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The launch of the Cassini/Huygens mission on October 15, 1997, began a seven year 
journey across the solar system that culminated in the entry of the spacecraft into Saturnian 
orbit on June 30, 2004. Cassini/Huygens Spacecraft Navigation is the result of a complex 
interplay between several teams within the Cassini Project, performed on the Ground Data 
System. The work of Spacecraft Navigation involves rigorous requirements for accuracy and 
completeness carried out often under uncompromising critical time pressures. To support 
the Navigation function, a fault-tolerant, high-reliability/high-availability computational 
environment was necessary to support data processing. Configuration Management (CM) 
was integrated with fault tolerant design and security engineering, according to the 
cornerstone principles of Confidentiality, Integrity, and Availability. Integrated with this 
approach are security benchmarks and validation to meet strict confidence levels. In 
addition, similar approaches to CM were applied in consideration of the staffing and 
training of the system administration team supporting this effort. As a result, the current 
configuration of this computational environment incorporates a secure, modular system, 
that provides for almost no downtime during tour operations. 

Nomenclature 
CIA     = Confidentiality, Integrity, and Availability  
CIS     = Center for Internet Security 
CISscan     = CIS internal host security scanner 
CM     = Configuration Management 
DOS     = Denial of Service attack 
DSN     = Deep Space Network 
DR     = Disaster Recovery 
ECC     =  Emergency Control Center 
GDS     = Ground Data System 
GCC     = Goldstone Communications Complex 
HP-UX     = Hewlett-Packard (Unix System V based OS) for Hewlett-Packard computers 
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M/S: 230-205, Pasadena, CA 91109, USA, AIAA Member. 
†† Cassini Navigation team chief, Section 343, Guidance, Navigation, and Control, 4800 Oak Grove Dr., M/S: 230-
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IDE     = Integrated Drive Electronics disk drive type 
IGNITE     = System imaging and installation software for HP-UX systems 
ISS     = Internet Security Systems network security scanner from Internet Security Systems Inc.  
LAN     = Local Area Network 
Linux     = Open Source OS derived from Unix 
MTTR     = Mean Time to Restore 
MMNAV     = Multi-Mission Navigation operations coordinating organization 
MMNAV Nav Ops Net  = MMNAV Navigation Operations Network 
NAS     = Network Attached Storage 
NESSUS     = Nessus network security scanner from Tenable Network Security Inc.  
NFS     = Network File System 
ORT     = Operational Readiness Test (also known as Operational Readiness Training) 
QoS     = Quality of Service 
RAID     = Redundant Array of Inexpensive Disks 
RAID-4     = RAID array design using a parity disk in the array 
RAID-5     = RAID array design using parity information spread across array 
RLOGIN     = Remote Login 
RCP     = Remote Copy 
RSYNC     =  Remote Synchronization (file distribution) program 
RPM     = Red Hat Package Manager 
SATA     = Serial Attached ATA –Advanced Technology Attachment disk drive type 
SCSI     = Small Computer System Interface disk drive type 
SAS     = Serial Attached SCSI disk drive type 
Solaris     = Sun (Unix System V based OS) for Sun computers 
SSH     = Secure Shell secure communications replacement for RLOGIN, other “R” commands 
SYSTEMIMAGER  = System imaging and installation software for Linux computers 
TELNET     = Remote Terminal program 
TMR     = Triple Modular Redundant (three redundant components for every point of failure) 
TRIPWIRE    =  Cryptographic file system validator 

I. Introduction 
pacecraft Navigation for the Cassini/Huygens mission involves the processes of Trajectory Analysis, Optical 
Navigation, Orbit Determination, and Maneuver Design, carried out by teams of engineers under rigorous 

requirements for accuracy and completeness, often under critical time pressures. Numerous activities required these 
teams to perform detailed analysis of complex spacecraft data sets, review results and process resultant navigation 
computations in a rapid and efficient manner, returning results in under one day, in some cases within a two to three 
hour period with little margin for error. These results then had to be converted, distributed, correlated against further 
data from the spacecraft, uplinked to the Cassini spacecraft and archived in a complex interplay between the Cassini 
Spacecraft Navigation team, Science team, Spacecraft Operations team, and other parts of the Cassini Project. (The 
Orbit Determination estimation processes are discussed by Antreasian, et al.1, and the Maneuver Design orbit 
control operations are discussed by Williams, et al.2.) This effort was performed on the workstations, servers and 
networks utilized for spacecraft operations on the ground, termed the Ground Data System. Requirements to support 
this navigation function presented a clear case for a fault-tolerant high-reliability/high-availability computational 
environment to support these data processing needs. Starting out in an ad hoc manner, from these performance and 
reliability constraints, a program of workstation, network and file system benchmarking had evolved over time to 
support these needs. This program finally culminated in a formal system engineering process for Saturn Tour 
operations that served the design, implementation, and deployment of a high-performance and reliable 
computational environment for the Navigation team. 
 

This program involves several associated elements in its design process. Configuration Management became 
over time an integral and critical element in the system design. Software and hardware components were rigorously 
standardized, specifying a clearly defined computational environment that had precise controls for which operating 
system and software sets would be installed on which specific hardware platforms. Furthermore, a greatly clarified 
system model simplified administration by ensuring that each machine had a well-defined configuration with clearly 
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understood interoperations with other computational components. The importance of this approach cannot be 
overstated. In time it allowed complex tasks that used to take hours or days (on the same hardware) to be finished in 
minutes as well as greatly improving troubleshooting capabilities during system faults and vastly improved abilities 
for the update, repair and deployment of new computational nodes. 

  
Fault tolerance is integral to the system configuration. Making certain that the system is reliable enough to be 

used and available to the Navigation team was critical to this effort. Requirements for Quality of Service (QoS) and 
Mean Time to Restore (MTTR) were formalized and incorporated into the formal design process, and fault tolerance 
and speed of restoration in the event of a fault became central system engineering constraints.  

 
As a part of these reliability concerns, security was considered to be another aspect of reliability in supporting 

the Navigation effort in this environment. A system that is hardened to be fault-tolerant against intelligent actors will 
often prove robust against numerous “natural” random failures as well. Moreover, no matter how accurate the results 
generated by the computational system, if those results were modified by a security compromise, then whether the 
system produced the right results would be of no use to the Navigation team. This particular security model, based 
on the security principles of Confidentiality, Integrity, and Availability (CIA), was used as a framework for system 
hardening. As a part of this process, security benchmarks and standardized testing tools along with other regression 
testing validated that the computational environment met certain confidence levels.  
 

Similar approaches to those used in Configuration Management were utilized in consideration of the staffing and 
training of the system administration team supporting this effort. Clearly defining job roles and tasks, as well as 
organizing staffing for critical events, such as maneuvers and encounters, served to greatly improve efficiency. An 
additional benefit was helping to keep a limited system administration staff on a regular sleep schedule! This 
allowed resources to be focused to resolve the most crucial problems in the absolute minimum time while enabling 
long term planning to consider ongoing means to further automate navigation operations. The end result was a 
modular environment that promoted a well-formed system configuration that was secure, easy to administer, and 
easily allowed global changes across the whole environment – while necessitating almost no downtime during tour 
operations.  
 

This paper documents these efforts, covering the evolution of the design process from its pre-launch ad hoc 
configuration to the formal design efforts that involved the preparation for Saturn Orbital Tour Operations. This 
discussion also portrays this effort compared with industry “best practices” for fault tolerance, disaster recovery, and 
security. We provide an example for similar engineering efforts. While this may be of use to another highly focused 
Ground Data System for a flagship class interplanetary mission, there is significant applicability for other cases 
where a large engineering team has to analyze and process large amounts of data in a precise, efficient, and secure 
manner under tight time constraints.  

 

II. History 
 

Lately it occurs to me: What a long, strange trip it’s been, … 
 -The Grateful Dead3  

 
In order to understand the evolution of this system engineering process, it may be helpful to consider this effort 

against the overall background of the Cassini/Huygens mission. The Cassini/Huygens mission launched on    
October 15, 1997, and spent the next seven years on a journey crossing the solar system until its arrival and entry 
into Saturnian orbit on June 30, 2004. This joint project between the United Sates National Aeronautics and Space 
Administration, European Space Agency, and Italian Space Agency (NASA/ESA/ASI) would perform a total of four 
planetary flybys on its journey to Saturn, including two Venus flybys on April 26, 1998 and June 24, 1999, an Earth 
flyby on August 18, 1999 and an impressive dual science mission, culminating during its flyby of the planet Jupiter 
with the Galileo spacecraft (then in orbit around Jupiter) on December 30, 2000. When the spacecraft arrived in 
Saturn orbit, the Cassini/Huygens combined spacecraft began a four-year aggressive tour of the Saturnian system, 
including the deployment of the Huygens probe on December 25, 2004 and the subsequent landing of the Huygens 
probe on the surface of the Saturnian moon Titan on January 14, 2005. This orbital tour would also comprise more 
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than seventy orbits of the Saturn system, involving fifty-two close targeted flybys of the largest moons of Saturn, 
consisting of Titan (comprising the majority of the flybys), Enceladus, Hyperion, Dione, Rhea, and Iapetus. Figure 1 
describes the mission from Launch till Saturn Orbital Insertion (SOI).4 

 

 
 
 
 

A. Pre-Launch Environment 
Initially, the computational environment for the Navigation Ground Data System, called the Multi-Mission 

Navigation Operations Network (MMNAV Nav Ops Net for short) suffered from a number of issues that concerned 
Cassini Navigation Operations. While maintained by very skilled systems and network administrators, this 
environment had been subject to several years of harsh cost constraints in terms of both computer and network 
hardware and adequate personnel support for Ground Data Systems engineering. One year prior to launch, an effort 
was undertaken to revamp, upgrade, and improve the operational capability of this computational environment. At 
first, this was done in an unstructured manner where immediate concerns dominated such efforts. However, after 
several years of successful improvements and lessons learned from such efforts, a formal design process was utilized 
to perform a complete overhaul of the Navigation Ground Data system. 

