn.
While previous missions were flybys, Cassini is
the first to orbit the planet. Cassini is the third
heaviest (5,574 kilograms or 6 tons) spacecraft to
be launched. Because of the weight, there was
not a launch vehicle powerful enough to send it
directly to Saturn. To aid in reaching its target
and reducing fuel consumption, Cassini flew a
Venus-Venus-Earth-Jupiter gravity assist
trajectory to boost its velocity to reach Saturn in
6.7 years (this period was considered to be the
cruise phase of the mission.) Figure 2 illustrates
the interplanetary trajectory design. The prime
tour would begin after a successful Saturn Orbit
Insertion (SOI) on 30 June 2004. Six months
later, Cassini successfully ejected the Huygens
probe on 24 December 2004, where it finally
reached its destination to Saturn’s largest moon
Titan on 14 January 2005, and transmitted three hours and forty minutes3 of scientific data to Cassini. The probe
data from Cassini was relayed to ESA for analysis. Cassini then embarked on a seventy-four orbit Saturnian prime
mission.

Figure 2. Cassini Spacecraft Mission Timeline. This time
line describes the Cassini trajectory to Saturn from its launch,
inner and outer cruise, to the beginning of its prime mission.

Throughout Cassini’s four year prime mission, it has had forty-four encounters with Titan as well as three flybys
of Enceladus. The surprise discovery of water expulsion from the southern surface region of Enceladus prompted a
redesign of the extend mission which was approved in April 2008. Another twenty-seven Titan flybys and seven
Enceladus flyby encounters are slated for a two year extension to July 2010.

While it seems like all the excitement started at launch, there were prior decades of ingenious planning and work
to get to the launch pad. NASA’s Mariner Mark II program began in 1987. In 1989, the first two spacecraft
missions were initiated from this program:4 Cassini-Huygens to Saturn and Titan, and the Comet
Rendezvous/Asteroid Flyby (CRAF). Both missions, with very different payloads and scientific objectives, were to
be very similar in design goals. Both spacecraft were to encounter an asteroid with objectives of having many
shared components and common designs. These goals initiated an object oriented software approach, to be modular
and reconfigurable in design, which are described in the next two sections.

In January 1992, budget constraints were imposed and CRAF was removed from the program. The Cassini
design and mission were both simplified. A two-degree-of-freedom articulated High Precision Scan Platform, and
one-degree-of-freedom probe relay antenna and continuous rotating turntable were removed from the design. The
mission no longer included an asteroid encounter. All instruments and payloads became body fixed, which resulted
in a restructure and component simplification of the software (with the removal of articulation architecture.) All
instrument, sensor, and antenna pointing would have to now be accomplished by reorienting the entire spacecraft.
Simplification has its ramifications in that now, operations sequencing becomes more complex having to balance
between maximizing science return and transmission of data back to the ground.

III. AACS FSW Functional Design Background
Several papers have been published describing the AACS FSW design methodology and architecture prior to

software implementation and the launch of Cassini.5-6 For continuity, the pertinent highlights will be described and
referenced with updated final designs throughout Sections III–VII of this paper. The majority of the proposed
CRAF/Cassini articulation (platforms, articulating antenna, and turntable) control aspects of the FSW capabilities no
longer existed. The Main Engine gimbals could be characterized in the category of articulation, which were still
under FSW control; however with today’s standards, this is commonplace and industry would refer to the AACS
subsystem as the Attitude and Control Subsystem (ACS). This paper will refer to both acronyms to represent the
subsystem.

American Institute of Aeronautics and Astronautics

3

From 1990 to mid 1991, prototype evaluations were performed which resulted in choosing an IBM MIL-STD-
1750A 1.28 MIPS microprocessor with 512 kilo-words of Random Access Memory (RAM), 8 kilo-words of
Programmable Read Only Memory (PROM), supported by TLD Systems Ada cross-compiler and real time
executive (RTX) operating system. These were the beginning steps to support the object oriented design philosophy
to address the CRAF/Cassini missions. Early in the design phase, Command and Data Handling Subsystem (CDS)
and ACS were targeted to have their own dedicated processors.

AACS
Flight Computer

Sun Sensor
Assembly

Inertial
Reference

Unit
Accelerometer

AACS Bus

EGE
Driver

(P-axis)

EGA
(P-axis)

Main
Engine
Valve
Driver

Bi-Prop
Latch
Valve
Driver

Bi-Prop
Latch
Valve
Driver

Engine
Valve

Ox
Latch
Valve

Bi-Propellant Engine
(one of one pair shown)

Helium
Latch
Valve
Driver

Fuel
Latch
Valve

Helium
Latch
Valve

Driver B

Helium
Latch
Valve

Driver A

Latch
Valve

Thruster
Valve

Hydrazine Thruster
(one of eight pairs shown)

to the Spacecraft's Command and Data Bus

Catbed
Heater

EGE
Control

Unit
Valve Drive Electronics Control Unit

EGA
(Q-axis)

EGE
Driver

(Q-axis)

Mono-Prop (Hydrazine)
Thruster
Drivers

Stellar
Reference

Unit

Pixel Bus

AACS Bus

Reaction
Wheel

Assembly

All rounded boxes are
separately powerable
AACS assemblies

Bold borders indicate
Safing-critical sets
of assemblies

No autonomous
redundancy mgmt
for shaded items

All circles are
propulsion system
elements

=

=

=

=

KEY:

LPMMH
& HPB

LPNTO
& HPA

AACS
Flight Computer

Sun Sensor
Assembly

Inertial
Reference

Unit
Accelerometer

AACS Bus

EGE
Driver

(P-axis)

EGA
(P-axis)

Main
Engine
Valve
Driver

Bi-Prop
Latch
Valve
Driver

Bi-Prop
Latch
Valve
Driver

Engine
Valve

Ox
Latch
Valve

Bi-Propellant Engine
(one of one pair shown)

Helium
Latch
Valve
Driver

Fuel
Latch
Valve

Helium
Latch
Valve

Driver B

Helium
Latch
Valve

Driver A

Latch
Valve

Thruster
Valve

Hydrazine Thruster
(one of eight pairs shown)

to the Spacecraft's Command and Data Bus

Catbed
Heater

EGE
Control

Unit
Valve Drive Electronics Control Unit

EGA
(Q-axis)

EGE
Driver

(Q-axis)

Mono-Prop (Hydrazine)
Thruster
Drivers

Stellar
Reference

Unit

Pixel Bus

AACS Bus

Reaction
Wheel

Assembly

All rounded boxes are
separately powerable
AACS assemblies

Bold borders indicate
Safing-critical sets
of assemblies

No autonomous
redundancy mgmt
for shaded items

All circles are
propulsion system
elements

=

=

=

=

KEY:

LPMMH
& HPB

LPNTO
& HPA

Figure 3. AACS Functional Block Diagram. Illustrates the ACS-related hardware that needs to be supported
by the FSW.

CDS is responsible for distributing commands to various subsystems and coordinating all onboard
intercommunications. The subsystem collects and packetizes all science and engineering telemetry, manages data to
and from two 2.1 gigabit usable RAM Solid State Recorders (SSR), and stores all the onboard command sequences
uplinked from the ground.

For ACS, mission requirements mandated a full dual-redundant system which included redundant data buses,
prime and backup (block redundant) AACS Flight computers (AFC), and cross-strapped redundant hardware
configurations, as shown in Figure 3. Cassini is a three-axis stabilized spacecraft and maintains control (typically
+/- 2 milli-radians deadbanding) using four thruster clusters of four one-Newton RCS thrusters (eight are prime,
eight are backup.) For precision pointing control (typically +/- 40 micro-radians deadbanding), three RWAs are
used. The prime RWA configuration is three orthogonal (to spin axis) mounted wheels, and the backup RWA is
mounted on an articulatable platform. Illustrations of actuator configurations are shown in Figure 4. The Attitude
and Control Subsystem responsibilities are to:

1) Perform attitude initialization by acquiring the Sun, using a two-dof Sun Sensor (SSA), following
separation from the launch vehicle, or after a fault recovery.

2) Perform attitude determination mapping identified stars, using a three-dof Stellar Reference Unit (SRU)
and Star Identification (SID) algorithms.

3) Perform attitude propagation between star updates, using an Inertial Reference Unit (IRU) which contains
four Hemispheric Resonator one-dof gyroscopes.

4) Perform attitude control using RCS thrusters, RWAs, or a 445-Newton gimbaled Main Engine (ME) for
propulsive maneuvers.

5) Perform control maneuvers to:

American Institute of Aeronautics and Astronautics

4

a. Point the fixed telecommunications antenna (high gain or low gain) toward Earth; detumble the
spacecraft after probe separation; point the high gain antenna toward the probe for probe relay.

Figure 4. AACS Actuator Configurations. Illustrates the position of RCS thruster clusters, Main Engine
gimbals, and RWA positions and alignments.

b. Perform commanded slews (turns) of the spacecraft as required for Trajectory Correction
Maneuvers (TCM), science observations, and science instrument calibrations.

c. Point instruments on the remote science pallet toward targets that, in general, move relative to
inertial space.

d. Hold the spacecraft still for probe release and gravity wave measurements.
e. Turn the spacecraft at a constant rate about the Z-axis while pointing the Z-axis at the Earth for

fields and particles measurement with downlink.
f. Point the main propulsion engine in the desired inertial direction during a Main Engine burn.
g. Perform axial (Z-axis) TCMs using the RCS thrusters.

6) Provide sufficient engineering data in the telemetry stream to support science data analysis and ground
support operations.

7) Provide Fault Protection for ACS and certain Propulsion Module Subsystem functions. This involves
detecting faults and implementing corrective actions to maintain performance and functionality of the
spacecraft.

The Attitude and Control Flight Software is responsible for implementing subsystem requirements in addition to
timing, scheduling, and memory functions. Responsible functions are:

1) Attitude control.
2) Autonomous attitude estimation and inertial vector propagation.
3) Star identification.
4) ΔV (velocity change) control.
5) Message Handling: ACS messages received and transmitted via the CDS bus.
6) ACS telemetry.
7) Memory usage including loading, mapping, protection and verification.
8) AACS hardware configuration and interface management including AACS bus control.
9) Timekeeping and scheduling.
10) AACS mode control.
11) Autonomous fault detection, analysis, and recovery.
12) ROM (PROM) functions – Startup ROM which includes many of the memory usage functions,

initialization, RAM physical mapping, RAM loading, and load verification.
ACS FSW is a set of two software programs which reside in the AFC: The PROM program and the RAM program.
PROM is described above. The RAM program performs all nominal and fault response functionality once loaded
and verified in RAM. Program attributes are described in detail in the Software Specification Document7 and in this
paper.

American Institute of Aeronautics and Astronautics

5

IV. Software Architecture Background
Rather than continuing to implement the historical software development approaches from past projects, which

had software engineers piece together algorithms into flight code and adding fault protection as an afterthought – the
architects for Cassini AACS adopted another approach: The concept of interconnected state machines. States
capture mode, sequential and dynamic control, state dynamics, and discrete aspects that need to be represented in
software. State diagrams provided an avenue of understanding to others outside the software community. This
brought together and leveled the playing field between analysts, system engineers, and software developers. Harel
statecharts and transition diagrams8 were tailored to meet Cassini needs and became a requirement and deliverable to
capture detailed design. Since then, variants of Harel statecharts have become a vital part of the Unified Modeling
Language. State machines addressed inherent shortcomings of past missions where software functions would use
shared or common data pools to communicate or react. The testability of undesirable interactions was of concern
with the manipulation of common data. Advancing state in state machines is a well defined process. Allowed
transitions are explicitly defined and internal processes related to state history are hidden; which lend well to the
object oriented methodology.

Event-driven actions are explicit and lend to achieving synchronization. For Cassini and JPL, all this was a new
and evolving concept. A great effort was focused
on prototyping software development
methodology including personnel interactions,
product delivery, and development processes
(both software and testbed related). This effort
eventually laid the groundwork for the object
oriented approach used in the software
development process. An object refers to a set of
related data and the operations which act on that
data. In other words, an object is made up of
states where operations (processes) act on its
attributes (data) and change its state. The
processes of an object are implemented as
procedures or subprograms within Ada. The most
important paradigm for the object oriented
approach is that the data in an object may only be
modified by operations of that object where no
data are shared that is common. This results in
isolation of algorithms and parameters for an
object and minimizes coupling between objects.

Figure 5. Flight Software Context Diagram.5 Software is
represented as an oval, lines & arrows indicate data flow,
boxes are terminators or external interfaces.

A. Context Diagram Description
Initial architecture design started with the FSW context diagram as depicted in Figure 5. A context diagram

simplifies the identification of FSW within the attitude control system. Immediate benefits from these diagrams are
that subsystem requirements analysis is aided by indentifying interfaces and dependencies. The FSW has five
primary interfaces:5

1) The 1750A computer and its Operating System.
2) The Command and Data Handling Subsystem (CDS) via the CDS bus.
3) The Stellar Reference Unit (SRU) via the Pixel Interface and the AACS bus.
4) Other AACS hardware via the AACS bus including:

a. The Sun Sensors – Sun Sensor Electronics (SSE)
b. The Accelerometer – Accelerometer Electronics (ACCE)
c. The Gyros – Inertial Reference Unit (IRU)
d. The Propulsion Module Subsystem (PMS)
e. The Engine Gimbals – Engine Gimbal Assembly (EGA)
f. The Reaction Wheels – Reaction Wheel Assembly (RWA)
g. The Backdoor ALF Injection Loader – (BAM)

5) AACS Support Equipment (SE), for testing, via the Direct Access Unit (DAU) which is disabled in flight.
However, DAU memory is used in flight to store the Fault Protection (FP) event log and post-mortem data.

