

American Institute of Aeronautics and Astronautics

092407

1

Navigation Ground Data System Engineering for the
Cassini/Huygens Mission

R. M. Beswick*, P. G. Antreasian†, S. D. Gillam‡, Y. Hahn§, D. C. Roth**, and J. B. Jones††
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109 USA

The launch of the Cassini/Huygens mission on October 15, 1997, began a seven year
journey across the solar system that culminated in the entry of the spacecraft into Saturnian
orbit on June 30, 2004. Cassini/Huygens Spacecraft Navigation is the result of a complex
interplay between several teams within the Cassini Project, performed on the Ground Data
System. The work of Spacecraft Navigation involves rigorous requirements for accuracy and
completeness carried out often under uncompromising critical time pressures. To support
the Navigation function, a fault-tolerant, high-reliability/high-availability computational
environment was necessary to support data processing. Configuration Management (CM)
was integrated with fault tolerant design and security engineering, according to the
cornerstone principles of Confidentiality, Integrity, and Availability. Integrated with this
approach are security benchmarks and validation to meet strict confidence levels. In
addition, similar approaches to CM were applied in consideration of the staffing and
training of the system administration team supporting this effort. As a result, the current
configuration of this computational environment incorporates a secure, modular system,
that provides for almost no downtime during tour operations.

Nomenclature
CIA = Confidentiality, Integrity, and Availability
CIS = Center for Internet Security
CISscan = CIS internal host security scanner
CM = Configuration Management
DOS = Denial of Service attack
DSN = Deep Space Network
DR = Disaster Recovery
ECC = Emergency Control Center
GDS = Ground Data System
GCC = Goldstone Communications Complex
HP-UX = Hewlett-Packard (Unix System V based OS) for Hewlett-Packard computers

* Cassini Navigation Senior System and Network Administrator/ISCS System Engineer, Section 343, Guidance,
Navigation, and Control, 4800 Oak Grove Dr., M/S: 230-205, Pasadena, CA 91109, USA, AIAA Member.
† Cassini Orbit Determination team lead, Section 343, Guidance, Navigation, and Control, 4800 Oak Grove Dr.,
M/S: 230-205, Pasadena, CA 91109, USA, AIAA Member.
‡ Cassini Optical Navigation team lead, Section 343, Guidance, Navigation, and Control, 4800 Oak Grove Dr., M/S:
230-205, Pasadena, CA 91109, USA, AIAA Member.
§ Cassini Maneuver Analysis team lead, Section 343, Guidance, Navigation, and Control, 4800 Oak Grove Dr., M/S:
230-205, Pasadena, CA 91109, USA, AIAA Member.
** Cassini Navigation Deputy team chief, Section 343, Guidance, Navigation, and Control, 4800 Oak Grove Dr.,
M/S: 230-205, Pasadena, CA 91109, USA, AIAA Member.
†† Cassini Navigation team chief, Section 343, Guidance, Navigation, and Control, 4800 Oak Grove Dr., M/S: 230-
205, Pasadena, CA 91109, USA, AIAA Member.

American Institute of Aeronautics and Astronautics

092407

2

IDE = Integrated Drive Electronics disk drive type
IGNITE = System imaging and installation software for HP-UX systems
ISS = Internet Security Systems network security scanner from Internet Security Systems Inc.
LAN = Local Area Network
Linux = Open Source OS derived from Unix
MTTR = Mean Time to Restore
MMNAV = Multi-Mission Navigation operations coordinating organization
MMNAV Nav Ops Net = MMNAV Navigation Operations Network
NAS = Network Attached Storage
NESSUS = Nessus network security scanner from Tenable Network Security Inc.
NFS = Network File System
ORT = Operational Readiness Test (also known as Operational Readiness Training)
QoS = Quality of Service
RAID = Redundant Array of Inexpensive Disks
RAID-4 = RAID array design using a parity disk in the array
RAID-5 = RAID array design using parity information spread across array
RLOGIN = Remote Login
RCP = Remote Copy
RSYNC = Remote Synchronization (file distribution) program
RPM = Red Hat Package Manager
SATA = Serial Attached ATA –Advanced Technology Attachment disk drive type
SCSI = Small Computer System Interface disk drive type
SAS = Serial Attached SCSI disk drive type
Solaris = Sun (Unix System V based OS) for Sun computers
SSH = Secure Shell secure communications replacement for RLOGIN, other “R” commands
SYSTEMIMAGER = System imaging and installation software for Linux computers
TELNET = Remote Terminal program
TMR = Triple Modular Redundant (three redundant components for every point of failure)
TRIPWIRE = Cryptographic file system validator