 
The initial computational system, utilized during the mission design stages prior to launch, consisted of a dozen 

Hewlett-Packard workstation-class machines and two Sun Microsystems workstation-class machines running on a 
heterogeneous Ethernet Local Area Network (LAN) scattered across three buildings. Although supported by a well 
trained network and system administration staff and well documented, this network, among the oldest at the Jet 
Propulsion Laboratory, had developed in an unplanned fashion. In addition, security and version control of software 
on the Cassini Navigation computational environment was implemented in an ad hoc manner that was confusing and 

Figure 1.  Cassini Launch and Cruise 
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inconsistent. The result was a configuration that made it difficult to lock down machines, to operate in a secure 
manner, or determine the cause of a crash. It was clear that improvements needed to be made. 

 
During this pre-launch period, initial fixes and improvements to the Navigation computer environment began to 

resemble a rather large game of “whack-a-mole,”5 for as one problem would be resolved, two (or more) would be 
revealed. However, a long-term push on the part of the system administration staff during this struggle for better 
configuration management, fault tolerance, and security would slowly promote a more reliable system design.  

 
Starting in late 1996, one of the first areas that would benefit from this long term effort would be version 

control–both for operating system releases (and attendant patches) and software versions. Initially the workstations 
used a variety of operating system releases (HP-UX 9.05 and 9.07 on the HP workstations, Solaris 1.1.3 and 1.1.4 on 
the Sun workstations) with a varying set of patches applied to each. Software versions varied on each workstation as 
well, so that it was difficult to determine easily which software set was running under which OS and patch 
combination. To make matters worse, several Navigation staff members expressed a strong desire to expand cross-
mounting between all the workstations to help provide a workaround for this version control issue–so that all 
conflicting versions of the software could be run on all machines. Instead, what was needed was a single “known 
good” working version of the software, not twenty different problematic software versions that worked in slightly 
divergent ways. Additionally, with the cross-mounting envisioned (especially considering the implementation of the 
Network File System (NFS) file system under HP-UX), if one workstation failed it could bring all the other 
workstations down. This helpful, but misguided approach, demonstrated one of the first needs for an overarching 
organizational paradigm change in how this network would be set up.  

 
The resolution of this issue would take many months, but ultimately it served as a catalyst for further design 

improvements. Each of the workstations on the team would have to be reinstalled with the identical set of operating 
system software (HP and Sun) and patch clusters and regression tested to ensure that the Fight Software running on 
the workstations would function as intended to design specifications. The two most powerful workstations (one of 
which was set up already as a file and compute server) would be set up as identical file servers in a classic “star” 
configuration, with one running as a warm backup and would serve as the single repository for all software, 
including Flight Operations ground software, not directly a part of the operating system of the other machines. The 
cross-mounting approach was opposed vigorously by the Navigation system administration team until other 
Navigation staff members came to appreciate the advantages of a centralized software repository. The configuration 
of the machines (with most of the software being offloaded transparently onto a remote file server) was similar to an 
approach first considered at Carnegie-Mellon University in its Andrew Distributed Computing Environment.6 With 
such a setup, all machines could have their (non operating system) software updated in a single, atomic (as used in 
Distributed Systems literature)7 operation; only one single point of failure (the active file server) would be 
necessary. This was far superior to each workstation, domino-like, acting as a single point of failure. Additionally, 
from this effort came the idea that each workstation should be capable of running all software necessary for 
Navigation operations (i.e. be interchangeable with all other Navigation workstations). This idea was divergent from 
nominal Flight Operations ground software practice because rather than having a customized set of software for an 
individual machine, each machine could run all of the software, so that in event of a failure, or even just a desire to 
run software on a different, perhaps faster, machine, each machine would behave in the same manner. (As during the 
Industrial Revolution, the concept of interchangeable parts improved efficiency and would prove invaluable for 
troubleshooting problems as well as greatly simplifying configuration management throughout the rest of the 
mission.) 

 
Coming fresh on the heels of this difficult change, it had become clear that the security setup of these machines 

would need to undergo a similar organizational push. Although SSH and Encrypted TELNET were available, most 
users still defaulted to using the non-encrypted versions of RLOGIN and TELNET due to familiarity and the fact 
that the settings for SSH were not the same on each machine. Moreover, the security setup of the machines needed a 
similar Configuration Managed approach to ensure that all of the machines were tightened down to the same 
security level. This would involve another standardization effort applied to the machines to ensure that these 
encrypted communications tools worked as expected, as well as a strong effort towards Navigation staff education 
on how to use SSH (as a replacement for the set of “R” commands such as RLOGIN and RCP). After some further 
effort it was possible to totally disable these non-encrypted tools on the Navigation computer systems.  
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B. Launch Mode 
Once this initial round of environmental fixes was accomplished, a significant mission milestone was achieved. 

The timeline of the Cassini/Huygens Spacecraft would assert itself in 1997, in that the final phases of Launch 
Reviews and Operational Readiness Test exercises (ORT’s) would come to consume all of the available time of the 
Navigation team, and require a great deal of system administrator effort to ensure that the then-current system 
configuration would work as expected to ensure a reliable environment for launch. At this point, during these ORT 
exercises, the embedded system administrator staff would have not just the concern of support of a complex network 
of production UNIX workstations and servers, but also to experience the demands and concerns of being part of a 
flight operations team, where the highest possible level of effort would be demanded, at the highest level of priority, 
where troubleshooting and successful resolution of problems as they occurred, by any means necessary, could be 
critical to the operation of the Spacecraft. A former Flight Director for NASA, Gene Kranz, described the required 
attitude for Flight Operations personnel: “…they fully understand that the price of their admission is Excellence, and 
that a Spartan set of standards will govern their conduct. … Failure does not exist in the lexicon of a flight 
controller. The universal characteristic of a controller is that he will never give up until he has an answer or another 
option.”8 
 

 In addition to formal exercises, a significant Disaster Recovery (DR) program was put in place to ensure that in 
the event of an emergency, such as the ever-present threat of a major earthquake in Southern California, a backup 
control site could provide a limited Spacecraft Navigation capability. This DR program involved the deployment of 
several Navigation workstations to the Goldstone Communications Complex (GCC), 200 miles northwest of the Jet 
Propulsion Lab’s main campus in Pasadena. This site, directly tied in to the Deep Space Network’s (DSN) array of 
radio telescopes at Goldstone, would allow Operations staff to receive and uplink commands to the Spacecraft even 
without the infrastructure support of the main JPL campus. A number of ORT operations were implemented, 
involving the deployment of Navigation team members for days to the remote site. Due to the limited network 
communications to Goldstone (aside from the spacecraft communications channels), keeping this site synchronized 
with the main Navigation computational environment became a real challenge during Launch Operations. (At one 
point the lead author almost had to be restrained from running “just one more set of backup tapes…” to the very 
remote site!) Unfortunately, due to funding constraints, support of the DR facility lapsed soon after launch; due to 
the cost of provisioning personnel, networking, and hardware at the remote site, this effort has not been resumed.  

 

C. Post-Launch to Jupiter Flyby 
 After the successful launch of the Cassini/Huygens Spacecraft and the initial post launch operations in October 

of 1997, a second round of system improvements was undertaken. This would provide further good examples for a 
more formal system design. During this time, the Sun workstations were retired and the HP workstations were 
upgraded in a scripted manner to HP-UX 10.20. HP-UX 10.20 would require extensive version control as the 
thousands of patches to the operating system required a clear methodology for configuration management to ensure 
that all HP workstations would have the same version of HP-UX 10.20 with the same functionality and feature set. 
Patches from the operating system vendor were assembled into patch clusters that would be applied at one time, to 
explicitly defined versions of the HP-UX operating system. HP, like several other vendors, would periodically 
update its operating system release media, which would require the installation of a set of release media with a 
particular date and part number, along with the assembled patch clusters, to ensure that a given software set 
containing a given feature set would be installed on the particular machine. This required a much more time 
consuming operation than in the previous version of the operating system, but the end result was a much more stable 
and well defined environment for the staff. This would also have the advantage of serving as a useful prototype 
setup for the types of configuration management problems that would be encountered in working with the open 
source Linux operating system used later on in the mission.  