American Institute of Aeronautics and Astronautics

6

The primary interfaces also identified the next level of interfaces which were necessary since both buses and
hardware support had to be represented in FSW. The AFCs are remote terminals on the MIL-STD-1553B CDS bus,
which can support up to 31 remote terminals. Each AFC receives ground commands via the CDS bus. The prime
AFC interfaces with its peripheral hardware on a dedicated MIL-STD-1553B (electrical standards) AACS bus with a
custom protocol that can support up to 255 remote addresses and bus transactions of up to 255 data words.9

There are three bus interfaces:5 The CDS bus interface, the Pixel interface, and the AACS bus interface. The
CDS bus manager sets up and maintains the protocol to the Bus Interface Unit and handles handshake interrupts.
The Pixel Interface Manager sets up the Pixel Interface Unit (PIU) to store pixel data to an assigned address, enables
writing to PIU memory, and services transmission error interrupts. The AACS bus manager accepts packets from
the hardware managers and prepares transmission packets for the bus. It handles packet transmission and receipt
from memory shared with the Bus Controller as well as generating and servicing handshake interrupts. Reply
packets from the hardware are distributed to the individual hardware managers.

B. Level 0 Architecture Diagram
The highest level of architecture diagram is the dependency diagram, as illustrated in Figure 6. Early in the

design process, control calls are not known and the Level 0 diagram helps establish hierarchy. At the top is the
external operating system which links to the FSW executive (FSX) as a result of an interrupt, system startup, or via
system calls. FSX services interrupts, handles timing services, schedules all execution, initiates each object’s
execution, and performs tasking. Telemetry, XBA Manager, Fault Recovery, Fault Analyzer, Command Handler,
Configuration Manger, and Mode Commander are specific high-level FSW objects identified to fulfill functions
required by lower-level objects. The objects share no data. Only global type definitions and constants resolved at
compile time are shared.

To highlight a few FSW objects, the XBA is the AACS interface to the CDS bus which supports both receive
and transmit transactions. Telemetry can fetch telemetered data from any object which may be sent to CDS by
interfacing with the XBA Manager. Faults may be raised by any object and sent to the Fault Analyzer. If recovery
involves commands, fault commands take precedence over CDS commands. Commands from CDS, routed through
the XBA Manager, or Fault Recovery commands
interface with the Command Handler for
processing. The Command Handler determines
command priority, conflict resolution, and routes
the proper commands to the Mode Commander
(Software Configuration Manger) or Hardware
Configuration Manager for execution.

C. Level 1 Architecture Diagram
Level 1 architecture is also referred to as the

control architecture.6 The Mode Commander
maintains the software configuration and
allowable changes in the software configuration
(mode changes). A detailed description of mode
transitions is captured in Section VII. The Mode
Commander sets goals for attitude control and
manages the states of attitude determination.
Figure 7 illustrates a three layer hierarchy: The
top level commander, mid level controller, and
low level hardware mangers. ACS functionally
has two primary goals: Attitude determination
and Attitude control.

Attitude determination is comprised of the
Attitude Estimator and Star Identifier (SID), and
estimates current attitude on data received by
ACS hardware sensors via hardware managers.
Attitude error is computed with the cycling of
data between determination and control and
comparing current attitude with
commanded/desired attitude.

Flight
Software
Executive

Hardware Managers: Sun Sensors, Gyros, Accelerometer, PSM
Reaction Wheels, Engine Gimbals, Star Trackers, BAIL

1750A Operating System

Fault
Recovery

Messages
From CDS

Messages
To CDS

Fault
Analyzer

Command
Handler

Configuration
Manager

Mode
Commander

Constraint
Monitor

Attitude
Controller

Attitude
Determination

AACS Bus Interface: IOU, Pixel Interface

Telemetry

CDS Bus

Flight
Software
Executive

Hardware Managers: Sun Sensors, Gyros, Accelerometer, PSM
Reaction Wheels, Engine Gimbals, Star Trackers, BAIL

1750A Operating System

Fault
Recovery

Messages
From CDS

Messages
To CDS

Fault
Analyzer

Command
Handler

Configuration
Manager

Mode
Commander

Constraint
Monitor

Attitude
Controller

Attitude
Determination

AACS Bus Interface: IOU, Pixel Interface

Telemetry

CDS Bus

Figure 6. Level 0 Flight Software Architecture Diagram. 5

Highest level FSW representation. Rounded rectangles
represent objects, rectangles represent external interfaces or
terminators, arrows indicate direction of dependency,
arrowheads indicate source or sink dependencies on all
objects.

American Institute of Aeronautics and Astronautics

7

Attitude control is comprised of the Attitude Commander, Inertial Vector Propagator, and Attitude Controller.
The Attitude Commander generates attitude command profiles (rate, position, acceleration) for pointing. The
Inertial Vector Propagator models time-varying inertial vectors in the inertial frame, and also serves as the
repository of spacecraft fixed vectors, i.e. boresights, of interest. The inertial vector and body vector tables are
configurable. The Attitude Controller responds to commands and controls the spacecraft attitude. Control is
performed using ACS equipped actuators made up of RCS thrusters, reaction wheels, or Main Engine gimbals.

Figure 7. Level 1 Flight Software Architecture Diagram.6 The next level of architecture to show control by
indicating direction of event call functions between objects. The small arrows indicate direction of data flow.

There is a governing Constraint Monitor which checks estimated and desired attitudes for geometric violations
that may potentially harm the spacecraft payload such as prolonged Sun exposure.

D. Object and State Transition Diagrams
From the Level 1 architecture diagrams, the lowest level nodes are termed an object. Object diagrams depict

detailed control and data flows not captured in the Level 1 diagram.

E. State Transition Diagrams
State transition diagrams capture both state and data flow in one diagram. A state transition occurs when an

event labeling that transition occurs. The procedure and function calls represented in the object diagram are the
events of the state transition diagram. The event triggers the state transition and continues to completion without
interruption. Datum is represented by a state variable allowing the variable to take on an arbitrary number of states.
A state can host an entire state machine within it by partitioning. Nested state machines can run in parallel with
machines in other partitions.

V. ACS FSW Development Strategy
Cassini FSW development and testing for the ACS kept to strategies described in JPL’s legacy D-4000 Software

Management Standards Package. Cassini FSW requirements and practices have influenced JPL’s current Software
Development Requirements (SDR) plan and Flight Project Practices. These documents describe the “whats” that are
needed for software development. Currently, JPL software development is going to Software Development

American Institute of Aeronautics and Astronautics

8

Standard Processes (SDSP) which allows tailoring of project development goals to comply with the SDR. The
SDSPs describe the “hows” to develop software. Figure 8 identifies JPL’s project life cycle phase development.
Cassini is considered a legacy JPL project which met most if not all of JPL’s current development standards. Some
documentation and review requirements were different, but Cassini’s philosophy of design, development, and
testing were consistent with today’s standards and frameworks.

NASA
Phases
JPL Life

Cycle
Phases

Pre-Phase A:
Concept Studies

Phase A:
Concept

Development

Phase B:
Preliminary

Design

Phase C:
Detailed
Design

Phase D:
Fabrication, Assembly, Test

& Launch Operations

Phase E:
Operations &
Sustainment

IMPLEMENTATIONFORMULATION

Major JPL
Reviews

Preliminary
Mission & Systems

Review PMSR

Project
PDR

Project
CDR

Critical
Events

Readiness
Review
CERR

Mission
Concept

Review MCR

Pre-Ship
Review,

Operations
& Mission
Readiness
Reviews

PSR, ORR
& MRR

Post
Launch
Assmnt
Review
PLAR

APPROVAL

Assembly,
Test &
Launch

Operation
Readiness

Review
ARR

LAUNCHCOMMITMENT

CONTRACT

Figure 8. JPL Life Cycle Phases. Phase development also applies to Cassini, however considering Cassini is a
legacy project, some review names and requirements have evolved to meet today’s standards.

For many missions, FSW development ends at launch, where it then goes into a maintenance or sustainment
phase. Cassini ACS FSW design and development took on a two phased approach. For the first phase, in the
allotted time, FSW code would be ready for launch and early cruise operations. The second phase involved outer
cruise, critical sequence, and prime mission support FSW development, which would be deferred and uplinked in
flight during the 6.7 year cruise phase of the mission and beyond.

VI. Pre-launch Phase FSW Development, Implementation and Test Methodology
Cassini ACS FSW was based on an incremental

development model as shown in Figure 9. The object
oriented development approach created an
environment with minimal and clearly defined
interfaces which improved future design and
integration efforts. FSW development and testing
spanned over six years prior to launch. Modifications
to ACS FSW are ongoing to meet current mission
objectives for the prime and extended mission phases,
which are explained in Section VIII. These
methodologies will reveal the FSW development and
test philosophy used to establish one of the most
successful interplanetary missions to date.

A. Pre-launch FSW Development Methodology
Software development officially starts after the

Preliminary Design Review (PDR), which marks the
beginning of the Implementation phase of a project’s
lifecycle. Within the Implementation cycle are
Detailed Design; Fabrication, Assembly, Test &
Launch Operations; and the Operations & Sustainment
phases. These phases are commonly known as Phase
C, D, and E, respectively at JPL. Cassini is now in
Phase F which is designated for closeout. Cassini
refers to this phase as extended mission operations and
support.

Figure 9. Incremental Development Model. Also
known as a multi-build model, the first build has a subset
of planned capabilities and following builds add
capabilities. Cycles can repeat without deliveries to
operations. Flow-up arrows represent feedback from
prototyping.

American Institute of Aeronautics and Astronautics

9

For CRAF/Cassini, the PDR was held
in November 1991. Due to project descope
activities, a delta Cassini (without CRAF)
PDR was held in November 1992. The
Critical Design Review (CDR) was held in
December 1993. Incremental software
builds were released from September 1994
to October 1997. Each build entailed
detailed design peer reviews, software
design reviews, code peer reviews, unit test
plans and testing, unit test peer reviews,
integration and acceptance testing, and test
readiness reviews before delivery to
system-level integration and testing.
Figure 10 can be referenced that illustrates
the implementation flowchart. Software
development guidelines were established
which identify, for each review in the build
strategy, the focus of the review, materials
needed to be reviewed, needed participants,
and actions taken following action item
closure. All processes were adhered to and
repeated when necessary.

Since FSW development and deliveries
were based on the incremental
development model, the incremental FSW
builds were separated and identified as
follows:

1) Builds A1 established the skeleton
structure.

2) Builds A2 introduced Control
Algorithm capabilities.

Figure 10. FSW build strategy for development and test. 5 This
is the final build strategy established by early prototyping.

Table 1. ACS FSW Pre-launch Builds

6/16/97

2/10/97
4/14/97

7/8/96
8/5/96

-

11/27/95
4/1/96

-

Freeze

A6 (6/2/97)

A5 (12/16/96)
A5+ (3/31/97)

A4f (4/8/96)
A4f+ (6/1/96)

A3 (2/19/96)

A2f (10/18/95)
A2f+ (1/15/96)

A1 (10/2/94)

FSW
Testbed*

-

• These builds contain the FSW executive (operating system interface) which includes
the rate group architecture, limited command processing and telemetry, hardware and
software interfaces, device drivers

• Control algorithms and other mid-level processing were stubbed out

SkeletonA1

1.0 (1/15/96)
1.1 (4/22/96)

• These builds contain all control algorithms and any upgrades to build A1
• A2f added RAM Verification Block, SID attitude initialization, IRU and ACM

functionality, SID track descoped
• A2f+ added SID attitude initialization, telemetry rates, and mini-functional
• Fault analysis and recovery were stubbed out
• First builds designated to be delivered to ATLO

Control
AlgorithmsA2

-
• These builds contain preliminary Fault Protection (FP) and any fixes to build A2f+
• Added fault monitors, FP Analyzer, and FP Response

Fault ProtectionA3

2.0 tcm (7/22/96)
2.0 opm (8/19/96)

• These builds contain final Fault Protection (FP) designs and any fixes to build A3
• A4f added Constraint Monitor, SID track, more functionality to FP Analyzer and FP

Response. Supports TCMs
• A4f+ contained FP upgrades. Supports Operation Modes (pointing with RWAs)

Fault Protection
and Constraint

Monitoring
A4

ATLO*Key Update DescriptionCapability
FSW

Version

4.0 (6/30/97)
• Parameter updates only to build A5
• A6.4.15 (launch load) on default SSR partition, A6.5.6 (cruise load) on non-default

SSR partition
Launch LoadA6

3.0 (2/20/97)
3.1 (4/28/97)

• A5 Added Backdoor ALF Injection Loader (BAIL) functionality and 7Parameter
command capabilities and fixes to build A4f+

• A5+ contained bug fixes to build A5
Full FunctionalityA5

6/16/97

2/10/97
4/14/97

7/8/96
8/5/96

-

11/27/95
4/1/96

-

Freeze

A6 (6/2/97)

A5 (12/16/96)
A5+ (3/31/97)

A4f (4/8/96)
A4f+ (6/1/96)

A3 (2/19/96)

A2f (10/18/95)
A2f+ (1/15/96)

A1 (10/2/94)

FSW
Testbed*

-

• These builds contain the FSW executive (operating system interface) which includes
the rate group architecture, limited command processing and telemetry, hardware and
software interfaces, device drivers

• Control algorithms and other mid-level processing were stubbed out

SkeletonA1

1.0 (1/15/96)
1.1 (4/22/96)

• These builds contain all control algorithms and any upgrades to build A1
• A2f added RAM Verification Block, SID attitude initialization, IRU and ACM

functionality, SID track descoped
• A2f+ added SID attitude initialization, telemetry rates, and mini-functional
• Fault analysis and recovery were stubbed out
• First builds designated to be delivered to ATLO

Control
AlgorithmsA2

-
• These builds contain preliminary Fault Protection (FP) and any fixes to build A2f+
• Added fault monitors, FP Analyzer, and FP Response

Fault ProtectionA3

2.0 tcm (7/22/96)
2.0 opm (8/19/96)

• These builds contain final Fault Protection (FP) designs and any fixes to build A3
• A4f added Constraint Monitor, SID track, more functionality to FP Analyzer and FP

Response. Supports TCMs
• A4f+ contained FP upgrades. Supports Operation Modes (pointing with RWAs)

Fault Protection
and Constraint

Monitoring
A4

ATLO*Key Update DescriptionCapability
FSW

Version

4.0 (6/30/97)
• Parameter updates only to build A5
• A6.4.15 (launch load) on default SSR partition, A6.5.6 (cruise load) on non-default

SSR partition
Launch LoadA6

3.0 (2/20/97)
3.1 (4/28/97)

• A5 Added Backdoor ALF Injection Loader (BAIL) functionality and 7Parameter
command capabilities and fixes to build A4f+

• A5+ contained bug fixes to build A5
Full FunctionalityA5

* - FSW Version (Release Date)

American Institute of Aeronautics and Astronautics

10

3) Builds A3/A4 integrated Fault Protection (FP).
4) Builds A5/A6 were full functionality builds. The BAIL functionality was added in A5 to address deep

under-voltage AFC recovery, and contained other fixes to FSW. Build A6 was the ACS FSW launch load.
Table 1 captures key FSW build capabilities.