 
In addition, the RSYNC9 protocol was deployed on the two central file servers so that they could automatically 

remain in lockstep – the backup server would mirror the primary server every night so that in the event of failure of 
the primary server, the backup server would contain a day-old copy of everything on the primary server, allowing 
for improved fault tolerance, albeit with a several minute failover. In addition, this also allowed for a degree of “user 
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proofing” of the file system. With this backup configuration, if important files or directories were corrupted or 
deleted by accident, it was no longer necessary to refer to the backup tapes to recover prior versions, possibly days 
or weeks old. As long as the affected user or users became aware of the problem within the one-day window of the 
RSYNC cycle, the files could be reverted back to their prior state. (With the commensurate problem that, at 
midnight, in a Cinderella-like fashion the opportunity for change would be lost!) This was a significant boon to the 
user community, that, although imperfect, represented a real improvement in system capability at low cost (the 
largest cost item being the sacrifice of almost half of the disk storage of the Navigation team–a sacrifice that would 
prove to be invaluable over time).  

 
During this period, it became apparent that the firewall and secure server utilized for the MMNAV Nav Ops Net 

was in dire need of an overhaul. After extensive effort and numerous staff discussions, a Cisco statefull packet 
filtering firewall was put in place along with a secure, “bastion host”, mail and SSH server that minimized the 
number of open ports from thousands to a handful of ports (most of the effort involved went towards convincing 
staff members that numerous protocols, such as X-Windows and network printing did not need to, and should not, 
go through the firewall!). The approach used for such a network security upgrade is discussed in Cheswick and 
Bellovin10 ‡‡, while an excellent roadmap (though somewhat dated) for such an upgrade can be seen in Chapman and 
Zwicky.11 Although the network would still need significant organizational improvements and hardware upgrades, 
this significantly improved its front line security defenses. 

 
After the significant difficulties of the upgrade of the operating system, it became clear that some type of system 

imaging setup that would allow for more automated deployments of Navigation workstations would be neccessary. 
Keeping both development and operational workstations in lock-step configuration management became a 
significantly difficult and time consuming task. The length of time required to deploy a workstation, and the ease of 
making a mistake in its deployment (on average each scripted install would take on the order of ten hours of careful 
loading, patching, version checking, securing, and cross-checking) made such a system mandatory. Fortunately HP 
had included the IGNITE system imaging software set12 as part of its HP-UX operating system software. Although 
somewhat tricky to set up, once established, new fully configured workstations could be deployed in under ninety 
minutes from a master “golden image” stored on the IGNITE server. Patch updates, and ensuring that machines 
were configured in the same manner became easy, nearly automatic, operations. It became possible to guarantee at a 
very atomic level that machines had exactly the same operating system software set. This would prove a significant 
benefit to system administration tasks such as troubleshooting operations problems, as one could ensure that there 
were no differences in the operating system between two machines, eliminating whole classes of problems.  

  
Furthermore, during this push, it became clear that this imaging not only allowed for clones of workstations to be 

made in a rapid manner, it allowed for clones of very tightly secured machines to be made in a rapid manner. Instead 
of being a nearly impossible goal, it was now a reasonably easy task to deploy a workstation configured in a highly 
secure manner. This included locking down file system permissions and running processes and even security 
features that normally required a high degree of customization, such as secure remote monitoring and process 
accounting, could be easily configured. This allowed for a significant jump forward in system security, as now all 
Cassini Navigation machines could be configured in an identical and secure manner.13 This allowed for the 
formation of not just a “hard on the outside, soft and chewy on the inside…,” security configuration that exemplifies 
most firewalled network security configurations, but true “defense in depth” – a layered approach where multiple 
systems provide redundant layers of protection.14 Such an approach (similar in many ways to the multiple-redundant 
system design approach used as a method to improve reliability) would prove to be an invaluable model for later 
formal designs.  

D. Jupiter Flyby to Saturn Orbit 
Another significant improvement to the computational infrastructure occurred during the second half of 2000 

that, although successful in greatly improving system reliability and fault troubleshooting and diagnosis, was met 
with some concern on the part of the MMNAV System and Network administration staff. It was decided to merge 

 
‡‡ Although the second edition of Firewalls and Internet security is much more up to date, the first edition has a 
much longer discussion on the mechanics of firewall and “bastion host” construction – this open source approach 
had largely been supplanted by commercial appliances by the time of the second edition. 
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network support duties with the younger, but much larger, JPL Flight Operations Network. This process was very 
successful, for funding was made available to upgrade, reroute, and standardize the network configuration used by 
Cassini and other MMNAV projects, including the Galileo mission to Jupiter, Stardust, Deep Impact and numerous 
missions to Mars. Instead of a problematic network design that suffered from years of austere cost constraints, a 
robust, redundant, modern network infrastructure was put in place. Concerns about this change existed among the 
MMNAV System and Network administration staff for two major reasons. First, this network would be directly 
connected to the Flight Operations Network firewall, which, although even newer and more robust than the Nav Ops 
firewall, had to support far more users and projects (hence open routes in its configuration). Second and more 
problematic, this network infrastructure would no longer be under the direct support of MMNAV System and 
Network administrators. We would no longer have control over a very significant part of the critical infrastructure 
necessary for the MMNAV Navigation Operations network. These concerns would be ameliorated over time due to 
the sizable advantages present in having network and firewall upgrades supported by another organization, for 
numerous long needed improvements in performance and reliability, albeit perhaps not in the manner desired, were 
accomplished through this merger. 

 
In 2002, an effort was put underway to perform a complete upgrade and overhaul of the Cassini Navigation 

computational environment. Due to the demanding needs of Saturn Orbital Tour Navigation operations, it had been 
decided to forego this upgrade process as long as possible to take advantage of the ever increasing memory and 
computational horsepower of current workstations. The oft cited ever increasing computer performance curves of 
Moore’s Law meant that every two years (sometimes incorrectly cited as eighteen months) aggregate computer 
processor performance would double.15,16 The less well known but even more aggressive corollary for disk drive 
storage, Kryder’s Law considers that every year aggregate disk drive storage would double.17 Requirements for Tour 
Operations were defined and analyzed over the course of numerous Navigation team meetings, specifying 
computational, memory and file system storage needs along with reliability and security requirements. A formal 
process of evaluation and benchmarking of state of the art workstation, server, and file system vendors was 
implemented in the context of these requirements. These results and associate performance requirements are 
summarized in the next section. 

 
After significant deliberation, high-end Intel (32 bit x86) workstations and servers, running Red Hat Linux were 

purchased from Dell Computer Corporation. These workstations would work in conjunction with a Network 
Attached Storage (NAS) device, purchased from Network Appliance that would serve as the NFS primary file server 
for the Navigation computational environment. A backup disk array was configured on one of the servers to provide 
a day-old RSYNC copy of the NAS server (much like the primary and backup file servers did in the Navigation 
computational environment used after launch). A small number of Sun workstations were also configured into this 
environment to provide support for Flight Operations ground software components used in other parts of the Cassini 
Project that would not be ported to the Red Hat Linux operating system. Lifecycle upgrades to the Navigation 
software and hardware system were planned into the design so that the components of the system, such as 
Navigation software updates, operating system patches and updates, individual workstation upgrades, and even 
upgrades to the NAS could be accomplished quickly and efficiently. (For more detail on the configuration of the 
Tour Navigation computational environment, please see the Appendix.) 

 
This environment, after initial shakedown, would become the Navigation Ground Data System utilized 

throughout Saturn Tour Operations, significantly outperforming all performance and capability requirements, with 
almost no system-wide downtime, during an aggressive orbital tour of the Saturnian system including the Launch 
and Landing of the Huygens probe, fifty-two flybys of the largest moons of Saturn, and more than one hundred and 
fifty precision orbital course corrections through the end of prime mission on June 30, 2008. 
 

III. Requirements from Navigation Tour Specifications  
The successful design of the Tour computational environment for the Cassini Navigation team involved the 

analysis of performance and capability requirements gathered from the Navigation team and of requirements on 
reliability, availability, and security derived from several years of successful operations and lessons learned along 
the way. Many of the Navigation team performance requirements used launch and cruise operations performance as 
a baseline for the requirements of Saturn Tour operations. 
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Navigation team performance requirements for Tour Operations derived from the concern that the computer 

hardware used in the Navigation computational environment during launch and cruise operations did not have the 
computational horsepower to successfully complete the Saturn Orbital Tour within acceptable limits. Initially, these 
requirements were defined in terms of processing capability and speed of key software sets used by the Trajectory 
Analysis, Optical Navigation, Orbit Determination, and Maneuver Analysis components of the Cassini Navigation 
team. They included requirements to update the satellite ephemeris of the nine major Saturnian satellites in a single 
run (necessitating temporary file space requirements exceeding 1 GB!), requirements on Orbit Determination 
software for parameter fields and data sets expected during Saturn Tour, Trajectory Analysis requirements based on 
the scale of Saturnian operations, Optical Navigation requirements covering Optical Navigation picture processing, 
scheduling, storage requirements, and Maneuver Analysis design requirements for Tour Operations. Unfortunately, 
most of these requirements were based around models and software sets which did not exist when these formal 
design parameters were being codified. (Several software sets for Saturn Tour were not implemented due to the fact 
that the computational environment itself had not been chosen, a difficult “chicken and egg” problem!) In order to 
resolve these difficulties, a set of standard requirements was chosen that would encapsulate specific Tour 
requirements by performance requirements for the entire Navigation computer environment that would meet or 
exceed the individual Tour software requirements. They stated key requirements: 