B. Pre-launch FSW Test Methodology
It is common that software testing begins before PDR by developing the test requirements and plan. After PDR,

FSW tool development begins and test cases are defined which also includes initial unit testing. After CDR, unit
and interface testing begins and continues to test FSW functionality and interface verification and validation. This
testing approach is used to support Test Readiness Reviews (TRR) and deliveries to Assembly, Test, and Launch
Operations (ATLO). Test milestones10 are: Requirements Trace Matrices (RTM) development, test plan
development, test case design, test case and procedure development, Test Readiness Review, test case execution,
test anomaly reporting, test analysis, and test result reporting.

Essential to the test program was the Software Test Plan. The mode and state driven architecture established the
method for how unit testing was performed and what the verification methods would be for pass/fail criteria. Unit
testing involved low-level verification of functions, monitoring of state or mode transitions, and boundary condition
testing. Future FSW interfaces were stubbed (simulation of called components not yet implemented) to allow the
proper verification of each unit test. Interfaces were un-stubbed once they became available. All unit test results
were peer reviewed for content, functionality validity, and results.

Concentration was on testing interfaces between objects and requirement conditions specified in the AACS
Functional Requirements Document, Software Specification Document, Interface Control Document, RTMs, safety
requirements, and fault protection requirements. Requirements could then be traced to the specific scenario or
function tests. Integration testing was tied to the planned number of FSW builds. The integration testing process
was divided into phases and was repeated for each build. Integration tests comprised of four phases:11

1) Phase 1 (Package Specification Testing): This was a skeleton of specification stubs constructed and
compiled together. This was the first test of interface definitions.

2) Phase 2 (Package Body Testing): Using the FSW executive, the code specifications and bodies were
compiled together. This was the second test of interface definitions.

3) Phase 3 (Informal Thread Testing): This phase was accomplished in parallel with phase 2. As more
objects were added, more functionality could be tested. This controlled increase in complexity as well as
the testing of new interfaces and functionality was achieved using an environment which allowed testing of
individual threads.

4) Phase 4 (Scenario and Functional Testing): Using a full set of integrated objects, scenarios and functional
tests would test the full functionality of the build to validate the implementation of prescribed interfaces
and required functionality. The distinction between scenario and functional tests was that the scenario tests
were based on inputs from the AACS systems engineering group, and the functional tests were developed
by the FSW group without such inputs. Both sets of tests were developed in the form of test scripts.

At the completion of each integration test phase, an integration test baseline was established. The baseline was
configuration controlled which included tested software, test drivers, and test stubs. Regression testing consisted of
rerunning selected unit test for the objects and rerunning selected scenario and/or functional tests from phase 4 of
the integration testing.

Acceptance testing started with the verification of the RTM to the requirements for FSW. Any requirements not
validated by scenario testing had one or more functional tests developed to validate them. The final approval of
acceptance testing was the successful completion of phase 4 scenario and functional testing.

Just as important as testing were the reviews for test readiness and reviews of test results. TRRs marked the
release and acceptance of FSW for integration testing. Problem reporting databases were established with the
AACS subsystem-level Flight Software Change (FSC), system-level Problem Report, and system-level Engineering
Change Request (ECR) database documentation systems. The ATLO Readiness Review (ARR) marked the release
and acceptance of the final FSW build for system-level testing. AACS subsystem test plans were integrated into
system test plans. RTMs, test trace matrices, test plans, and test cases were all utilized to test and validate interfaces
in the spacecraft system environment. ARR testing and reports led to the support of Operation Readiness Tests and
the final review before launch, the Operations Readiness Reviews. This review established the readiness of ground
and flight support, facilities, plans, processes, procedures, and verification & validation status to meet the mission
objectives.

American Institute of Aeronautics and Astronautics

11

VII. Keys to Final Design and Implementation
While there are hundreds of examples that make the ACS FSW noteworthy, there are key outstanding attributes

that have really contributed to its success:

Figure 11. FSW Mode Transition Diagram. FSW states and modes can be traced by identifying needed
resources, modes of attitude determination and control, and mode commander actions.

A. Software Control
The state and mode driven software architecture and design have made the FSW quite manageable and

quantifiable. Cassini software personnel created an ingenious representation of the software that establishes its
execution state throughout the life of the Cassini mission. Software attitude determination and control can only be
in one mode at a time, which establishes clear and quantifiable pathways. Each mode enables a unique subset of
functional capabilities. Figure 11 expresses the software state and mode driven architecture and the resources
required for support.

A mode dictates the types of goals that ACS will attempt to achieve and the hardware resources that are required
to meet these goals. Many AACS mode transitions occur autonomously (driven by events). Others are commanded.
Autonomous mode transitions always drive ACS toward re-establishment of the Home Base Mode. Within Home
Base Mode, ACS provides the operator with two independent degrees of freedom. These sub-modes allow the
operator to select a sensor complement for attitude determination (“Celestial-Inertial” using the SRU + IRU or
“Celestial-Cruise” using the SRU alone) and an actuator complement for attitude control (RCS or RWAs). A mode
transition will not occur until all resources above the dashed line which are not already required in the present mode
are ready. The flight software does not wait for resources already required in the present mode, or for resources
below the dashed line. The software is tolerant of temporary operation without resources below the dashed line.

Except for fault responses, mode transitions are the only case where flight software automatically requests
resources in order to honor a command. Commands to remove resources required by a mode are rejected. If a fault

American Institute of Aeronautics and Astronautics

12

causes loss of a required resource below the dashed line, Fault Protection will often try to resolve the problem
without changing modes. However, if a fault causes loss of a required resource above the dashed line, Fault
Protection will generally command a mode that does not require the affected resource.

The central part of the AACS mode transition diagram is a grid showing combinations of attitude determination
and control options. Attitude determination options progress from top to bottom, and attitude control options
progress from left to right. Many of the actions performed by the Mode Commander are indicated by the diagram.
These include requesting and reserving resources, and directing the attitude determination and control functions.
The bottom row of the AACS mode transition diagram gives information on other important actions initiated by the
Mode Commander and on tasks the Mode Commander performs in each mode’s specific “During:” This term is
used to refer to activities performed cyclically (generally once per rate group) during a mode’s operation.

Attitude determination is in Idle until Ready mode where it switches to Inertial Relative (3R). An initial inertial
reference frame is created and relative attitude is subsequently propagated from gyro data. After star tracker data
becomes available, attitude determination switches to Celestial (3J) Inertial where a change to J2000 provides an
absolute reference frame. Attitude is propagated from gyro and star tracker data. From there, attitude determination
may be switched to Celestial (3J) Cruise which requires only the star tracker.

Attitude control is in Idle until Detumble mode where it switches to RCS control, using thrusters. This is used
for most activities until ΔV or finer control is required. RCS ΔV is provided for smaller burns; ME ΔV for larger
burns. RWAs are used for precise control during many science observations.

B. Fault Detection, Isolation, and Recovery
Some call it Failure Detection, Analysis, and Recovery, to others it is known as Fault Protection. Regardless of

the connotations, its one major goal is to protect the spacecraft, establish telecommunication to Earth, and save the
mission. Cassini approached this notion with autonomy. Mission design and requirements imposed a number of
constraints on the spacecraft. At Saturn, there is an approximate 1.5 hour one way light time constraint for data to
reach, or be transmitted back from, Cassini to the ground. Ground track support is not available twenty-four hours
of the day. There are long periods of off-Earth pointing for science observation and collection. One of the most
important requirements is the spacecraft’s ability to recover and resume from a fault scenario during a critical event.
These are but a few examples of why autonomous control capability needs to be very robust in FSW. This

Error Monitors

1
2

3
•

M

Activation Rules

E

1
2

3
•

A

Response Scripts

Response
Script
Activators

1
2

3
•

R

Other AACS Flight Software Algorithms

Alert Messages to CDS

AACS Commands

Performance Measures

Ground-Commanded Mask States

AACS
Command

Handler

Ground-Commanded Mask States

Output
Colors

R

Repair Managers

E
1

2
3

•
AACS Commands

Repair Manager States

Repair Manager Activators

M

M

Current Subsystem Configuration
and Activity Goals

Current Subsystem Configuration
and Activity Goals

Error Monitors

1
2

3
•

M

Activation Rules

E

1
2

3
•

A

Response Scripts

Response
Script
Activators

1
2

3
•

R

Other AACS Flight Software Algorithms

Alert Messages to CDS

AACS Commands

Performance Measures

Ground-Commanded Mask States

AACS
Command

Handler

Ground-Commanded Mask States

Output
Colors

R

Repair Managers

E
1

2
3

•
AACS Commands

Repair Manager States

Repair Manager Activators

M

M

Current Subsystem Configuration
and Activity Goals

Current Subsystem Configuration
and Activity Goals

Figure 12. FSW Fault Protection Architecture Diagram.12 Key components of the FP algorithms to identify
Error Monitors, Activation Rules, Response Scripts, and Repair Managers.

American Institute of Aeronautics and Astronautics

13

establishes two fault tolerant objectives: Fail safe and fail operational.
Fail safe is the term used to insure the spacecraft is safe after a fault and to maintain its safety for up to two

weeks without ground intervention. There are several key attributes associated with fail safe: The FSW shall
autonomously identify and isolate failed or faulty equipment. Safing-critical equipment shall be replaced. A
thermally safe and commandable attitude shall be established. Once safe, the FSW shall wait for further ground
instructions. FSW has the ability of keeping the spacecraft thermally safe for an indefinite period by pointing the
HGA to the Sun using the two-axis Sun sensor. With the aid of System Fault Protection, a HGA Safing algorithm
will command the spacecraft to Earth point after an hour of sustained conditions of no additional faults.

Fail operational is the term used when mission sequences must continue in the event of a fault during time-
critical events. Events of Launch, Sufficiently High Orbit (if the launch vehicle failed, achieve a high enough orbit
for disposal), SOI, and Probe Relay were all critical events which fall into this category. However, SOI was the key
motivation in adding additional autonomy beyond FSW’s fail safe objectives. Key attributes associated with fail
operational are: The FSW shall autonomously identify and isolate failed or faulty equipment. Equipment necessary
to complete time-critical activities shall be replaced. There shall be the ability to handle general processor resets,
and ability to rollback and resume the onboard time-critical command sequence. If the Main Engine fails, and the
spacecraft fails to achieve orbit during SOI, the prime mission is over. In that regard, the autonomous continuation
of a Main Engine burn has to proceed after a quick and accurate fault diagnosis. FSW has the ability to restart the
burn if terminated for any reason. Fail operational is dependent on ground-commanded critical command
sequences. Upon detection of a fault, CDS will suspend a critical sequence and restart at the last achieved
checkpoint. Checkpoints are designated throughout the sequence and insure all goals are met before continuing on
with the critical sequence.

After the establishment of control algorithms, fault algorithms were integrated into FSW. Figure 12 reveals
there are four primary architecture components to the FSW’s fault protection design:12 Error monitors, activation
rules, Response scripts, and Repair managers.

Error monitors test local performance measures against expectations, apply discriminating filters, and then
output color-coded opinions. Opinions range from: No opinion (color black), expected performance (color green),
unexpected performance which does not merit autonomous response (color yellow), and anomalous performance
which merits immediate autonomous response (color red). Opinion color generation is dependent on evaluation of
thresholds, and persistence & duration limits during each computation cycle. Error monitor color output results are
based on FSW generated performance measurements or ground-commanded tailored mask states. Masking a
monitor will prevent autonomous responses by reporting a no opinion (color black). There are 317 different error
monitors implemented in FSW.

Activation rules evaluate subsets of the color-coded error monitor outputs dependent of the conditions of current
ACS hardware configurations or goal activities. Rules diagnose the most likely cause of anomalous behavior and
activate one or more appropriate response scripts. Activation rules are dependent on the output colors of the error
monitors, current subsystem configuration and goal activities, or ground-commanded tailored mask states. Masking
a rule will prevent autonomous responses to a diagnosis. There are 320 different activation rules implemented in
FSW.

Response scripts isolate faulty or failed equipment and respond to recover to a desired level of subsystem
functionality. Response scripts are dependent on response script activators from the activation rules, states of the
repair managers, or current subsystem configuration and goal activities. Recovery attempts are performed by
issuing commands directly to the command hander, directing the activities of the autonomous repair mangers, and/or
requesting external assistance from CDS-collected alert messages. There are 221 different fault responses
implemented in FSW.

Repair managers track the success or failure of past corrective measures for ACS equipment. Managers
determine the most appropriate corrective action to take. Repair managers are dependent on action requests from
response scripts. Manger actions are exercised by issuing commands to the subsystem and can be thought of as
specialized response script subroutines.

Error monitors are integrated throughout the FSW in routines that can establish the earliest test point. This
distribution allows test performance and opinion generation to occur anywhere throughout each computation cycle
(RTI). The other three FP components; activation rules, response scripts, and repair managers are all centralized and
are executed at the end of each computation cycle. Response scripts are prioritized, in the event of two or more
response scripts simultaneously being active; the higher priority script takes precedence and can delay the lower
priority scripts.

FP architecture is designed to handle single fault and unrelated double fault scenarios. Combinations of
monitors can handle multiple fault scenarios that tie redundant hardware to the repair managers which can

American Institute of Aeronautics and Astronautics

14

autonomously exercise several independent paths of repair allowed by hardware and software constraints i.e.,
independent prime hardware sets selection, independent bus selections, and composite (mixed-mode) prime sets.
Other notable FP management attributes are the resilience to tolerance of: Single Event Upsets (SEU), failure of
other subsystems such as CDS, power interruption, corruption or loss of status information, and operator error. In-
depth details of these tolerances are referenced in previous papers.12-13

C. Software Objects
Identification and separation of FSW into distinct

and unambiguous objects created program set
reliability, maintainability, adaptability, and to an
extent – reusability. The object oriented approach
reduces coupling and increases cohesion. Objects are
relatively independent and can therefore be more
easily developed, verified, and modified as a result of
a change in requirements. Interfaces to the operating
environment and peripheral devices are also localized
and minor changes can be accommodated in isolated
objects. Changes to algorithm equations and their
parameters are also isolated to specific objects.
Changes to subsystem modes can have broader effects.
Table 2 lists the objects which make up the RAM
FSW program load.

Missing from the RAM program list is the RAM
Verification Block (RVB), which is generally
considered part of the FSX object; however, its
functions are independent of FSX. The RVB performs
initial preparation of the FSW prior to passing control
to the RTX and verifies the integrity of FSW
execution codes and constants in RAM. It will also
perform remapping if necessary, and performs RAM
codes/constants patching if so specified in a table in
RAM – which allows patch table updates described in
Section IX.

Besides the RAM program, ACS FSW is also
responsible for the PROM program. The PROM
control (Startup ROM – SUROM) program was
written in 1750A assembly language and burned into
PROM chips. SUROM is tasked to configure and load
RAM, accept commands from CDS to load memory
and to send memory load request to CDS. Interface
responsibilities include generation of heartbeat data,
state table data, recovery data, ancillary data, and
telemetry to send to CDS. The first program run after
any AFC power up or reset is the SUROM to initialize AFC hardware and waits for commands from CDS to
perform memory loads. If CDS synchronization signals are not present, the SUROM has a self-AFC startup
capability.

Table 2. Final RAM FSW Modules

ACC Accelerometer Manager
ACL Attitude Controller
ACM Attitude Commander
ATE Attitude Estimator
BAM BAIL Manager
CFG Configuration Manager
CMD Command Handler
CMT Constraint Monitor
EGA Engine Gimbal Actuator Manager
FPA Fault Protect - Analyzer
FPR Fault Protect - Recovery
FSX Flight Software Executive
GBL Global Types and Utilities
GBM Global Hardware Manager
IOU AACS Bus Manager
IRU Inertial Reference Unit (Gyro) Manager
IVP Inertial Vector Propagator
MDC Mode Commander
PMS Propulsion Module Subsystem Manager
RWA Reaction Wheel Assembly Manager
SID Star Identification
SRU Stellar Reference Unit Manager
SSA Sun Sensor Assembly Manager
TLM Telemetry Manager
XBA CDS Bus Manager

D. Software Glue
ACS FSW is designed with five task groups to control and execute software. An interrupt task is the highest

priority task, followed by the RTI (timer task), foreground task, background task, and the lowest priority Error
Detection And Correction (EDAC) task. The Flight Software Executive (FSX) initiates foreground and background
task execution activities, services all interrupts, provides timing and memory read/write services to other objects,
and initiates periodic memory scrubs.

The foreground task is the main Ada task which invokes all of the FSW objects in a prescribed order and on
average takes up 60% of the CPU usage. When foreground processing suspends, FSX starts or resumes background
tasks. The background task is allowed to run until the previously delayed foreground task is scheduled to resume.

American Institute of Aeronautics and Astronautics

15

This orderly and deterministic processing is interrupted only by fault conditions. The background task group
includes IVP, ATE, CMT, SID, and EDAC background tasks, and on average may take up 4% CPU usage not
including EDAC (a measure of idle time.) EDAC averages 30% CPU usage. The RTI task to set the rate group
takes less than 1% CPU usage. The interrupt group BCIOU, PIU, and 1750A timers average 6% CPU usage. The
Ada runtime environment provides an interlock mechanism to control asynchronous access of state data by multiple
tasks, and provides subprograms for suspending the foreground task while waiting for timed events or interrupts.

FSX’s primary job is to provide timekeeping and scheduling services. FSX starts an infinite loop which
establishes the 8 Hz (0.125 second) rate group. There is only one rate group for the FSW. Besides the FSW internal
clock driven off of a 1750A timer, FSX maintains both an AACS clock and a RTI clock. The RTI clock is a low
cost 32-bit clock that is incremented (ticks) once every RTI. AACS time is synchronized with spacecraft time
provided by CDS. FSX is also responsible for making time corrections, handling cycle slips, rate group overruns,
and controlling RTI timing jitter.

E. Tool Sets
1. Flight software testbeds

A key factor throughout the FSW development
process is the validation of FSW before delivery. The
Flight Software Development System (FSDS) was
realized as a necessity for FSW throughout the
development and implementation cycles of the
mission. It was deemed applicable to have a fully
emulated high-fidelity ACS subsystem testbed that
could be developed in parallel to ACS FSW to provide
validation of changing FSW capabilities throughout
the entire mission. FSDS implementation started in
early 1993 and the testbed was operational in late
1994.

The key to FSDS is that it was created to support
the validation of FSW in the ACS subsystem
environment. Features were added to FSDS to closely
emulate the attitude control subsystem. The redundant
ACS subsystem, with dual-redundant data buses and
dual AFCs, can run prime and backup FSW
simultaneously. FSDS accurately modeled the
redundant architecture as illustrated in Figure 13.
Millisecond and microsecond level hardware behavior
was simulated to create a virtual real-time execution
environment. This keeps the correlation of events that
happen in real-time, but executes faster due to the host
workstation processor. The order of events would
occur at the same time as a corresponding real-time
testbed. This feature is vital to the realism of actual
spacecraft performance. FSW must synchronize to the
simulator, and duration of activities must be modeled
correctly.

The benefit of this environment is that ACS FSW
was required to be in the loop, which gave FSW
developers the fidelity needed to test in a pseudo-
realistic atmosphere that was comparable to the actual
spacecraft environment with respect to ACS concerns.
FSDS was found to be the workhorse for functionality
testing.

Figure 13. Detailed FSDS Object Oriented
Architecture and Model Diagram.15 Coded in C with
layered organization where top-level initializes all
modules, modules initialize and interconnect models, and
model libraries supply methods and utility functions. The
architecture model focuses on the actual hardware
configuration.

Besides having a strictly software emulated test
environment (softsim), the Flight Software Test Bed
(FSTB) was developed during the same time period to
have FSW exposed to real-time behaviors and

American Institute of Aeronautics and Astronautics

16

environment using a COTS processor and AFC board
during development. Actual flight processors were
very expensive and would have to be shared with CDS
FSW development. The FSTB was a valuable real-
time equivalent test environment during the pre-launch
phase.

For the operations phase, FSTB was retired due to
hardware maintenance and expense issues. However,
real-time testing fidelity was not in jeopardy. Cassini
has two high-fidelity hardware-in-the-loop testbeds for
software and hardware integration:14 Cassini AACS
Test Station (CATS) and the Integrated Test
Laboratory (ITL).

Flight Software Change (FSC) Process

New FSC opened:
description of problem stated and likely
objects, interfaces, impacts, and retests selected

Preliminary Disposition:
responsible engineer assigned and objects,
interfaces, impacts, and retests refined

Formal Approval:
detailed design changes presented by
responsible engineer for approval

Version Control, Integration, & Delivery:
changes made to code and delivery of new FSW
version. FSC form updated appropriately.

Peer Code Review:
code changes inspected by someone other than
the FSW developer who made the changes.

Closure:
satisfactory completion of documentation, review,
retest approved by Subsys. Engr & FSW Cogee

Retest:
all tests assigned must be run and documented
in the verification layout of FSC form.

Design Meeting(s)

Inputs Provided

FSC Coded

FSC Closed

no
 fi

x

blank

need meeting

need inputs

needs work |

ready for approval

coded

approved

delivered

ready for closure

blank

TBD

FIX

These embedded testbeds run in real-time and
require timely setup procedures and human resources
to utilize. The ACS FSW team had to be able to test
and verify algorithms and functionality quickly and
not be constrained to a few tests per day. At times,
there were a dozen FSW engineers developing code,
and each requiring a valid test environment. Having a
software-based closed-loop softsim running on a
desktop workstation that could run faster than real-
time at any time with no supervision was a key to
timely and accurate testing with little of the overhead
associated with the maintenance of keeping up real
hardware models. Testbed architecture and operations
benefits have been previously published.15

2. FSC Database
There was a well-defined process for changing

flight software starting with the A2 control-algorithm
capability FSW builds. Figure 14 describes the
process. This process started in 1996 to track FSW
relevant issues which were discovered through ATLO
or system-level testing. The Flight Software Change
(FSC) report database became the FSW team’s
tracking mechanism for issues to be fixed, not fixed,
or deferred to be fixed in future builds. To this day,
the FSC process has been followed and FSCs are
tracked and reported in test reports, reviews, and
release documents. The FSC database is a subsystem-
level tracking tool, where the ECR database is
considered a system-level tracking tool.

Figure 14. FSC Database Process to change FSW.
Key status inputs are: Red – represents the FSW status,
blue – represents the FSC document status.

Figure 15 plots a graphical history of FSCs that
were opened and closed since 1996. The freeze for
launch was around two and a half months before
launch day. Table 3 isolates FSCs tracking to FSW
build versions. Presently, there are 1523 FSCs in the
database. 1437 FSCs were addressed during FSW
development. After initial investigations, 86 FSCs
were identified as not applicable to address in a FSW
build change. The pre-launch development timeframe
deferred 167 FSCs to post-launch FSW builds to
address future mission specific events or development.
See Sections VIII–IX for post-launch FSW
development details. For A8 FSW builds, seven FSCs
remain open: Five FSCs are associated with active

1600

0 500 1000 1500 2000 2500 3000
0

200

400

600

800

1000

1200

1400

total
closed
opened
launch day

Days since start of FSC Database

N
um

be
r

of
 F

S
C

s

Figure 15. Open/Closed FSC History. Starts from
first FSC implementation to show FSC progression of pre
and post launch FSW changes.

American Institute of Aeronautics and Astronautics

17

parameter patches that could be
implemented in FSW, if a full FSW
upload is deemed appropriate by the
project, to update corresponding default
parameters. One FSC is left open for
monitoring in case of a hardware failure,
and the remaining open FSC is a RTX
operating system bug which is left open
for inspection verification after each
FSW build release (there are no plans to
have TLD fix this issue.)

Table 3. FSC Breakdown by FSW Build

This database has become a vital
metric tool for ACS.

64

53

11

26

1

17

8

No Fix

386

144

242

954

167

608

179

Fix

-980980Pre-Launch Build Totals

-168168Launch, Inner CruiseA6

-253253Outer CruiseA7

7197204Critical Sequences, Prime &
Extended Mission SupportA8

450

625

187

FSCs
Closed

457

625

187

FSCs
Opened

-Fault Protection and
Constraint MonitoringA4

OpenCapability
FSW

Version

7Post-Launch Build Totals

-Full FunctionalityA5

64

53

11

26

1

17

8

No Fix

386

144

242

954

167

608

179

Fix

-980980Pre-Launch Build Totals

-168168Launch, Inner CruiseA6

-253253Outer CruiseA7

7197204Critical Sequences, Prime &
Extended Mission SupportA8

450

625

187

FSCs
Closed

457

625

187

FSCs
Opened

-Fault Protection and
Constraint MonitoringA4

OpenCapability
FSW

Version

7Post-Launch Build Totals

-Full FunctionalityA5

F. Software Collaboration
Early collaboration between guidance and control analysts and software engineers established a solid well-

defined foundation to develop FSW. In the early stages of defining and designing the mission, people had their
established roles and software specialists were in the minority. Cassini could have taken the road of inheriting
development strategies and approaches from past projects, but there were too many lessons learned that could not be
ignored. Architects pushed for changes and new ideas were introduced early on to the entire Cassini team. Rather
than the serialization of past development efforts, objectification was the breakthrough needed to establish how
software and Cassini did its job. During the software prototyping process, a well-defined coordination between
analysts and software was established.

A key factor was early software involvement before algorithm deliveries.5 A software unit (module) engineer
was appointed months before analyst algorithm delivery. Once the control analyst drafts the algorithm delivery, the
software unit engineer presents the algorithm in review. This establishes that the software engineer has the
knowledge, understanding, and ownership of the algorithm before applying coding techniques. A key individual
was appointed to be responsible for the software-analysis interface. Co-location of FSW, analysts, and subsystem
groups was also a key to minimizing interpretation errors and enhancing collaboration within the subsystem.

VIII. Post-launch Phase FSW Development, Implementation and Test Methodology
FSW development and testing spanned another seven years for post-launch development to address outer

planetary cruise, and critical sequence support for SOI and the Huygens Probe Release and Relay activities which
occurred during the 2004 to 2005 timeframe. After achieving orbit, another four years of FSW updates were
performed to address prime and extended mission sustainment. The sustainment effort is still in progress and is
currently planned to extend to 2010. Throughout the post-launch phase, the same development and test strategies
are used to insure compatible software designs and methodologies. Variations on these themes (focused on reviews
and testing) are explained below.

A. Post-launch FSW Development Methodology
It became apparent after launch that the planned deferred FSW development would be separated into two FSW

build versions. One to support the spacecraft cruise phase of the mission, and the other to support the execution of
critical event sequences.