 
4.18 The Navigation Hardware and Operating System Software shall be benchmarked in its current operational 
[Launch/Cruise] state, on both client and server systems, using evaluation tools including industry standard CPU 
benchmarks as well as NBODY (Section 312) suite of benchmarks. These benchmarks should be used to determine and 
obtain hardware that at a base level is five times (5x) faster than the current Navigation Hardware [ten times (10x) goal] 
for Tour operations.18 
 

From these requirements, the Navigation software benchmark utility NBODY (an in-house hardware benchmarking 
tool, using Navigation algorithms built in C, Fortran 77 and Fortran 90) was utilized along with the results from the 
industry standard SPEC2000 CPU19 set of benchmarks to derive benchmarks for the Navigation hardware used at 
that time for cruise operations, and then to benchmark state-of-the-art workstation and server models that 
represented leading candidates for upgrades to the Navigation computational system. Results from cruise hardware 
served as a useful baseline to evaluate then-current vendor offerings for workstation systems:20 

 
 
 

Cruise hardware specification under HP-UX 10.20, NBODY results, (lower is better): 
Type of Benchmark:  HP J2240 (Server), 240 Mhz, 1.5 

GB RAM, HP 10.20: 
HP J210XC (Workstation), 120 
MHz, 512 MB RAM, HP 10.20: 

NBODYC: 8.3s 23.3s 
NBODYF77: 5.1s 18.8s 
NBODYF90: 5.1s 21.8s 
 
(These metrics use the same NBODY algorithm compiled with C, Fortran 77, and Fortran 90.) 

 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1.  Cruise hardware specification: NBODY results 
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Cruise hardware specification under HP-UX 10.20, SPEC2000 CPU (Est.), (higher is better) 
Type of Benchmark: HP J2240 (Server), 240 MHz, 1.5 

GB RAM, HP 10.20: 
HP J210XC (Workstation), 120 
MHz, 512 MB RAM, HP 10.20: 

INT: 176.0 62.6 
FP: 159.0 59.0 
INT_RATE: 4.02 0.72 
FP_RATE: 2.71 0.67 
 
(In the SPEC2000 CPU benchmark scheme four separate categories are considered: maximum integer performance 
[INT], maximum floating point performance [FP], integer processing throughput [INT_RATE], and floating point 
processing throughput [FP_RATE].)19 With these performance baselines, selected vendor workstations could be 
evaluated against these software metrics: 
 

 
 
 

 
Performance Benchmarks on selected vendor hardware platforms: NBODY results (lower is better): 
Type of Benchmark: Sun Blade 2000, 

1.05 GHz, 1 GB 
RAM, Solaris 8: 

x86 PC Workstation, 
3.0GHz, 1 GB RAM, 
Red Hat Linux 7.3: 

HP Itanium 2, 1.0 
GHz, 1 GB RAM, 
Red Hat Linux 7.3: 

HP C3700 750 MHz 
1 GB RAM, HP 11.0: 

NBODYC 1.72s 0.86s 1.48s 2.30s 
NBODYF77 1.72s 0.96s 0.73s 2.40s 
NBODYF90 1.72s 0.92s 0.73s 1.80s 

 
 
 

Performance Benchmarks on selected vendor hardware platforms: SPEC2000 CPU results (higher is better): 
Type of Benchmark: Sun Blade 2000, 

1.05 GHz, 1 GB 
RAM, Solaris 8: 

x86 PC Workstation, 
3.0GHz, 1 GB RAM, 
Red Hat Linux 7.3: 

HP Itanium 2, 1.0 
GHz, 1 GB RAM, 
Red Hat Linux 7.3: 

HP C3700 750 MHz, 
1 GB RAM, HP 11.0: 

INT: 537-610 1060-1103 807 568-604 
FP: 701-827 1025-1115 1356 526-576 
INT_RATE: 6.2-7.0 12.3-12.8 9.39 6.59-7.00 
FP_RATE: 7.3-8.4 11.9-12.0 13.6 6.10-6.68 

 
Although useful, this CPU performance characterization would represent only part of the requirements derived 

from the Navigation team. Capacity planning, in terms of disk storage capability, and memory requirements for 
associated workstations would also be evaluated. As the requirements were being considered, some discussion as to 
the overall architecture of this environment became an important part of these considerations. Possibilities were 
entertained for a number of different configurations:  the classic “star” configuration utilized during Launch/Cruise 
operations, a purely peer-to-peer approach (an improved version of the cross-mounted NFS directory approach 
considered before launch), or a “thin client” approach where all processing would take place on a few high end 
server class systems. Examining a number of concerns helped us to evaluate these differing architecture models.  
 
 
 
 
 

Table 2. Cruise hardware specification: SPEC2000 CPU results 

Table 3. Selected vendor hardware platforms: NBODY results  

Table 4. Selected vendor hardware platforms: SPEC2000 CPU results  
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Possible Navigation Architecture Design Configuration: 

 
 

 
 
 
 
 
 

 
 

 
The peer-to-peer approach, with each node connected to every other node as seen in Fig. 3,21 was rejected due to 

the high value in having one set of software distributed to all workstations through a network file system (no central 
servers). Although tools such as RSYNC, would allow for a peer-to-peer network to be Configuration Managed 
effectively, it was clear that there would still be a need for some centralized services, running on one or more central 
servers, which would not function in a peer-to-peer model. These included tools that would gather and distribute 
various spacecraft data sets and software packages that would help automate routine tasks in the Maneuver Analysis 
function. With such needs, it was not clear what advantage the peer-to-peer approach would possess, and it clearly 
suffered from a much higher degree of complexity than other architecture approaches. 

 
The “thin client” approach, in the classic “star” configuration with the large server as seen in Fig. 4,22 had a 

number of advantages in its design that made it an attractive option. Instead of the expense of purchasing systems 
for Navigation engineers that could each individually meet the processing power requirements for Saturn Tour 
Operations, a few high-end servers would be purchased and utilized by the whole team, while individual Navigation 
engineer workstations would serve only as “dumb terminals” (or thin clients). This option represented an effective 
choice; however, a number of factors rendered this a poor option for Navigation architecture. The first concern 
involved the computationally expensive nature of Navigation Operations software. Unlike most software sets that 
are a good fit for such centralized computation, Navigation software’s numerical processing used aggressive 
amounts of memory, CPU power, and disk space during its operation. Moreover, it suffered from performance 
problems and bugs that could cause such resource utilization to spiral out of control. Furthermore, utilization of the 
software was difficult to control with traditional resource allocation techniques such as disk quotas and memory 
usage limits, as almost all such approaches relied upon oversubscription of such limited resources to be effective.  
Like the hotel, restaurant, and travel industry, many system resource controls rely on the premise that most users 
will not use all (or, on most computer systems, even a significant proportion) of their allotted quota of resources. 
Navigation software had the hallmark of using all available system resources in its computation cycle; indeed, some 
Navigation software was notorious for bringing the largest and fastest machines available to their knees in the event 
of a bug or even poorly chosen inputs to the software! This is a user community that by its fundamental nature has 
difficulty sharing resources. Finally, the issue of cost became the definitive concern in that the high cost of central 
servers capable of supporting Navigation processing requirements was significantly greater than the cost of 
individual high end workstations that could meet such performance requirements. 

 
From these architecture considerations, the classic “star” approach, as seen in Fig. 2,15 provided a middle ground 

that was a best fit for Tour operations, offering the benefits of ease of Configuration Management of centralized file 
service and processes needing centralized services, while allowing for numerical computation to be performed on 
the end node workstations rather than on the central server. The method of resource allocation would be that of “one 
engineer, one workstation” for normal operations, with overflow capability in the system, so that each engineer 
could perform all computational tasks on their individual machine (without concern that they would encounter 

Figure 2.            Figure 3.         Figure 4. 
 Classic “star” configuration      Peer-to-Peer configuration   “thin client” configuration 
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interference from other engineers). With this architecture approach having been decided, a number of performance 
and capability requirements could be codified for Tour operations:18 

 
• All Navigation Engineers would have their own workstation in the Navigation Operations area. 

 
• Each workstation and server would be capable of meeting the performance functional requirements for 

Navigation Operations. 
 

• Each workstation and server would be connected to the MMNAV Nav Ops Net (avoiding communication 
problems with remote machines, perhaps external to the Flight Operations Firewall). 
 

• The MMNAV Nav Ops Net would be capable of transferring data at Gigabit speeds (needed for the file size 
and file system loading expected during Tour Operations). 

 
• Each Workstation and Server would have the storage capability for 150 GB of local file system storage 

(mirrored). 
 

• The Navigation computational environment would support online data storage for all navigation delivery 
files, and files necessary to duplicate such deliveries, until the prime end of mission (estimated at 3 TB). The 
Navigation computational environment would be configured so as to allow online disk storage to be easily 
scaled up to five times its capacity to provide for future growth. 

 
These requirements were combined with Quality of Service (QoS) and Mean Time to Restore (MTTR) 

specifications on the system:18 
 
 
 

4.8 The Navigation Hardware and Operating System Software shall provide 99.97% [i.e. 2-3 hours unplanned downtime 
per year] uptime capability. 
4.9 The Navigation Computer System shall be configured to have a mean time to restore overall system functionality of 
30 minutes during critical periods and 60 minutes during non-critical periods. While this does not imply that all 
subsystems will be functional, all systems necessary to fulfill the NAV operational requirements will be restored in this 
period. 
4.11 The Navigation Hardware and Operating System Software shall provide 24-7 uptime capability. 