1) Builds A7 (Outer Cruise): These builds contained FSW fixes and updates to support Jupiter campaign
activities and the remaining four-year outer planetary cruise to Saturn. FSW version A7.7.6 was the first
in-flight full image uplink of software. New capabilities were incorporated to help monitor and detect
leaks16 for the main control mechanism during cruise – RCS thrusters. While attitude control using RWA
capability was developed prior to launch, before project management decided to enable the RWA control
functionality for science observations during the Jupiter flyby campaign, additional features were added to
the RWA control capability to allow for faster recovery if certain in-flight anomalies were to occur.
(Several system-level testbed anomalies resulted in additional quick-recovery algorithms for rate,
acceleration, and torque limiters to the RWA attitude and wheel rate controllers.) To support the overall
mission, the SID algorithm was enhanced to handle extended bodies. To support SOI fault recovery, a
deluxe Attitude Initialization capability was added. To support probe relay and tracking, an inertial vector
propagation rotating coordinates functionality was added.

American Institute of Aeronautics and Astronautics

18

2) Builds A8 (Critical Event Sequences and Prime Mission Support): A8 was divided into several planned
full image version uploads. A8.6.7 supported Saturn Orbit Insertion, A8.7.1 supported Probe Release and
Probe Relay. During the prime mission, the project management took a more conservative approach to
updating software. Full image uploads and resets to the AFCs took operational hits to science and other
subsystems on the spacecraft, and the AFCs and FSW architecture had various work-arounds to update
FSW. Therefore, A8.7.2 and its variants, which support the prime and extended missions, are patch loads.
Further details are explained in Section IX.

Post launch reviews were held to monitor if FSW development adhered to the appropriate standards and that the
proper testing methods were followed. FSW development and testing included fixes to issues encountered pre-
launch and deferred, parameter fixes and inconsistencies encountered during flight, deferred capabilities, new
capabilities, and capabilities delivered as part of the launch load but were not completely tested or were known to
not function properly. An example of a major capability that was addressed post-launch: A robust Main Engine
control functionality developed for SOI – which resulted in an energy burn algorithm.

The deferred FSW development and test programs were targeted for two major post-launch reviews. The SOI
Critical Events Readiness Review (CERR) was held in April 2004. The FSW was frozen nine months prior to
uplink to provide a steady base for critical sequence development and regression testing. Extensive testing did
reveal an error in the fault protection burn restart logic and a redelivery was made. Several papers have been written
on SOI and the efforts in FSW development and testing.17-18 SOI successfully occurred on 30 June 2004.

The Probe Relay CERR was held in October 2004. The FSW was frozen eight months prior to uplink, however
due to a change in the navigation reference trajectory; pointing errors for the Huygens Probe Relay tracking
increased and were beyond the tolerance for probe data relay success if FSW, incase of an AFC reset, used the
previous default trajectory data. Therefore, FSW default attitude vectors supporting Probe Relay had to be updated
to support the new reference trajectory design. The vectors were changed and the final Probe Relay build was
frozen four months prior to upload. Even with the resultant compressed schedule, the full suite of testing to verify
and validate FSW for the critical event sequence was achieved. The Huygens Probe Relay with Cassini was
successfully accomplished on 14 January 2005.19

After the execution of the in-flight critical sequences, the prime mission was under way. In order to support
prime mission events such as low-altitude Titan flybys, Monopropellant Tank Assembly recharge affecting thruster
magnitudes, and orbit trajectory changes, FSW had to be updated to support the effects of these events. A symbiosis
between FSW and operations teams was achieved by updating necessary FSW parameters in flight and finding
ground operation work-arounds for software issues that were not deemed essential for an update.

B. Post-launch FSW Test Methodology
The test methodology for post-launch activities followed the pre-launch methodology. The method consisted of

incrementally increasing complexity and functionality through the phase of integration testing for each build, which
culminated with scenario and functional testing of the complete set of software. To support the post-launch stage of
the mission, additional testing had to be considered for full and partial FSW uplinks and contingency planning.
Testing and validation of these activities became critical additions and major foci for the operations testing
philosophy.

For A7 builds, regression, scenario, and functional testing were performed to verify and validate changes to FSW
to support the interplanetary outer cruise to Saturn. New FSW functionality was unit/FSC tested. FSW went
through subsystem and system level testing before being uplinked to the spacecraft. Uplink Readiness Reviews
(URR) were the major milestones to approve FSW for uplink. The FSW development status, FSW testing (both on
the subsystem and system level), FSW test reports, and uplink procedures were presented to review boards.

For A8 builds, the same A7 build test philosophy was followed. An abundance of additional testing was focused
on the critical events of SOI and Probe Relay.10,17-19 To support the prime mission, parameter and uplink procedure
testing continued under the same test philosophy. During the prime mission, key science objectives were tested
extensively which included post-event reconstruction i.e., Titan low-altitude flybys,20 and low-altitude Enceladus
flybys.

The ACS operations group has anticipated and evaluated potential problems and determined mitigation strategies
where appropriate. Environmental circumstances established the need to evaluate Safing attitude changes due to
orbit inclinations, and potential ACS hardware failure scenarios. Appropriate measures were taken to keep the
spacecraft as safe as possible and the only way to verify scenarios was through testing. All of the strategies were
tested in subsystem and system level test environments.

American Institute of Aeronautics and Astronautics

19

Table 4. ACS FSW Upload History since Launch (15 October 1997)

October 30, 1997
• A6.4.15 (launch load) on default SSR partition, A6.5.6 (cruise load) on non-default SSR partition
• IVP, S/C time update, AFC swap

Venus Cruise
Patch/SSR/BAIL

(A)A6.5.7

May 1, 1998
• IVP, S/C time update
• Fix Backup AFC telemetry collection period, changed default Accelerometer nominal drift, adjusted

SRU-B alignment quaternion (due to 3/4 mrad misalignment)

Earth Cruise &
SRU-B

alignment

Patch/SSR/BAIL
(A)

A6.5.8

March 7, 2000
• IVP rotating coordinates & conical radar scan capabilities
• SID extendend bodies, deluxe attitude initialization capabilities
• RWA celestial only attitude estimation

Jupiter CruiseFull Load (B)A7.7.6

April 13, 2001
• IRU, IVP, RWA, and default thruster magnitude updates
• BAIL FSW A6.3.B patch (mass properties, Cassini-Sun vector, cruise updates)

Parameter &
BAIL update

Patch/SSR/BAIL
(B)A7.7.7

Patch/SSR (A)

Patch/SSR (A)

Patch (A)

Patch (A)

Full Load (A)

Full Load (B)

Full Load (A)

Upload*
Classification

April 11, 2006• Post-MTA recharge default thruster magnitude updatesMTA-RechargeA8.7.4

January 30, 2007

• Default secondary Safing vector pair update
• Default thruster magnitudes for 2007 tour updates
• IRU-A scale factor error updates
• RWA phantom momentum FP tier count change

2007 Safing
AttitudeA8.7.5

Upload DateKey Update DescriptionCapability
FSW

Version

May 26, 2005
• Finer telemetry resolution to external torque for Titan flyby density reconstruction
• Finer telemetry resolution for Delta-V telemetry
• Detumble acceleration Z-axis update

Titan flyby &
Tour TelemetryA8.7.2

January 8, 2008
• Default secondary Safing vector pair update
• Default thruster magnitudes for 2008 – mid2009 tour updates

2008 Safing
Attitude

A8.7.6

October 2, 2004
• Parameter updates to support Probe Release and Relay
• Reference trajectory updates for Probe Relay

Probe Release
& TrackingA8.7.1

April 27, 2004
• Parameter updates to support SOI
• FSW/FP updates for SOI

SOIA8.6.7

February 16, 2003• In-flight proof-of-concept for new Energy burn algorithm performing TCM-19bEnergy BurnA8.6.5

October 30, 1997
• A6.4.15 (launch load) on default SSR partition, A6.5.6 (cruise load) on non-default SSR partition
• IVP, S/C time update, AFC swap

Venus Cruise
Patch/SSR/BAIL

(A)A6.5.7

May 1, 1998
• IVP, S/C time update
• Fix Backup AFC telemetry collection period, changed default Accelerometer nominal drift, adjusted

SRU-B alignment quaternion (due to 3/4 mrad misalignment)

Earth Cruise &
SRU-B

alignment

Patch/SSR/BAIL
(A)

A6.5.8

March 7, 2000
• IVP rotating coordinates & conical radar scan capabilities
• SID extendend bodies, deluxe attitude initialization capabilities
• RWA celestial only attitude estimation

Jupiter CruiseFull Load (B)A7.7.6

April 13, 2001
• IRU, IVP, RWA, and default thruster magnitude updates
• BAIL FSW A6.3.B patch (mass properties, Cassini-Sun vector, cruise updates)

Parameter &
BAIL update

Patch/SSR/BAIL
(B)A7.7.7

Patch/SSR (A)

Patch/SSR (A)

Patch (A)

Patch (A)

Full Load (A)

Full Load (B)

Full Load (A)

Upload*
Classification

April 11, 2006• Post-MTA recharge default thruster magnitude updatesMTA-RechargeA8.7.4

January 30, 2007

• Default secondary Safing vector pair update
• Default thruster magnitudes for 2007 tour updates
• IRU-A scale factor error updates
• RWA phantom momentum FP tier count change

2007 Safing
AttitudeA8.7.5

Upload DateKey Update DescriptionCapability
FSW

Version

May 26, 2005
• Finer telemetry resolution to external torque for Titan flyby density reconstruction
• Finer telemetry resolution for Delta-V telemetry
• Detumble acceleration Z-axis update

Titan flyby &
Tour TelemetryA8.7.2

January 8, 2008
• Default secondary Safing vector pair update
• Default thruster magnitudes for 2008 – mid2009 tour updates

2008 Safing
Attitude

A8.7.6

October 2, 2004
• Parameter updates to support Probe Release and Relay
• Reference trajectory updates for Probe Relay

Probe Release
& TrackingA8.7.1

April 27, 2004
• Parameter updates to support SOI
• FSW/FP updates for SOI

SOIA8.6.7

February 16, 2003• In-flight proof-of-concept for new Energy burn algorithm performing TCM-19bEnergy BurnA8.6.5

* - Full Load = Full FSW image loaded to SSRs with Prime/Backup AFC resets
 - Patch = AFC patch-table patch, Active RAM patches, Backup AFC reset
 - Patch/SSR = Patch + SSR ALF patch (parameters survive load from SSR)
 - Patch/SSR/BAIL = Patch + SSR ALF + BAIL patch (parameters survive load from SSR)

- (A or B) = Which AFC (A or B) is Prime after the update

IX. Flight Software Operations
The mission operations team has to address FSW practically every single moment of every single day. FSW

interacts with every facet of the spacecraft which in turn affects ground operations support. Moments after launch,
ACS FSW telemetry and the FP event log were monitored and updates to FSW were planned and performed.
Eleven years later, the same exact concerns besiege an ever-changing/high-turnover rate operations team.
Established and/or the establishment of processes and procedures are key in retaining the history, knowledge, and
know-how of FSW operations.

A. Key In-flight FSW Update Events
The AFC and SSR configurations, having redundant block and multiple partition configurations, provided the

opportunity to have multiple versions of FSW loads. When an AFC is prime it exhibits full ACS FSW capabilities.
A backup AFC exhibits minimal software functionality and maintains telemetered status. During critical events the
backup AFC will become a hot backup which allows the backup AFCs to continue processes of the prime AFC if a
fault anomaly results in an AFC swap. At launch, the prime and backup AFCs contained the launch FSW load
which was inhibited from performing maneuvers using thrusters or actuators, but actuators were allowed to have
some minimum parking abilities.

One day after launch, via ground commands, the backup AFC (AFC-B) was loaded from the non-default
partition of the SSR with the Cruise FSW version (A6.5.6). After a brief checkout, the AFCs were swapped and the
new backup AFC (AFC-A) was updated with the Cruise load. The one-day turnaround of updating FSW without a
full image in-flight upload could only be effortlessly accomplished with the SSR partition concept, which is
explained in detail in the next section.

Fourteen days later the patch table capability was first used in flight. Patches containing A6.5.7 FSW patch table
updates were uplinked to update the SSRs, and the AFCs were reloaded and swapped. AFC-A was designated the
prime AFC. Table 4 identifies all of the in-flight changes to FSW from launch to the end of prime mission.

American Institute of Aeronautics and Astronautics

20

The first full in-flight software upload was FSW version A7.7.6, which had the second highest total of software
fixes. Factors that contributed to the amount of fixes were keeping a core software development team from the pre-
launch team to address a majority of the deferred software FSCs. The load addressed several key functions needed
to support future mission objectives.

FSW version A8.6.5 addressed a first-time JPL event demonstration of an energy algorithm to perform a burn
cutoff during TCM-19b on 2 October 2003. This algorithm was developed for the upcoming critical event of SOI.
The algorithm, commands, telemetry and overall concepts and capabilities were in-flight tested, verified, and
validated nine months before SOI.

Critical events were performed on two different full in-flight uploads. SOI was performed on FSW version
A8.6.7. Probe release and tracking were performed using FSW version A8.7.1. These events were covered
extensively in the previous section.

The next four updates were patch table uploads to support prime and extended mission objectives. These FSW
builds represent a more conservative approach taken by the project. From an operations point-of-view, the best
approach was to minimize disruptions to science observations and effects to other subsystems. From a software
point-of-view, the FSW architecture allowed for variations of updates and patches which ideally mimics a full in-
flight upload with less system impacts. Also, the sum total of all the parameter updates did not exceed the limitation
of the patch table. These update variants and limitations are explained in the next section. The program’s
conservative approach was to also lessen the possibility of errors that could be introduced after a full FSW upload
with extensive functional modifications. If a situation ever occurred, where FSW logic had to be changed, technical
justification does overtake programmatics. A major driver on the number of updates needed during this phase was
the changing inclination in the orbit trajectory. Practically every year during the prime mission, the default Safing
attitude needed to be updated to assure that the spacecraft be in a safe attitude both thermally to science payloads,
and physically to protect the star tracker from bright bodies such as the rings or Saturn.