 

IV. General Design Principles 
With these performance, capability, and reliability requirements as well as lessons learned from Launch and 

Cruise operations, a framework emerged for a system design. However, several general principles would also be 
incorporated into the Navigation Ground Data System Design to provide a successful computational system for 
Navigation operations during Tour. Requirements for system fault tolerance, security, and configuration 
management came from successful operations and feature improvements to operations during interplanetary cruise. 
Although the performance requirements drove many aspects of the workstation, server and networking 
benchmarking and design, these more general requirements derived from lessons learned along the way will have 
more long term utility as an example to other efforts. With these principles, not only would the requirements for the 
system be met reliably and efficiently, but troubleshooting and system repair, system installation and 
reconfiguration, software installation and regular maintenance would be greatly simplified.   

 

A. Configuration Management 
The first of these general principles, Configuration Management, would have several large improvements over 

the Launch and Cruise configuration. Similar to the effort set up to support the numerous software revisions and 
patch kits utilized for HP-UX 10.20 during the spacecraft cruise, a regimented system of software installs and 
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patching was put into place to support the Red Hat distribution of Linux. A specific set of distribution media 
(determined by manufacture date) was chosen and loaded onto a x86 PC workstation. A carefully scripted set of 
software was installed from the distribution media, and then specific patches were applied against the machine. 
Great care was taken to get accurate version numbers of package sets on the machine (called RPM’s on Red Hat 
Linux for Red Hat Package Manager) and then replicate that installation on another machine. These installs were 
done not only on carefully selected hardware platforms that were known to support the Red Hat distribution of 
Linux, but also on hardware platforms that were carefully chosen to be as similar as possible to each other (difficult 
indeed on the PC platform where part and even hardware component vendors can and were swapped out almost at 
will by PC manufacturers to get the lowest possible component price). This was accomplished by defining precisely 
the exact configuration desired as part of the initial purchasing, and whenever possible, buying in bulk (really the 
only effective approach, as hardware bought at exactly the same time would often use the exact same part 
configuration). 

 
We used a software tool to automate a large portion of this effort. Much like the IGNITE tool used on HP-UX, 

an open source tool known as SYSTEMIMAGER23 performed automated installations of machines. Now the 
laborious scripted software installs would only have to be performed on one machine and then the precise 
configuration could be copied over to an install server. Once the server was set up, it was capable of performing 
“bare-metal” (i.e. on a workstation without any underlying operating system installed) installations of these 
customized operating systems in an average of fifteen minutes. By design, all non-ephemeral user files would be 
located on the central NAS NFS server, so these machines were configured to be clones of one another with file 
systems that should be static (except for swap and temporary files used by the users). (As noted, this is a similar 
approach to the efforts first seen in the Andrew Distributed Computing Environment at Carnegie-Mellon.)6 With this 
system in place, it became possible to completely re-install a customized version of the operating system on nearly 
thirty Cassini Navigation workstations and servers in about eight hours. These machines would, down to a very 
atomic level, have an identical set of files on them, which would not only allow for very hardened security 
configurations requiring considerable customization to be configured, but such installations could be 
cryptographically validated, file by file, against the original “golden image” stored on the SYSTEMIMAGER 
server. Indeed, even on machines with differing hardware configurations, all that would need to be changed would 
be the configuration files and file system links to point to the appropriate drivers for a given machine architecture. If 
a machine was modified, either by accident or by system compromise, the changes made to the file system on that 
machine could be determined and, if desired, corrected in a manner of minutes. Troubleshooting and repair of 
problems became far simpler as it became clear that if a given problem occurred on one machine, and not on another 
identical machine, then the problem must be caused by a user error or a hardware error. (Indeed, in one case, this 
increase in troubleshooting capability and sensitivity enabled us to determine that a specific software routine used by 
a Navigation program was in fact sensitive to the slight differences in the Arithmetic Logic Unit (ALU) used on the 
CPU between two x86 processors!)  

 
Further aiding the CM task, the central file server chosen, a Network Appliance NAS NFS file server, had a 

number of features that helped improve the server-side of CM. In addition to the previously noted advantages of 
using one centralized copy of a given file or software set, large amounts of disk were set aside for storage of 
Navigation Flight Software. This would prove to be an exceptionally effective use of resources! It enabled the 
storage of multiple versions of the software used on the Navigation computational environment. Now instead of 
having to delete older versions of software, as had to be done to save space on the previous configuration of the 
Cassini Navigation computational system, it was possible to maintain many different versions of software.  With 
carefully set up file system links and well configured software execution “PATH” statements, it became possible to 
select any prior combination of software quickly. Although a well defined default setup used normally by the system 
users would always point to a current, Configuration Managed software set. In addition, the Network Appliance file 
server had a feature known as “snapshotting”24 that would, once configured, make a backup image of the file system 
every few hours that would be archived for up to one month. Now both users and system administrators could revert 
to numerous prior versions to recover a file, directory, or even a whole previous configuration of the file system. As 
with the previous day-old RSYNC9 server “user proofing” of the file system, if important files or directories were 
corrupted or deleted by accident, it was no longer necessary to refer to the backup tapes to recover prior versions. In 
this setup however, instead of just maintaining a day-old copy, multiple versions would be maintained, going back 
one month. This setup was further improved over the previous cruise configuration in that the Network Appliance 
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file system used clever mechanisms in the file system designed to implement these “snapshots” so that they would 
only take up a fraction of the disk space used by the RSYNC server. Indeed, instead of a full copy of the file system, 
taking up twice the total space of the single copy, only the changes to the file system between the older and newer 
versions of a file were saved. An analysis of overhead on the Navigation computational environment shows that on 
quiet file systems with few changes these “snapshots” could occupy less than 1% of the total file system space used.  
 

B. Fault Tolerance 
The second of these general principles, that of integrating fault tolerance into the underlying system design, 

would also be greatly improved over the Launch and Cruise implementations of the Navigation computational 
environment. Instead of having to add fault tolerance to an already established design, fault tolerance concerns were 
considered as part of the initial specifications and purchasing decisions. These fault-tolerance principles which the 
system design was based around included modularity, where the system architecture is divided into separate 
modules that, upon failure, can be replaced with a new module, fail-fast, where a system component will ether work 
correctly or stop immediately, independent failure modes, in that if one module fails it does not affect the other 
modules in the system, and redundancy and repair, where spare modules are configured so that when one module 
fails a second can replace it almost instantly, while the first can be repaired or replaced off-line.25  

 
Each of the PC workstations was identically configured. Superior quality and more reliable components (such as 

SCSI or SAS drives in preference to IDE/SATA drives) as well as spare parts were purchased for components likely 
to fail, such as disk drives. As the requirements for Quality of Service for MTTR were written from the view of the 
whole Navigation computational system, the individual PC workstations were seen as functional units–if one failed, 
it was considered, by design, to be easily replaceable with another unit, as each was a clone of the master “golden 
image.” Furthermore, almost like in a RAID array, a spare office was set up with a spare workstation, so that in the 
event of a failure of an individual workstation, users could simply go to the spare office and continue on an identical 
workstation until the workstation in their own office was repaired or replaced. Like the “snapshots” discussed 
previously, which also served to promote improved fault tolerance on the part of the users of the system, these spare 
machines and office setup enabled the disentanglement of system failure from both a system administrator response 
perspective and an event which prevents users from completing their tasks. Now a user could simply move their 
work to another workspace and continue working, while the ever-busy system administrator could fix the machine at 
their leisure. (It should be noted that in practice it was not quite so simple, as users would normally rather wait to 
have their own machine fixed rather that move their work to a separate office. However, it did serve as a gauge to 
the criticality of the user’s needs: if they needed to finish a task, they would use the spare office!)  

 
Moreover, in terms of the server and peripheral systems such as the printers, similar approaches to fault tolerance 

would also prove to have great utility. We purchased three identical x86 PC server class machines in a dual 
processor configuration with twice the memory of the user’s workstations. These machines were configured with the 
same image as the user workstation, once again aiding CM, with one server that was designated as the “prime” 
server that would run processes that needed to run on a central server for the entire Cassini Navigation Ground Data 
system. This includes services such as processes to gather and store, or even broadcast locally, certain spacecraft 
data sets taken from real time and near-real time downlinked data from the spacecraft. This also comprised 
centralized tools that aided in automating certain Navigation processes such as the Maneuver Automation software 
set. The other two server machines would be configured to take over the role of the “prime” server in the event of a 
failure. Users were trained to switch some of the critical user processes, where possible, from the “prime” server to 
the “alternate” server in the event of a failure. In addition, peripheral systems were configured in a similarly 
redundant manner. The Sun workstations that had been purchased to support Cassini Project Flight Operations 
ground software (the majority of Flight Operations workstations used at JPL are currently from Sun Microsystems) 
that could not be ported over to the Linux platform were, like the Linux PC workstations, cloned, and a spare Sun 
workstation was placed in the spare office. In like manner, a primary network printer was set up for the workstation 
users, as well as several redundant backup network printers.  
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Behold, the fool saith, “Put not all thine eggs in the one basket” – which is but a manner of saying “Scatter your money 
and your attention”; but the wise man saith, “Put all your eggs in the one basket and-watch that basket!” 
 -Puddin’head Wilson’s Calendar, as quoted in Firewalls and Internet Security26 
 

In the prior systems noted, fault tolerance was improved, much in the manner of a RAID disk array, by adding 
additional functional units to a resource collective or pool to increase reliability, by ameliorating failure cases. 
However, some systems in the Navigation computational environment could not be improved in this manner and so, 
as seen in the quote above, other approaches to improving fault tolerance needed to be considered. Functionally, the 
most significant point of failure in the Navigation computational environment was the central NFS file server. 
Indeed, this was one of the significant drawbacks to the classic “star” architecture: the central server was a critical 
component without which the rest of the configuration would probably not function. There were several ways to 
mitigate this risk, ranging from making changes to the client end nodes (the workstations and servers in the Cassini 
Navigation example) that would permit the clients to survive for a length of time without the central server (which 
however would move the architecture design to a more peer-to-peer configuration that could play havoc with CM) to 
improvements to the central server. As considered in the quote above, the second option was taken in the Navigation 
environment. Due to the complexity of the central file server, obtaining meaningful reliability metrics would prove 
impractical, however a similar setup by Santonja, Molero, Alonso, Serrano, and Gil, utilizing a RAID-5, 
configuration, although not an identical configuration, would provide guidance and approximation of the reliability 
improvement achieved by differing components of such a multiple-redundant setup (they consider not only the usual 
concerns about disk failure, but also evaluate failure rates of support equipment such as controllers, cabling, power 
supplies, and even the time it takes for spare disks to be shipped from the manufacturer and replace failed units).27 
As noted before, to fulfill these high availability requirements, a high-end Network Appliance NAS NFS server was 
purchased. This multiple-redundant system had dual redundant power supplies (tied into different electrical circuits) 
on each of its subcomponent systems (network interface head and multiple disk trays) with three multiple redundant 
network cards (in three different ports) configured as a hot-hot-warm backup of one another (in the event of a failure 
of one of the network ports one of the other two continue to serve data at a degraded capability). This system served 
data from several disk shelves containing more than fifty fiber channel disks, with dual redundant connections to 
dual redundant controllers, configured as part of a modified RAID-4 disk array. Every component, except the whole 
system itself, had at least dual, or n+1 redundant components. This system had mechanisms for automatically 
(without human intervention) swapping failed components (such as disks) out with working components from a 
spare pool. To improve further the robustness of the Navigation environment, a RAID array from a different 
manufacturer (deliberately, to avoid possible unknown faults with Network Appliance) was attached to one of the 
spare servers that behaved in the same manner as in the Launch and Cruise configuration, in that RSYNC was used 
to backup the central file server every night.  

 
From our considerations of fault tolerance we have had to utilize empirical approaches based on prior experience 

to achieve our requirements for Quality of Service and MTTR. Although approaches for improvements to reliability 
are clearly understood, it can be difficult even under simple, limited cases, without artificial constraints on the 
system, to analyze system dependability and derive quantifiable metrics for system evaluation.28 This system design 
sought to minimize single points of failure and ameliorate those points that could not be eliminated. The approach is 
to do all that is possible within the budgetary and time constraints available, and then test and examine the empirical 
results to see if they meet the established QoS and MTTR metrics requirements. If the system, by trial and error, 
does not perform up to the required values, parameters are examined and modified to bring the system within 
required values. Indeed, given enough resources, how far one chooses to go to evaluate and then improve system 
reliability in such efforts are almost always due to the limits of time and money! To illustrate this point, consider the 
far end of the spectrum, where QoS requirements would be very high and there would be virtually no limit on 
resources (with virtually unlimited budget and schedule freedom). Yeh provides us with such an example when he 
describes the flight avionics systems, such as the Primary Flight Control System found on the Boeing 777, that 
achieve ultra high reliability metrics and had enormous design resources in terms of budget and time. The system 
portrays a highly available, highly redundant, system used by the fly-by-wire avionics controls, that is a Triple 
Modular Redundant (TMR) system (usually the highest order of redundant design with three redundant components 
for each single point of failure) providing QoS metrics (required for a commercial aircraft) specifying a rate of 
failure of the flight controls of less than 1.0x10-11 per flight hour. To obtain these failure metrics required programs 
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of trade-off design study, analysis and simulation of failure modes, 20,000 lab-hours, and 3,800 flight-hours of flight 
testing as part of the evaluation process! 29 
 

C. Security 
The problem becomes far more acute when one considers the possibility, not of random chance, but of intelligent 

actors as a failure mode. Considering security as a measure of reliability does provide the benefit that systems that 
are hardened to be fault-tolerant against intelligent actors will often prove robust against numerous “natural” failures 
as well. Security design takes on several principles that have similarities to architecture in that the strength of a 
system can often be improved, not by what one adds, but by what one takes away. As noted above, secure systems 
are considered, not as a single defensive stronghold or chokepoint, but as a series of overlapping defenses, one after 
the other, much like other fault-tolerant multiple-redundant systems, characterized as “defense in depth.”26 This 
approach is based on the idea of likening security to a series of overlapping walls, much like World War I trench 
warfare or a Medieval castle-in that one presents so many barriers to entry that a hostile adversary will choose to 
pick a less well defended target. Cheswick, Bellovin, and Rubin characterize this approach in that “…we use a 
restricted meaning for the word ‘secure’ when applied to a host. There is no such thing as absolute security. Whether 
a host is penetrated depends on the time, money, and risk an attacker is willing to spend, compared to the time, 
money and diligence we are willing to commit to defending the host.” 30 

 
The security design of the Navigation computational environment is based around the cornerstone security 

principles of Confidentiality, Integrity, and Availability (CIA). These principles define the key concerns in securing 
a system, not in terms of specific technique or subsystem protected, but in terms of what things about the 
computational environment need protecting (i.e., if one considers a bank vault’s security, the concern was for what 
needs protection-the contents of the bank vault-not the design of the bank vault). Confidentiality concerns the 
concealment of resources or information, much like the oft-repeated military principle of “need to know,” Integrity 
is concerned with preventing unauthorized changes to the system, and Availability is the concern that an unavailable 
system can be as bad or worse than no system at all.31  

 
 For the Navigation computational environment these traits manifest in a different manner than as seen in 

military or financial systems. While Confidentiality is extremely critical in military computational systems (in some 
cases destruction of the system is more desirable than the unauthorized release of information), and of high priority 
for financial systems (where customer data is not only a crucial part of business operations, but strong legal 
regulations also come into play for control of consumer information), it is less critical in the context of the 
Navigation computational environment. Confidential information for the Navigation computational environment 
includes the (very important) password databases and password authentication system, used for system access as 
well as detailed information on system and network configuration (which could be used by an intelligent adversary 
to subvert security). As an example of such information and the importance of Confidentiality as a baseline 
configuration, the naming of individual nodes can be seen to be an important part of Confidentiality – because host 
names may reveal a great deal of information about the underlying network design.32 For example, consider the 
hostname “casnfs3,” which relays the immediate information that the machine is a Cassini server, running NFS, and 
that there are at least two other Cassini NFS servers. This is a strong argument for individualized but non-
informative host names.§§ Another important part of Confidentiality is concerned with the control of information 
ether critical to mission operations or which has not been cleared for public release (although we are a public 
civilian mission, access to some data sets are restricted). 

 
Integrity continues to be a very crucial trait in the Navigational computational environment, as unauthorized or 

improper modification of the system could lead to very serious problems. Integrity can be seen as being broken 
down into two separate subcategories, that of prevention mechanisms (which comprises the gamut of the security 
configuration of a system) serving to deter unwanted intrusion by means of “defense in depth,” and detection 
mechanisms, in which after-the-fact systems determine when system integrity has been compromised. Detection 

 
§§  The lead author can recommend that a number of Science Fiction and Fantasy series provide a wealth of 

objects and characters that serve as effective host names. In addition, D. Libes’s “RFC 1178 –choosing a name for 
your computer” can serve as excellent guidance.32  
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systems on the Navigation system include tools such as programs that monitor logs from the Navigation computer 
systems. Other tools served to validate the integrity of a file system cryptographically, looking to observe what 
changes have occurred since a last known “good” configuration, such as the SYSTEMIMAGER installer mentioned 
above, and the TRIPWIRE33 cryptographic file system integrity checker.  Finally, a locally developed real time log 
monitoring system provides immediate detection of anomalous system faults (whether hardware and operating 
system related or caused by unwanted intrusion).  

 
Availability in the Navigation computational system, coupled with the reliability constraints from concerns about 

fault tolerance, had the additional concern that someone might deliberately try to deny access to data sets or a 
system service. The mechanisms used to improve reliability, such as redundant units, resilient components, and 
multiple-redundant systems, provided some protection against attempts to subvert availability, but further protection 
would require additional changes to the system design. Operating system configurations for systems such as 
networking and network file services were radically modified to increase memory pools, counters, and 
communication timing in an effort to prevent attempts to launch Denial of Service (DOS) attacks against the 
Navigation computational environment. In addition, many unsafe toolsets were either removed or stripped of the 
privileges necessary to be used in a hostile manner on the Navigation computational environment. Furthermore, 
many files and directories (especially system files and directories) were restricted to a “read-only” state, to even 
further defend against unwanted modification, so that even if flaws were found and utilized in the security setup, a 
penetration would not provide sufficient access to the system to make changes that would affect system availability. 