B. Strategies for Updating and Loading FSW
The intentional modular design of FSW provided the architecture to support planned in-flight FSW updates. The

form of uploads range from full image to patch table uploads. The type of updates can range from full build changes
to default parameter, and active parameter patches. The prime mechanism used to store FSW images on the
spacecraft are the two 2.1 gigabit (usable memory) SSRs under the control of CDS. SSRs contain volatile memory
and 64 megabits per SSR are reserved to store FSW images.9 Both CDS and ACS can store two sets of their
programs within the allocated memory partitions. There is a default program set and non-default program set.
Default and non-default partitions provide a fail proof method to update FSW.

Ground operators can upload a new version of FSW to the non-default partition of the SSR and then command
the AFC to load from the non-default partition. During the load, the AFC will go to ROM, SUROM will initialize
the AFC to accept the new load and then transition to RAM. If a checksum problem or other unforeseen run-time
problems occur, the AFC will stay or go to ROM. Either ground commanding or autonomous FP response will
reload a good version of FSW from the unchanged default partition. The data format used to store FSW images in
the SSR are Assisted Load Format (ALF) blocks. An ALF is made up of twenty-two 16 bit words with even/odd
word checksum validations.

There are five locations where ACS FSW is stored: Two SSRs, the prime and backup AFCs, and the Backdoor
ALF Injection Loader (BAIL). Only the BAIL has a stripped-down version of FSW stored in 16 megabits of non-
volatile Electrically Erasable Programmable Read Only Memory (EEPROM), which provides the capability for
FSW to command the spacecraft’s HGA to Sun point. Power converters in the SSRs and AFCs provide at least 37
millisecond of capacitive power to retain software in volatile memory and therefore can not retain software after an
extended power outage. To address possible deep under-voltage conditions, the BAIL functionality was added to
assure a thermally safe and commandable attitude during ground-assisted CDS recovery. Without contact from the
prime AFC, a thirty minute watchdog timer will expire in the BAIL and it will start transmitting its program
contents to both AFCs on both AACS buses in the hope that these FSW programs can be accepted and loaded by a
healthy AFC.9

To account for parameter updates during Cassini’s lengthy mission, other mechanisms were provided to update
FSW. A number of FSW ground parameter commands were added to update RCS attitude controller parameters,
attitude estimator parameters, constraint monitor parameters, ME thruster parameters, mass properties, and various
FP-based parameters. Parameter commands have been validated during both pre and post launch phases. However,
for operations, the command arguments are highly scrutinized before transmission to the spacecraft.

There are two forms of memory write commands. One modifies logical addresses and the other modifies
physical addresses. The logical address command has a constraint to match the FSW version. The physical does not

American Institute of Aeronautics and Astronautics

21

and is ground-restricted from use in flight. Since the
SUROM has the capability of remapping the FSW
memory map when loading into RAM, using a
physical address to change data is highly susceptible
to remapping error. The use of logical addresses
eliminates the remapping concern. Unlike established
parameter commands, the arguments for memory
write commands are highly susceptible to error
uncertainty, unless properly handled. The next section
addresses this concern.

Parameter and memory write commands affect the
RAM program which is considered the active
parameter set. If a reset occurs or the FSW is
reloaded, the changed active parameters will not
survive. Due to the changing environmental effects or
spacecraft consumables, which need to be accurately
represented in software, there are some parameters
that need to survive reset/reload conditions to aid in a
recovery process. These parameters are considered
the default parameter set.

To address a permanent change to the default
parameter set, the AACS patch table enables FSW
patches to be applied across the different load
locations (AFCs and SSRs) and if necessary, across
different version of FSW. The patch table is located at
a fixed logical address common to all ACS FSW
versions and is capable of updating up to specified
length data words. See Figure 16 for the patch table format. Any change requiring more than the allowable number
of words will have to be re-planned to a full FSW image upload. The Ram Verification Block (RVB) checks if
anything occupies the addresses of the patch table. If the patch table FSW version ID matches the recipient FSW
image, the RVB will apply the patches before activating the RAM program. The RVB contains logic to check a
completion flag if the patch table patches have already been applied; it will not attempt to apply the same patches
twice. The completion status flag will only be set after the entire content of the patch table is applied. Therefore, if
it is interrupted during the patching process, the RVB will recognize that patches still need to be applied at the next
AFC reset attempt. The patch table method is a way to safely preload code changes and apply the changes in one
complete activity.

Patch Completion Status

FSW Version ID

16 bits

up to

304 words
total

Checksum

Total Number of Patches

MSW of Patch 1 Address

LSW of Patch 1 Address

New Value for Patch 1 Address

•
•

•
•

Other Patches

MSW of Patch N Address

LSW of Patch N Address

New Value for Patch N Address

3 words
per patch

Figure 16. Patch Table Format.9 Allows words to be
modified through the ACS FSW memory map.

Figure 17 shows the concept and patch steps taken to apply a patch table patch to the SSR and the prime AFC.
The SSR patch table patch is to address the situation if the AFC needs to take a FSW load from the SSR. For this
scenario, the AFC requests a load from the SSR, the full FSW image plus patch table are loaded in the AFC. When
the RVB is run during startup, the FSW executive will recognize that a patch table patch is present and the patch
will be applied resulting in FSW that reflects the latest FSW version. This process is done to the backup AFC which
does not partake in nominal spacecraft modes and therefore does not affect operations. This accomplishes two
objectives, to verify the SSR patch and to update the backup AFC to the latest FSW version. If an AFC swap were
to ever occur, the operations team would be confident that the latest FSW would be in use during recovery
operations.

In order not to affect operations and other subsystems, the prime AFC is not reset nor is there a swapping of
AFCs. Active patches are applied to the FSW running in RAM on the prime AFC. The active patches equate to the
changes of the default parameters of the latest FSW version, so even though the FSW version still registers as
A8.7.1 (an older version of FSW); the RAM FSW is equivalently A8.7.6 (the latest version of FSW). With the
patch table applied to the prime AFC, if an AFC reset were to occur, the patch table would be applied during the
next startup process and the latest FSW version would be registered in RAM.

C. FSW Parameter Patching Techniques

American Institute of Aeronautics and Astronautics

22

Patching with memory write commands require user-supplied hexadecimal arguments. There is always an
associated risk of software failure when patching FSW. Several missions have experienced software mishaps
associated with patching. ACS mitigates risk when patching a FSW parameter by following a strict process of
identification, ground verification, and in-flight verification. Any patch that involves software shall be identified by,
provided by, and verified by a knowledgeable ACS FSW engineer. These values will be certified by another FSW
engineer or FP engineer.

Figure 17. Simplistic representation of a SSR ALF patch and Patch-table patch to update a FSW version
without having to reset the Prime AFC. FSW version A8.7.1 was the last full upload. Since then, patch updates
have only been applied to update the FSW version. A8.7.6 is the latest patch build to be uploaded in flight.

Identification/Classification of a patch: 1.
1) Identify a parameter as a variable or constant and determine the current value associated with it. There are

established procedures to update variables or constants. Data classifications are explained in the Software
Data Definitions of the Lessons Learned Section.

2) The current onboard FSW version Memory Map is used to determine logical addresses for patching. The
FSW version is verified through telemetered data before proceeding with a patch.

2. Thorough ground verification, validation, and test:
3) Verification and testing involves using the exact memory write command and patching process used to

update the FSW in flight.
4) System-level ground testing in ITL is done using the same configuration state as the actual spacecraft.
5) Effects of the patch in FSW and the spacecraft environment are verified in both subsystem and system level

testbeds.
3. In-flight verification and validation:

6) Establish a baseline value incase a patch needs to be undone by checking and verifying the initial state of
the parameter on the spacecraft.

7) Verify that the MROs match the expected pre-patched value state – if it is not, something is wrong i.e., the
wrong address was patched.

8) Perform the patch using ground-validated commands.
9) Perform post-patch verification for correctness.

All MROs are performed three times to anticipate any loss of data during telemetry downlink. MROs are captured
in both real-time and record telemetry. Every active parameter patch is performed using this exact process.
Established ground parameter commands, mentioned in the previous section, can utilize steps 2-3 for a verification
process if deemed applicable.

D. Design Maintainability

American Institute of Aeronautics and Astronautics

23

From the beginning of FSW development, the maintainability aspect was always a key goal for the end product.
These efforts consisted of:

1) Simplicity by providing definitions and implementing functions in the most non-complex and
understandable manner as possible. E.g., coding, design, flow, software development guidelines, and
simple architecture.

2) System Clarity by providing a clear and understandable description of the program structure. E.g.,
programming style, coding guidelines and peer reviews, and a Software Specification Document.

3) Modularity by providing a structure of highly cohesive modules with optimum coupling. E.g., object
oriented approach to maximize cohesion, minimize coupling, hide information, and well defined interfaces.

4) Self Descriptiveness by providing an explanation of function implementation. E.g., comments, identifiers,
layered diagrams and Software Specification Document descriptions, well named objects and descriptive
names for data and procedures.

5) Exactness by insuring software code performs desired requirements, and eliminates code not supporting
required functionality. E.g., RTMs and optimizing the compiler.

These attributes have contributed to the success of software maintainability in the operations phase, and especially
helps when code needs to be analyzed for functionality and/or compared to requirements. This allows non-software
engineers to understand the interactions and intent of modules and functions without understanding the coding
language.

E. Configuration Maintainability
Using the patch table upload process in the latter part of the mission, results in greater ground responsibility to

maintain accurate version control. Patching without full uploads or intentional post-upload AFC resets results in
multiple versions of FSW on the spacecraft. The prime AFC has an older version of FSW (however, with active
patches it is equivalent to the latest FSW version), the backup AFC has the latest version (loaded from the SSR), the
SSRs have patched older versions of the FSW (when loaded to the AFC, the resultant image is the latest FSW
version), and BAIL has an even older version of FSW. It becomes apparent that accurate records need to be
maintained to identify FSW versions on the spacecraft and the parallel development versions on the ground.

Records take the form of version control and documentation. The version control mechanism used by the FSW
team continues to be SCCS. While new JPL projects use more complex versions of configuration management
which allow modeling and document requirements tracking techniques, the process established during the Cassini
FSW development phase is quite adequate for operations. As long as the process is documented and there is a
method to retrieve any version of FSW, keeping it simple contributes to maintainability.

The Release Description Document (RDD) is a required document that describes new functionalities available in
FSW as well as the build process. It incorporates all test reports, and identifies all problem reports written and fixed
by individual FSW versions. The results of the Software Requirements Certification Review (FSW delivery and
certification of flight readiness) are also captured. The RDD is a key document for delivery, integration, test, and
identification.

F. Software Procedures
With a reduction of workforce in the operations phase, FSW procedures become a key component of fulfilling

the FSW process. Having procedures for generic FSW tasks allows for procedure tailoring, and as long as the
tailoring effort is understood, the process is sound. Therefore, the concept for tailoring must be applied to every
FSW procedure, which must result in reviews and validation for each procedure. Until recently, each FSW upload
entailed different objectives, and if care is not taken, the use of old procedures may not result in the desired actions.
This verification and validation technique is applied to all ACS FSW related procedures. ACS FSW has established
procedures for:

1) Full FSW uploads. These procedures cover the upload of a full FSW image to the SSRs, loading the
backup AFC from the SSR and swapping the prime/backup states of the AFCs.

2) Patch table parameter updates to address changes to constants and default parameters when an AFC reset
occurs.

3) SSR ALF patching to capture constants/default parameter changes in FSW that survive a load from the
SSR.

4) Active RAM parameter patching to address changes to variables. These procedures apply to patches that
do not have a requirement to survive an AFC reset condition.

There are system-level procedures that are specific for recovery efforts, which are continually updated to be used
in general spacecraft recovery, and these system-level procedures are meant to be used “off-the-shelf.”

American Institute of Aeronautics and Astronautics

24

G. Testbeds
Post-launch management adopted the same pre-launch philosophy of maintaining the FSDS softsim and

hardware-in-the-loop testbeds. This is a needed capability for continuing FSW development. Cassini, with its
deferred FSW development, placed high value on maintaining its testbeds. However, this is a key component to the
success of any mission. Testbed capabilities need to be developed and added in parallel to FSW to support events
during the mission timeline. Major efforts occurred to update FSDS and ITL by implementing a Titan atmospheric
torque model to simulate the effects Cassini would encounter during low-altitude flybys.15 With the anticipation of
upcoming events, another major effort was taken to implement an Enceladus plume density model to support and
test spacecraft controllability during Enceladus flybys as low as 26 kilometers.

The operations FSW team is considerably smaller than the pre-launch development team. During pre-launch, as
many as fourteen developers supported the team. At the end of the prime mission, that number has reduced to two
team members. A softsim (FSDS) was invaluable to making a small team very productive at development, test, and
problem investigation. Having the capabilities of simulating these stressful environments allows an abundance of
testing for nominal and off-nominal scenarios to establish margin envelopes for spacecraft safety. The services of a
full system-level ITL was a key factor in finding, understanding, and fixing software anomalies early and on ground-
based flight or engineering hardware rather than the spacecraft. Having results from both softsim and hardware-in-
the-loop testbeds provide a self-checking pair capability, which is an invaluable resource to have when testing FSW
functionality. Testing result differences indicate discrepancies that need to be further studied to determine if there
are FSW problems or issues with the testbeds.