 
While the concepts in CIA capture useful concerns regarding what was in need of protection in the Navigational 

computational environment, the opposite side of such concerns, considering security as an aspect of reliability, 
would prove useful to encapsulate these concerns in an approach for general hardening of the system against 
external intelligent actors (i.e. going back to the example used before, this focus is on how the bank vault will 
protect its contents). Cheswick, Bellovin and Rubin34 offer an excellent summation of the process of hardening a 
host against outside attack for webservers and other Internet information servers, to the point where they render it 
very difficult to break into the machine without direct physical access. This level of concern and effort is similar to 
the design goals for the Navigation computational environment. They remark, “It is not that difficult to make a 
specific host highly resistant to anonymous attack from the Internet, The trick is to have that host remain useful.”35 
Likewise the Navigation computational environment is designed with “defense in depth” as a paradigm, in that 
should an attacker get past the Firewall, they will encounter a very hostile network of layered defenses to make any 
further progress futile. As noted by Cheswick, Bellovin, and Rubin, the difficulty comes in securing such a system 
while keeping it functional for legitimate users. This process of external hardening, as noted above, had principles 
with similarities to architecture in that the strength of a system can often times be improved, not by what one adds, 
but by what one takes away. Very secure systems can be constructed by minimizing a system configuration, but 
such systems are not generally appropriate for a “normal” user population. (E.g. the removal of the X-Windows 
system and associated window managers can be clearly seen to improve the security posture of a machine, but few 
users would desire to interact with a local machine over a terminal connection.) In the Navigation computational 
environment, the system hardening process involved the characterization of what services and activities the local 
user population either needed to complete their Navigation Operation critical tasks (e.g. the successful function of 
mission critical Flight Software and delivery of Operations data sets to appropriate parties), or what the user 
population thought was necessary for completion of their job role (e.g. functional compilers, formatting and 
visualization tools, editors, viewers and third party software sets such as MATLAB), or what they believed the 
system would not be useful without such a capability (CD and DVD writing capability, and the ability to mount CDs 
and DVDs in a secure manner without system administrative assistance, as well as X-Windows). With this 
characterization, a clear delineation between what actions a user would be expected to perform and what actions a 
user would never be expected to perform was drawn. From this characterization, software sets and privileges a user 
was never expected to need were removed from the system image, and restrictions were put in place so that users 
would have difficulty in performing anomalous actions. As noted above, a preliminary effort during Cruise served as 
a useful prototype for this system hardening activity.13 
 

From this prototype, seven steps could be categorized as a part of the system hardening process for these Linux 
systems after installation and patching: 
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1. Shutdown of all unnecessary network services 
This includes any services supported by INETD or XINETD – there should be no services that 
INETD/XINETD should support on a secure system (while there may be some reason to use services such as 
ftp, finger or one of the other “legacy” services in INETD/XINETD, there is no call for the server daemons to 
be enabled on a secure machine). With some effort it became possible to strip the system down to where only 
SSH and a handful of other services were running. 

  
2. Configuration of the network stack to be robust against numerous Denial of Service (DOS) attacks 

This was accomplished by modifying the kernel network configuration files such as “/etc/sysctl.conf” to set 
default settings to much higher values to disable the resource exhaustion techniques utilized by numerous 
DOS attacks.  

 
3. Shutdown of all unnecessary system services 

As was done with the network services in the first stage, all unnecessary system services were shut off. 
 
4. Local and network file systems were reviewed and restrictive permissions were set up 

File systems such as “/usr/local” had the most restrictive permissions possible, such as read-only access. 
Removable media (CD/DVD/USB drives) mounts were set up so that they would not support devices or 
setUID and setGID programs (which could be used to circumvent system security and give the user elevated 
privileges). 

 
5. The file system was scanned, looking for files and directories that had poor permission settings 

World writable files and directories were minimized. The set of setUID and setGID executables was 
minimized to a very limited and well-defined list. 

 
6. Logging was set up 

The system was set up to save log files, and, additionally, changes to the system were made to transfer them 
to a remote log server for storage and analysis. 

 
7. Finally, the seventh stage involved the deployment of a customized host-based firewall 

This further restricted access to only a few limited TCP/IP TCP ports. The machine could make a few 
connections, such as SSH, but otherwise would not respond to any network traffic, including the venerable 
network tool PING.  

 
These machines were still useful to the users of the Navigation computational environment, but both internally and 
externally they had been hardened against system compromise by hostile adversaries. Once this effort was 
completed, the system was evaluated and fingerprinted using tools such as TRIPWIRE and then the 
SYSTEMIMAGER software was used to take a “golden image” of the machine and load the image on the install 
server for further use. 

 
A mechanism for deriving metrics to evaluate the security level of a machine was a necessary part of this effort. 

Fortunately, a number of tools exist to evaluate a machine’s internal and external defenses. A number of tools were 
selected to assist in this effort, but other tools may make more sense in other environments. To conduct external 
network scans of the machine, industry standard network scanning tools such as ISS (Internet Security Systems)36,38 
and NESSUS37,38 determined the open ports on the system, with the custom firewall in an up and down 
configuration (to examine differing layers of the network-based defenses). Using differing approaches, each of these 
tools determined what ports on the system would respond, and then would attempt to determine if the software 
listening on these ports was vulnerable to a catalog of hacking techniques. After these results were generated any 
problematic results were corrected and the scans run again until a system with a minimum set of open external holes 
was achieved. 

 
In a similar manner, an internal host scanner from the Center for Internet Security (CIS)39 was chosen to perform 

scans of the internal defenses of the machine. CISscan had three significant advantages which made it a clear choice 
for this effort. First, it had a consistent set of metrics for evaluating host security on a variety of operating system 
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platforms, which enabled comparisons between differing machines, to be made. Second, CISscan represented an 
effort to develop an industry standard “best practices” series of guidelines for system security based around a 
consistent set of metrics, with the CISscan tool used to check a given system against such guidelines. Third, it was 
also very well documented, so that the security implications of each tested system component was well understood 
and could be evaluated against the requirements of the system. With this too, although its metrics were somewhat 
subjective, it was possible to establish a baseline security level, and ensure that patching and operating system 
changes continued to meet those metrics. 

 

D. Human Factors 
From these considerations of Security, Fault-Tolerance and Configuration Management a more general principle 

was derived that also could be applied to the support of this well configured system. Using ideas gathered from 
Configuration Management, scheduling and implementation of software patching, operating system updates and 
hardware upgrades was tightly managed. During Saturn Tour Operations, the system was expected, as noted above, 
to function 24x7, with less than 2-3 hours of unplanned downtime per year. While it was possible to bring down 
redundant components of the system, such as individual servers, workstations, or printers, the whole system was not 
to be brought down except under the most extreme cases. Even bringing down redundant components had to be 
scheduled for time periods where no significant Spacecraft Navigation Operations would be underway, as the 
continued smooth functioning of the Navigation computational environment was considered crucial to mission 
success. These time periods of critical activity and then relative calm were determined by the Spacecraft mission 
sequence and the motions of Saturn, Titan, and the numerous smaller moons and moonlets of the Saturnian system. 
The times of peak activity and calm were not tied into the 9-5 regular work day schedule or even the Monday 
through Friday work week schedule. Sometimes it was possible to perform major system maintenance on a Monday 
afternoon, while the previous weekend had seen many Navigation engineers working until the early morning hours 
of Sunday to handle a particular critical event. (Indeed it was a bit of a running joke that one of the unwritten 
requirements of the mission, as implemented by a few particular scheduling planners, was to try and eliminate all of 
the JPL scheduled holidays!) 

 
Maintenance and emergency repair operations were designed, as noted above, with fault tolerance as a guiding 

design principle. Another key consideration, observed from Launch and Cruise operations, was ease of restoration in 
the event of a critical situation. As system administrators are well familiar, it is in a crisis one appreciates a well 
designed recovery procedure, and conversely is the worst time to deal with a confusing, overly complicated setup. 
This design paradigm was a central component in the design of numerous components of the computational system. 
As noted in the discussion on fault tolerance, a spare office and several spare components, including a server and 
disk array comprising a day-old copy of the entire primary file server were configured as hot backups of the primary 
computational environment. In the event of emergency, the backup server with the disk array attached could be 
moved to a different location and function as a stand-alone copy of the entire Navigation computational 
environment. During the failure of a user workstation, users should be able to resume work using the spare computer 
systems without even having to involve the system administrators. Under such a setup the restoration of a functional 
configuration of the Navigational computer system should be possible within the Quality of Service MTTR 
requirements in all but the most catastrophic failure cases. In the event of an emergency where the primary fileserver 
would have to be restored from backup tapes (consider just how many components would have to fail in a line to 
necessitate such an event!), such tapes were comprised of clearly labeled “dump archive format” tapes representing 
level-0 backups of the file system. In other words, the backup tapes are configured in a format that can be read on 
almost any Unix or Linux system, and that only one tape, or sequence of tapes, would have to be read for a full 
recovery of a file system. Most system components are interchangeable, and even if the spare parts supply was 
exhausted, functional workstations could be scavenged from spare workstations. Moreover, with the 
SYSTEMIMAGER server in use, in the event of a serious configuration problem on a workstation or server, a 
“known good” copy could simply be re-installed from the server in a manner of minutes–often faster than the 
traditional troubleshooting and repair process would take. With this approach of including the system administrator 
as part of the recovery process, and considering the means to make the recovery process as easy and as rapid as 
possible, the system administration staff became a central part of the QoS guarantee for the system. 
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• System administrators would be kept on the same sleep schedule. Avoiding the “jet-lag” effects of a 
widely divergent sleep schedule would help a great deal to improve the tolerability of a difficult schedule. 
(As seen above, this could induce interesting schedule divisions.) 