H. Regression Testing
Regression tests that were established pre-launch are still part of the regression tests during post-launch FSW

verification. Regression tests that no longer apply due to the mission phase have been replaced by tests that capture
current mission scenarios. Tests that verify and validate new FSW functionality have been incorporated into the
regression test suite. Whether it is a parameter change or functionality change, a core regression test suite is always
executed on new FSW builds. This process is used to catch the possibility of undesired effects to the subsystem and
system due to FSW changes. Regression testing details have been covered in previous papers.10,21

I. SLOC Comparisons

Flight Software Growth

(C)

(C)

Planetary Orbiter

In Situ
Flyby / Other
Observatory

(Assembly, HAL)
(Assembly, Jovial)

(Assembly, Jovial)

(ADA)

(C)

(C)

(C)

(C)

(C)

(C)

(Assembly)

(Assembly)

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

Launch Date

Lo
gi

ca
l S

ou
rc

e
Li

ne
s

of
 C

od
e

Figure 18. Historical SLOC Comparison of Flown Missions.22 JPL-gathered data on past
missions(development language) and how missions have increased in complexity and reliance on software.

American Institute of Aeronautics and Astronautics

25

In general, Industry measures software complexity, cost, and effort by Source Lines Of Code (SLOC) counts.
SLOC metrics are established methods which allow scope comparisons to previous missions, and to an extent
provide a means to predict future mission FSW effort and cost. Figure 18 plots logical SLOC counts for fourteen
different NASA missions. For planetary orbiters, the trend shows how newer missions are more reliant on software-
intensive systems. More autonomy creates more complex software, and among orbiters, Cassini SLOCs almost
tripled the previous orbiter missions. The pre-launch ACS FSW logical SLOC (not including CDS FSW) estimate
was 48,000 SLOCs. At the end of the prime mission, the ACS FSW logical SLOC estimate was 55,000 SLOCs.

X. Lessons Learned
The following are observations that have been discerned in support of ACS FSW during the mission operations

phase.
1) Importance of adopting FSW design, development, and testing techniques and evaluating their impacts to

the system and subsystem during operations.
2) Importance of the operations FSW team to commit to FSW ownership and the responsibilities associated

with it, and not to only rely on past software personnel support.
3) Importance of honing the techniques of averting FSW risk in mission specific environments.
4) Importance of maintaining accurate records for software versions. These methods help to keep corporate

memory during longer missions (described in the previous section.)
5) Importance of having robust methods to update/patch FSW (described in the previous section.)
6) Importance of retaining and maintaining testbeds for FSW development and test during longer missions

(described in the previous section.)
7) Importance of verifying and validating new FSW capabilities in flight before the functionalities are needed

during critical events.
8) Importance of understanding impacts of data definition types to memory protection, and importance of

legal range checking in flight and ground software.
9) Importance of reevaluating basic FSW capabilities and improving key attributes or proposing work-

arounds, i.e., ability to retain data across resets, and catching exceptions to good coding techniques.
Details of the lessons learned from these observations are described below:

A. Success is in the Details
This is by far the most important point that one should take away from this paper. The quality and time spent on

details during the design and development phases of ACS FSW has provided a software suite that has stood the test
of mission objectives. When the responsibility of the spacecraft shifted to operations, the methodology and the
practice of in-depth attention to detail continued. Anticipating what may or may not go wrong with upcoming
events, or preparations to respond to possible anomalies have continued to make Cassini successful to the end of its
prime mission and beyond. Sweating the small stuff is a necessity for operations to minimize complacency and
ensure mission success. Much of the merited and rational paranoia was directed at FSW because of its importance
to the spacecraft and mission objectives. Attention to detail must happen first before achieving success.

As an example: While procedures were written for software uploads and maintenance prior to launch, the
engineers who wrote the procedures usually did not continue into the operations phase. The authors did not see the
procedures to fruition. To take procedures at face value without the understanding, know-how, confidence or effect
it has in software can lead to failure. Pre-launch processes and procedures were either revalidated or rewritten post-
launch to capture details gained from in-flight experience.

No matter which phase the mission is in, the practice of evaluating technical scope, performing trade studies,
analyzing risks, monitoring system performance, and handling schedule conflicts must be in the forefront. The
project, spacecraft operations office, and ACS group have balanced these attributes and applied them to every type
of software change which contributed to the success of the mission.

B. System-level Considerations in Subsystem-level Development
Early considerations of high-level system-level interactions with the ACS subsystem benefited the design and

development aspects throughout the mission. Prototyping between subsystems not only consisted of the hardware
and software interface designs, but the human elements as well. Group interactions were thought out between
analysts, software developers, integrators, and testers. Prototyping resulted in a software life cycle that was unified
within the affected groups. Work agreements, schedules, and document templates were established and refined
throughout software prototyping. The collaboration between groups took time, but once a consensus was reached,

American Institute of Aeronautics and Astronautics

26

the work expectancy and commitment was solid. Regular working groups and frequent reviews were instrumental
in keeping with development commitments and a unified design.

As examples: Early system evaluation revealed that fault protection had to be considered at the start of the
project. Cassini started FP design a year earlier than previous JPL missions. This allowed for a systematic approach
to requirements generation, design aspects, and test planning. Early scoping resulted in the establishment of testbed
support and development. As a result models were unified between different hardware and software testbeds.

Considering the full scope of the system and its impact to the subsystem resulted in early establishment of self-
imposed requirements that contributed to the success of the mission.

C. Software Collaboration and Ownership during Operations
While the development processes remain consistent throughout new and old projects, each project is very

different and FSW is the one element that needs to adapt the most to achieve mission goals. Having a software
community that shares acquired knowledge of their experiences within the different projects establishes a concept of
software collaboration. This also means; once a FSW engineer supports a project, that engineer may be called upon
to support it again long after he or she has moved on to newer projects. There should always be a sense of
responsibility when dealing with FSW. Because of the Cassini legacy and sense of continual collaboration, the
initial analysts, architects, and FSW developers have provided the necessary support. This has provided Cassini
with the best available help.

However, due to the length of the mission, the expectation for people to remember nuances cannot be assumed.
This realization has stressed the need and importance of taking ownership/responsibility of the FSW during
operations. During the pre-launch architecture, design and implementation phase, FSW engineers firmly understood
the software and the concept of ownership. If they did not perform their job to satisfy engineering goals, the
spacecraft would not launch. The operations FSW team is also subjected to supporting growing scientific goals.
Whether objectives are engineering or scientific, the operations team needs to value this same concept. Whether a
FSW engineer was assigned to lead initial development, to provide post-launch algorithm support, or to test FSW
compatibility with extended mission scenarios – without ownership, the depth of responsibility is not perceived.
Delegation grants authority, but not responsibility. During operations, Cassini has been fortunate to retain FSW
engineers who took the ownership responsibility and responded accordingly. Software collaboration and
responsibility have contributed to the success of the mission.

D. Risk Aversion
During operations, there is a perception that the FSW team becomes reactive rather than proactive. During the

pre-launch design phase, new concepts and ground-breaking strategies are welcome; during operations, a
conservative approach may suppress creative designs. The perception focuses only on the idea that operations react
to anomalies. While some of the operations FSW team’s abilities may become dated with certain design techniques,
risk aversion techniques become cutting edge. As a result, the operations FSW team is more proactive than any of
the past teams. Supporting operations will result in a well-rounded FSW engineer. FSW has already proven itself
by successfully guiding Cassini throughout the prime mission. However, the question that still needs to be asked
and addressed is: “What else needs to be done to keep the FSW anomaly-free in upcoming mission scenarios?”
Cassini ACS has focused on averting risk by trying to prevent the likelihood and adverse consequences of future
anomalies, and not just react to problems. This has been accomplished by continually exercising fault scenario tests,
evaluating parameter selections, being aware of current mission environments, monitoring current spacecraft health,
and establishing FSW work-arounds. While problems may have been kept to a minimum, the tasks of addressing
risk aversion are never complete.

E. Major First Time Software Events
If major functions are added to software to perform critical activities, ground testing alone should not be

considered adequate. A proof-of-concept should be performed in flight whenever possible. FSW changes to
attitude determination and control can usually be verified in flight. FP changes may not be programmatically
feasible to test in flight; however, the verification of FP parameter values can still be performed.

FSW version A8.6.5 was uploaded sixteen months before SOI, and a major driver for such an early uplink was to
validate a first-time implementation of an energy cutoff algorithm to terminate a ME burn. TCM-19b was
designated to be the first maneuver using the new algorithm. The algorithm was an ACS-intensive addition in FSW.
The energy cutoff concept was possible due to the object oriented design of the FSW which allowed additional
modifications without having to redesign the software architecture. All the hooks necessary for a new energy burn
design were available in FSW.

American Institute of Aeronautics and Astronautics

27

τττ dAVtE SOI

t
T

NoSOI
6

0

10)()()(÷•=Δ ∫
rr

 (1)

τττ dAVtE ideal
SOI

t
T

NoSOI
ideal 6

0

10)()()(÷•=Δ ∫
rr

τ
τ
ττ d

M
FV

CS

idealt
T

NoSOI
6

/0

10
)(
)()(÷•= ∫

r
r

 (2)

The measure of energy was the answer to address SOI critical burn restart issues that plagued a previous pre-launch
smart burn algorithm implementation. The variables for current spacecraft velocity (VNoSOI) relative to Saturn
(without the burn), which utilized existing cubic spline conic vector propagation, and spacecraft acceleration (ASOI)
as measured by the accelerometer (due to the burn), already existed to calculate the estimated change in specific
energy using Eq. (1). For burn cutoff, ideal energy achieved was used as the terminator given min and max target
values. The software hooks for Main Engine force magnitude (Fideal) and on-board time-varying best estimate of
spacecraft mass (MS/C) already existed for ideal changes in specific energy using Eq. (2). In addition to the
algorithm verification, this was the first time a time-varying burn vector was used. Other first-time events were
using a new command to issue the burn and the downlink of new telemetry that capture burn details. The success of
TCM-19b provided the confidence that SOI was technologically achievable using an energy burn cutoff algorithm.

The concept of post-update checkout sequences should always be considered after an upload of FSW. Cassini
operations performs tedious ground testing before uplink of FSW or sequences of extreme importance. Steps are
taken on the ground to mimic the actual spacecraft environment. However, nothing beats the real thing. The
Cassini program tries to eliminate as many first time events as possible on new software. This provides the time to
adequately monitor and evaluate FSW functionality before being invoked to support spacecraft and science
sequences. There were two major checkouts after the full A7.7.6 and A8.6.5 in-flight uploads.

For A7.7.6, the checkout activities lasted twenty days. Checkout activities verified that all phasing was correct.
RWA performance in both rate and attitude control modes were per expectations, and per-axis attitude control errors
were better than the requirements. With the validation of FSW capabilities, remember to address the closure of
applicable flight rules. Sixteen flight rules were deleted and eleven others were modified.

For A8.6.5, the checkout activities spanned over a month. New FSW algorithm functionality performance was
verified to support upcoming critical sequence activities such as SOI and critical ring plane crossings. Waivers were
written to perform checkout activities on backup ACS hardware.

In-flight checkouts were used to verify and validate new FSW functionality performance, and interactions with
backup devices which could be potentially invoked in fault conditions for critical events. The in-flight data
collected from these activities were invaluable and provided confidence by experience that FSW could perform the
necessary tasks when required.

F. Software Data Definitions and Memory Protection
The difference between variables and constants is that constants are validated by a checksum routine and

variables are not. For ACS FSW, the checksum routine is only exercised once during the FSW executive startup’s
RVB routine. Execution placement of checksum routines may hide issues which will not become evident until
exercised during some future event. This allows the possibility for a constant to be modified accidentally without
showing any ill-effects in the software. The only time this would be caught in FSW is after an AFC reset where the
RVB routine is executed. When a checksum fails, the AFC keeps the FSW in ROM and does not transition to
RAM. If an actual anomaly occurred, this could complicate recovery or exercise unnecessary tiers of fault
protection to load FSW from the SSR. Newer missions may reset their computers every time an update is
performed, which will catch checksum errors early. For missions not practicing this technique, management of
checksum data needs to be monitored.

Telemetry parameters such as scale factors and range definitions are defined as constants. Pre-launch perception
is that these parameters need to correctly account for their integrity by the method of checksums. In post-launch
scenarios telemetry resolutions or ranges may adjust to changing mission objectives. It may be more practical to
implement telemetry parameters as variables which are not checksumed. Telemetry is monitored daily and has high
visibility. If a problem were to occur, it could be tracked and easily changed without the multitude of activities
associated with updating constants. Major efforts are focused on the verification of parameter selections; however,
extra attention is needed when identifying FSW data as variables or constants.

American Institute of Aeronautics and Astronautics

28

Legal range checking is another method to insure that erroneous data values are not used in commands or FSW
conditional checks. There are instances where the FSW does legal range checking on some commands but not
others. Attention to consistency needs to be practiced. All of the ground parameter commands do not implement
range checking. While the original intent may have wanted to give flexibility to updating commandable parameters,
if care is not practiced, an ill-chosen value could result in undesired FSW interactions. Pros and cons need to be
weighed between flexibility and parameter range checking to ensure that valid values are within parameter operating
ranges. Solutions must be well documented in command dictionaries. Whether the FSW does this range checking
or not, the ground support software must not assume that FSW will catch commanding errors. Ground software
must be resilient enough to range check all commands sent to the spacecraft.

G. Recovery Data
Many patch table updates were performed to insure that the default RCS thruster magnitudes were updated to

closely match actual physical (active) values. The default updates were performed to reduce a mismatch between
FSW and physics, and insures that certain thruster-related FP monitors not hinder recovery efforts. RCS thrusters
are the key attitude control mechanism during recovery efforts i.e., performing Sun search. ACS FSW has a
recovery data set that is stored in CDS. If the prime AFC is reset or a swap of AFCs occurs, then the SUROM will
request the recovery data from CDS when ACS FSW is reinitialized. Recovery data consists of key data that takes a
snapshot of the most recent state. If the data requested in the recovery set are corrupt, default values will be used.
There are two sets of defaults, one for FSW contained in the SSRs and another for FSW contained in the BAIL.