 
• Wherever possible, shifts would be kept to under ten hours in duration. 

 
These approaches, along with some flexibility on the part of the systems administrators, helped a small support staff 
provide coverage for hundreds of critical shifts over the course of the prime mission, often at highly unusual times 
and days and dates.  
 

V. Observations and Lessons Learned 
In such an effort, a number of caveats, miscellaneous points of wisdom and foundational ideas will emerge. 

Although not seminal considerations, some observations may prove useful in the design of future systems of this 
scale. Many of these are well known System Administrator proverbs. As with all such injunctions, your mileage 
may vary. 

 
 

1. “Disks are cheap.” 
Even in 1996 the cost of disk storage was much, much cheaper than the System Administrator and 
Navigation Engineer time necessary to work around insufficient file system space, or recover a file from a 
backup tape that could have had an online backup. Working through this problem proved to be the single 
greatest improvement to system reliability accomplished throughout the mission. 

 
2. “Buy as much disk as you can afford.” 

After reviewing the painstakingly gathered capacity requirements for disk storage, the lead author (who 
purposely put in a large margin for each of the Navigation subsystems) is struck by how wildly inaccurate the 
estimates for file system actually were. In some cases file system usage is off by twenty times the estimated 
value in 2002. This is not meant however as an accusation of waste or inefficiency, for new techniques and 
software sets have come into use that were difficult to foresee as part of the estimate made for the functional 
requirements. It would have been more cost effective to have simply skipped that part of the requirements 
gathering and used the money saved to buy more disk. (It is also somewhat disturbing to consider that the 
Cassini Navigation team managed to cross most of the solar system using less than 36 GB of disk for the 
entire Navigation team, where now one Navigation subgroup has problems fitting into 2 TB of disk storage 
for its day-to-day-operations.) 

 
3. “Buy the best disk you can afford.” 

SCSI and SAS drives still provide a much greater performance and lifespan than commodity SATA (or older 
disks). RAID arrays further improve performance and reliability, and further differentiate on such metrics, as 
well as support options, by cost. As noted, it is sometimes ok to put all of one’s eggs in one basket, but it is 
reckless to not make the appropriate investments in that basket. This author cannot count the number of times 
he discovered a disk had failed in the primary disk array by coming into work and seeing a package 
containing a replacement disk sitting on his chair. This is a vast improvement over frantic phone calls made 
by Navigation Engineers at 2 am.   

 
4. “Make your life as easy as possible in the event of a crisis.” 

Complicated failover and backup disaster recovery procedures will not be of help during a crisis when the 
pressure is on and users are screaming. Recovery procedures should be simple, must be tested, and must 
work as expected.  

 
5. “Never delete anything as a System Administrator, for that is what users do… .” 

This does go hand in hand with the first three points. The lead author has become so enamored of version 
control that he keeps multiple versions of software, toolsets and configurations around. The time saved in not 
having to recreate a prior configuration for numerous classes of questions and problems is almost magical. 
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(Besides, the System Administrator area on my servers is the only area that is using remotely close to the 
initial functional requirement estimates for file system storage!) Furthermore, if a user asks to have 
something deleted it is likely that a restoration from a backup is soon to follow. This request is often due to a 
permission problem, or because they do not want to take responsibility for deleting files owned by other 
users. Instead of possibly creating a bigger problem, find out why they are asking you to do their dirty work. 
It may prove instructive for both you and the user. 

 
6. “Repair failures consistently and regularly.” 

This is an issue that can occur in systems with multiple redundant functional units and busy System 
Administration staff. Although the system can tolerate numerous failures before problems lead to work 
stoppages, it is important that the failure of individual components - no matter how low a priority of the 
component  - be repaired in a regular manner. Otherwise one can find oneself spending a whole afternoon 
running around fixing trivial printing problems when one discovers that the redundant spare printers were 
down for repairs as well. 

 
7. “Have an off-site Disaster Recovery plan.” 

The seventh point is an issue that has been a concern since the beginning of the Cassini Mission. As 
mentioned above, during the Launch phase of the mission, an extensive, and expensive Disaster Recovery 
plan was implemented that had an off site Emergency Operations Center located at the Goldstone 
Communications complex. After launch, support of that effort was terminated due to lack of funding. For a 
true Disaster Recovery capability, there is no substitute for such an off-site capability. As always budget 
constraints serve as a practical limit to the design of fault tolerant systems, for, just as not all children get to 
grow up to be astronauts, as noted above, not all computer systems can be designed to have the fault tolerant 
capability and reliability of the Boeing 777 Fight Avionics system. This is an understood part of risk 
management. However, such DR capability (to be able to tolerate a site-wide failure) is an important 
consideration for fault tolerant and reliability design. Although considering the late phase of the primary 
mission it is very unlikely that such a capability will be restored, it is strongly recommended that future 
efforts of this size consider such a Disaster Recovery capability. 

 
8. “Sometimes it is ok to rely on someone else.”  

Although their were some concerns with our partnership with the Flight Operations Network Engineering  
organization, that partnership has provided a fault tolerant, high speed network for many years now. 
Although this author continues to maintain that, with adequate funding, such services could be better 
provided in house, it is clear that the Cassini Navigation computational environment has greatly benefited 
from the services provided by our peers.  

 
9. “In Flight Operations there is no such word as ‘surrender’…”  

Finally, the importance of the right attitude of the System Administration staff can not be overemphasized. 
The stubborn refusal to accept failure is vital for people who serve in this role. This serves as a reminder of 
both the stress and the reason why people want to take up the compelling challenge of Flight Operations 
work. Much depends on the right focus of the people who serve to keep these critical systems running that fly 
the spacecraft. They must be willing to do whatever is necessary, by any means necessary, as former NASA 
Flight Director Chris Kraft once defined, to “…take any action necessary for mission success.”41 Flight 
Director Peter Frank codified what this attitude entails, “To always be aware that suddenly and unexpectedly 
we may find ourselves in a role where our performance has ultimate consequences. To recognize that the 
greatest error is not to have tried and failed, but that in trying, we did not give it our best effort.”42 

 

VI. Conclusion 
We have described the efforts to maintain, improve and formally overhaul the Cassini Navigation Ground Data 

System. We have considered such efforts over the history of the mission, from the initial efforts to derive a launch-
ready configuration, through a system of gradual improvements to the Navigation computational environment over 
the Cruise portion of the mission, to a culmination in the formal specification, design and implementation 
undertaken to support Saturn Tour Operations. As a part of this effort a number of design constraints were 
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considered, some derived from Navigation Orbital Tour requirements on system performance and operation, and 
some representing general system design paradigms considered as a result of lessons learned during Cruise. It is 
hoped that such efforts will find utility with other organizations and missions that may be facing similar 
computational challenges. 

 

Appendix 
As a part of this discussion, after considering the operational constraints and system requirements that have been 

evaluated, it may be of some interest to examine an overview of the current configuration of the Cassini Navigation 
Ground Data system.  Figure 6 describes the general layout of the Navigation computer environment. While not all 
of these systems were purchased as part of the initial overhaul of the Navigation computational environment 
described above, they were purchased as part of a gradual program of hardware upgrades over the course of the 
mission.  

 
CURRENT CONFIGURATION: 
 
Red-Hat Linux PC Workstations and Servers: 
• 29 x High End  PC-DELL, P4, 3.06-3.80GHz, 1.5GB RAM. 
• 4 x Low End PC-DELL, P4, 2.66GHz, 1GB RAM. 
• 3 x PC Server-DELL, dual Xeon, 2.8GHz, 3GB RAM. 
• 1 x PC Server-DELL, dual Xeon, 3.7GHz, 2GB RAM. 
 
Sun Solaris Workstations (AMMOS/SFOC Software Support): 
• 7 x Sun Ultra 10, 440 MHz UltraSparc II, 1 GB RAM. 
 
Other Server Hardware: 
•Network Appliance FAS 3020 8TB (mirrored) Network Disk Array 
 
Cassini Navigation Operations Network Backbone: 
• 1000 BT (copper) Ethernet connectivity, 36 GB/sec total. 

 
How Cassini Hardware addresses Navigation Functional Requirements: 
 
• All Linux systems have the performance to handle all Navigation tasks  
   - but not all Flight software has been ported. (allowed in FRD) 
 
• Estimates indicate that performance close to ten times (10x) Cruise. 
 
• Classic “Star” configuration, with multiple “hot” redundant systems and  
    full mirroring of all Server data, as well as cloned  configurations provide  
    highly redundant and available environment. 
 
• 8TB mirrored NetApp FAS 3020 disk array, 1000BT (Gigabit)  
    networking to each system, provide capacity required for Tour.  
 
• Archival:  A DVD/CD writing capability is  available (8.5 GB  
    max capacity) as well as unlimited tape archival through EOM.  
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