If RCS thruster magnitudes and Safing attitudes (and other data related to mission phases or data key to
spacecraft recovery) were captured in recovery data, a robust management of recovery data could ease or eliminate
the need to update default values via the patch table. Having methods to capture previous states of FSW parameters
and making them available at FSW initialization are invaluable, especially during recovery efforts. Updates to key
parameters via recovery data could replace FSW parameter patches if a method to modify or add additional recovery
data were in place. This would simplify the operations process by eliminating the need to generate new FSW builds
to update default parameters.

H. Software State Monitoring
There are several instances in the FSW, where the masking of FP error monitors disables and bypasses the entire

monitor code block. While the original intent may have wanted monitors to be completely disabled, in-flight
operations experience has revealed that it may be better to allow error monitor code block execution (which provides
greater visibility into FSW and error monitor thresholds) without reporting an opinion or activation of a response
script. This effect would still disable the monitor. The exit criteria for masking should not completely bypass the
error monitor code or code that will give insight into threshold encroachment. For Cassini, an example of this would
be high-water mark data. There are several error monitors that if masked, simply bypass code which captures high-
water mark data which would be very useful to
reconstruct events of interest during the masked event.

Beware of mismatches which may occur in FSW
when states change unexpectedly. Ideally, this should
not occur in an object oriented paradigm. However,
this is an example where minimal coupling of objects
and data scope enforcement were loosely coupled.
FSW Fault Protection responses related to hardware
anomalies can load-shed (power off) non-vital
hardware such as RWAs that are non-vital in recovery
efforts.

FSW momentum after
Safing

Actual physical
momentum decay

13 Software associated with the hardware states
may no longer update data which other objects use or
monitor which may cause stale state data. The
instantaneous powering off of hardware devices
without proper momentum unloading can result in a
discrepancy between physical hardware properties and
the FSW knowledge. Therefore, software variables
may contain the last known values before hardware is
powered off unexpectedly. An AFC reset will
initialize software variables to and initial state which
also causes a discrepancy for non-zero physical

FSW momentum after
AFC Reset

Time

W
h
ee

l M
o
m

en
tu

m

Spiral Sun
Search

Fault

Figure 19. Graphical Concept of RWA FSW
Phantom Momentum. Illustrates two scenarios of FSW
discrepancy. Blue arrow discrepancy occurs when a
Safing or FP-related RWA to RCS transition is invoked,
Red arrow discrepancy occurs when an AFC reset is
invoked.

American Institute of Aeronautics and Astronautics

29

hardware states. Figure 19 illustrates the discrepancies. Software logic should be more robust in checking states
before utilization of interdependent data. There are operational work-arounds to address these issues, which do not
require a fix to FSW logic to eliminate the “phantom” or erroneous data sources.

The more autonomous and complex the software becomes, the harder it becomes to verify and validate. While
state machines and object oriented methodologies simplify architecture and exhibit attributes of extensibility,
modifiability, and maintainability – once implementation diverges from this paradigm, interfaces become nebulous
and testing becomes more difficult. The practice of implementing simplicity in a complex environment is an
attribute which a developer needs to embrace and cultivate.

XI. Conclusion
Cassini made history becoming the first spacecraft to orbit Saturn. For the general public, this was the first time

Cassini became a household word. For the JPL community, Cassini was the center of technical achievement for
over ten years of design and development. It brought together the best of the best associated with hardware,
software, and support personnel. During the operations phase, the philosophy and commitment to excellence made
Cassini one of the most successful missions ever flown. With Cassini nearing the end of its mission, this paper
reflects and celebrates the numerous ACS FSW design, development, test, and operational achievements.

Initial stages of FSW prototyping began in 1990. The first official delivery of FSW was 30 September 1994
with version A1.1.0. The accelerometer and Sun sensor hardware managers were the only modules not stubbed.
Over 100 builds later, the last scheduled FSW build – version A8.7.7, will be uplinked to the spacecraft in June 2009
to support the remainder of the extended mission. The final build will contain a twenty-year heritage of AACS
control architecture and state machines objectified into commanders, controllers, estimators, software managers,
hardware mangers, fault managers, and glue code. Testament to the FSW success is the abundance of test results
review findings, procedures, processes, and performance. The sustainment of methodologies and rigorous
adaptations to improve methodologies in the operations phase have resulted in lessons learned that give insight into
design and development philosophies, verification of first time events, memory protection techniques, and future
software design strategies, all which may not be obvious without in-flight experience.

While this paper contains a deluge of information about ACS FSW from its beginning to its operability in flight,
hopefully it will enlighten – without too much bewilderment – the amount of work and effort needed to make
Cassini a success.

Acknowledgments
The work described in this paper was carried out by the Jet Propulsion Laboratory, California Institute of

Technology, under contract with the National Aeronautics and Space Administration. Reference to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or
imply its endorsement by the United States Government or the Jet Propulsion Laboratory, California Institute of
Technology.

Jay Brown acknowledges everyone who worked on the Cassini AACS team, and the collaboration of analysts
and other subsystems that made and continue to make Cassini the most successful interplanetary mission to date.
There are just too many people who have supported Cassini ACS FSW over the years to list individual names.
Instead, the author will focus acknowledgments to the pre and post FSW development teams: Linda Bagby, Harry
Balian, Mary Bruskotter, John Buchman, Larry Chang, Steven Cheung, Ken Clark, Martin Gilbert, Kim Gostelow,
Chris Granger, Danny Lam, Mary Lam, Scott Peer, George Shesby, Marek Tuszynski, John Vande Wege, Eric
Wang, Garth Watney, and Katia Zarnegar. Acknowledgments to key FSW architects: Dr. Doug Bernard, G. Mark
Brown, John Hackney, Dr. Bob Rasmussen, and Dr. Edward Wong. Special thanks to Dr. Allan Y. Lee, Glenn
Macala, Juan Hernandez, Karen Lum, Peter Meakin, Tom Burk, Dave Beach, Cindy Huynh, and Dr. Gurkirpal
Singh for providing their knowledge and support to the writing of this paper. Jennifer Schuray illustrated the
Cassini spacecraft represented in Figure 1. Enrico Attanasio, Kim Gostelow, Mary Lam, Dr. Bob Rasmussen, Dr.
Doug Bernard, and John Hackney created the final design of Figure 12 – the FSW Mode Transition Diagram.

References
1Webster, J.L., “The Cassini Spacecraft Design and Operations,” Space Technology & Application International Forum,

Albuquerque, NM, Feb. 13-16, 2005.
2Jaffe, L.D., and Herrell, L.M., “Cassini/Huygens Science Instruments, Spacecraft, and Mission,” Journal of Spacecraft and

Rockets, Vol. 34, No. 4, July-August 1997, pp. 509-521.

American Institute of Aeronautics and Astronautics

30

3Lee, A.Y., and Hanover, G., “Cassini Attitude Control System Flight Performance,” AIAA Guidance, Navigation, and
Control Conference and Exhibit, AIAA-2005-6269, San Francisco, CA, Aug. 15-18, 2005.

4Draper, R.F., “The Mariner Mark II Program,” AIAA 26th Aerospace Sciences Meeting, AIAA-88-0067, Reno, NV, Jan. 11-
14, 1988.

5Hackney, J.C., Bernard, D.E., and Rasmussen, R.D., “The Cassini Spacecraft: Object Oriented Flight Control Software,”
Advances in the Astronautical Sciences, Vol. 81, 1993, pp. 211-236.

6Wong, E.C., and Breckenridge, W.G., “An Attitude Control Design for the Cassini Spacecraft,” AIAA Guidance, Navigation
and Control Conference, AIAA-1995-3274, Baltimore, MD, Aug. 7-10, 1995, Technical Papers. Pt. 2 (A95-39609 10-63),
Washington, DC, American Institute of Aeronautics and Astronautics, 1995, pp. 931-945.

7Hackney, J.C., et al., “Cassini Project Attitude and Articulation Control Subsystem Software Specification Document,” JPL
D-13264, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, Jun. 1993 – Nov. 2002 (unpublished).

8Harel, D., “Statecharts: A Visual Formalism for Complex Systems,” Science of Computer Programming 8, June 1987, pp.
231-274.

9Brown, G.M., Hackney, J.C., Rasmussen, R.D., and Zarnegar, K., “Storing and Loading the Flight Software for Cassini’s
Attitude and Articulation Control Subsystem: A Fault Tolerant Approach,” 15th AIAA/IEEE Digital Avionics Systems
Conference, Atlanta, GA, Oct. 27-31, 1996.

10Wang, E.K., and Brown, J.M., “Cassini Test Methodology for Flight Software Verification during Operations,” 15th AIAA
Guidance, Navigation and Control Conference and Exhibit, Hilton Head, SC, Aug. 20-23, 2007.

11Hackney, J.C., et al., “Cassini Project Attitude and Articulation Control Subsystem Software Test Plan,” JPL D-13265, Jet
Propulsion Laboratory, California Institute of Technology, Pasadena, CA, Jun. 1993 – Oct. 2002 (unpublished).

12Brown, G.M., Bernard, D.E., and Rasmussen, R.D., “Attitude and Articulation Control for the Cassini Spacecraft: A Fault
Tolerance Overview,” 14th AIAA/IEEE Digital Avionics Systems Conference, Cambridge, MA, Nov. 5-9, 1995.

13Brown, G.M., and Johnson, S.A., “An Overview of the Fault Protection Design for the Attitude Control Subsystem of the
Cassini Spacecraft,” Proceedings of the 1998 American Control Conference, Vol. 2, Jun 24-26, 1998, pp. 884-898.

14Badaruddin, K.S., Hernandez, J.C., and Brown, J.M., “The Importance of Hardware-In-The-Loop Testing to the Cassini
Mission to Saturn,” IEEE Aerospace Conference, Track 12.0503, Paper 1231, Big Sky, MT, Mar. 3-10, 2007.

15Brown, J.M., Lam, D.C., Chang, L., Burk, T.A., and Wette, M.R., “The Role of the Flight Software Development System
Simulator throughout the Cassini Mission,” AIAA Guidance, Navigation, and Control Conference and Exhibit, AIAA-2005-6389,
San Francisco, CA, Aug. 15-18, 2005.

16Lee, A.Y., and Brown, J.M., “A Model-Based Thruster Leakage Monitor for the Cassini Spacecraft,” Proceedings of the
American Control Conference, Philadelphia, PA, June 1998, pp. 902-904.

17Lam, D.C., Friberg, K.H., Brown, J.M., Sarani, S., and Lee, A.Y., “An Energy Burn Algorithm for the Cassini Saturn Orbit
Insertion,” AIAA Guidance, Navigation, and Control Conference and Exhibit, AIAA-2005-5994, San Francisco, CA, Aug. 15-18,
2005.

18Cervantes, D., Badaruddin, K.S., and Huh, S.M., “Integrated Testing of the Cassini Saturn Orbit Insertion Critical
Sequence,” AIAA Guidance, Navigation, and Control Conference and Exhibit, AIAA-2005-6272, San Francisco, CA, Aug. 15-
18, 2005.

19Allestad, D.L., Standley, S.P., Chang, L., and Bone, B.D., “Systems Overview of the Cassini-Huygens Probe Relay Critical
Sequence,” AIAA Guidance, Navigation, and Control Conference and Exhibit, AIAA-2005-6388, San Francisco, CA, Aug. 15-
18, 2005.

20Feldman, A.W., Brown, J.M., Wang, E.K., Peer, S.G., and Lee, A.Y., “Reconstruction of Titan Atmosphere Density using
Cassini Attitude Control Flight Data,” 17th AAS/AIAA Space Flight Mechanics Meeting, AAS-07-187, Sedona, AZ, Jan. 28-Feb.
01, 2007.

21Chang, L., Brown, J.M., Barltrop, K.J., and Lee, A.Y., “Use of Guidance and Control Test Cases to Verify Spacecraft
Attitude Control System Design,” AAS/AIAA Space Flight Mechanics Meeting, AAS 02-122, AIAA, Washington, DC, Jan. 2002.

22Hihn, J.M., “Managing with Software Metrics,” JPL Internal Class given by the JPL Education and Training Consortium,
Pasadena, CA, Jul. 23-24, 2008.

American Institute of Aeronautics and Astronautics

31

	Acronyms
	Nomenclature
	I. Introduction
	II. Mission Background
	III. AACS FSW Functional Design Background
	IV. Software Architecture Background
	A. Context Diagram Description
	B. Level 0 Architecture Diagram
	C. Level 1 Architecture Diagram
	D. Object and State Transition Diagrams
	E. State Transition Diagrams

	V. ACS FSW Development Strategy
	VI. Pre-launch Phase FSW Development, Implementation and Test Methodology
	A. Pre-launch FSW Development Methodology
	B. Pre-launch FSW Test Methodology

	VII. Keys to Final Design and Implementation
	A. Software Control
	B. Fault Detection, Isolation, and Recovery
	Software Objects
	D. Software Glue
	E. Tool Sets
	1. Flight software testbeds
	2. FSC Database

	F. Software Collaboration

	VIII. Post-launch Phase FSW Development, Implementation and Test Methodology
	A. Post-launch FSW Development Methodology
	B. Post-launch FSW Test Methodology

	Flight Software Operations
	A. Key In-flight FSW Update Events
	B. Strategies for Updating and Loading FSW
	C. FSW Parameter Patching Techniques
	1. Identification/Classification of a patch:
	2. Thorough ground verification, validation, and test:
	3. In-flight verification and validation:

	D. Design Maintainability
	E. Configuration Maintainability
	F. Software Procedures
	G. Testbeds
	H. Regression Testing
	I. SLOC Comparisons

	X. Lessons Learned
	A. Success is in the Details
	B. System-level Considerations in Subsystem-level Development
	C. Software Collaboration and Ownership during Operations
	D. Risk Aversion
	E. Major First Time Software Events
	F. Software Data Definitions and Memory Protection
	G. Recovery Data
	H. Software State Monitoring

	XI. Conclusion
	Acknowledgments
	References