I. Introduction
pacecraft Navigation for the Cassini/Huygens mission involves the processes of Trajectory Analysis, Optical
Navigation, Orbit Determination, and Maneuver Design, carried out by teams of engineers under rigorous

requirements for accuracy and completeness, often under critical time pressures. Numerous activities required these
teams to perform detailed analysis of complex spacecraft data sets, review results and process resultant navigation
computations in a rapid and efficient manner, returning results in under one day, in some cases within a two to three
hour period with little margin for error. These results then had to be converted, distributed, correlated against further
data from the spacecraft, uplinked to the Cassini spacecraft and archived in a complex interplay between the Cassini
Spacecraft Navigation team, Science team, Spacecraft Operations team, and other parts of the Cassini Project. (The
Orbit Determination estimation processes are discussed by Antreasian, et al.1, and the Maneuver Design orbit
control operations are discussed by Williams, et al.2.) This effort was performed on the workstations, servers and
networks utilized for spacecraft operations on the ground, termed the Ground Data System. Requirements to support
this navigation function presented a clear case for a fault-tolerant high-reliability/high-availability computational
environment to support these data processing needs. Starting out in an ad hoc manner, from these performance and
reliability constraints, a program of workstation, network and file system benchmarking had evolved over time to
support these needs. This program finally culminated in a formal system engineering process for Saturn Tour
operations that served the design, implementation, and deployment of a high-performance and reliable
computational environment for the Navigation team.

This program involves several associated elements in its design process. Configuration Management became
over time an integral and critical element in the system design. Software and hardware components were rigorously
standardized, specifying a clearly defined computational environment that had precise controls for which operating
system and software sets would be installed on which specific hardware platforms. Furthermore, a greatly clarified
system model simplified administration by ensuring that each machine had a well-defined configuration with clearly

S

American Institute of Aeronautics and Astronautics

092407

3

understood interoperations with other computational components. The importance of this approach cannot be
overstated. In time it allowed complex tasks that used to take hours or days (on the same hardware) to be finished in
minutes as well as greatly improving troubleshooting capabilities during system faults and vastly improved abilities
for the update, repair and deployment of new computational nodes.

Fault tolerance is integral to the system configuration. Making certain that the system is reliable enough to be

used and available to the Navigation team was critical to this effort. Requirements for Quality of Service (QoS) and
Mean Time to Restore (MTTR) were formalized and incorporated into the formal design process, and fault tolerance
and speed of restoration in the event of a fault became central system engineering constraints.

As a part of these reliability concerns, security was considered to be another aspect of reliability in supporting

the Navigation effort in this environment. A system that is hardened to be fault-tolerant against intelligent actors will
often prove robust against numerous “natural” random failures as well. Moreover, no matter how accurate the results
generated by the computational system, if those results were modified by a security compromise, then whether the
system produced the right results would be of no use to the Navigation team. This particular security model, based
on the security principles of Confidentiality, Integrity, and Availability (CIA), was used as a framework for system
hardening. As a part of this process, security benchmarks and standardized testing tools along with other regression
testing validated that the computational environment met certain confidence levels.

Similar approaches to those used in Configuration Management were utilized in consideration of the staffing and
training of the system administration team supporting this effort. Clearly defining job roles and tasks, as well as
organizing staffing for critical events, such as maneuvers and encounters, served to greatly improve efficiency. An
additional benefit was helping to keep a limited system administration staff on a regular sleep schedule! This
allowed resources to be focused to resolve the most crucial problems in the absolute minimum time while enabling
long term planning to consider ongoing means to further automate navigation operations. The end result was a
modular environment that promoted a well-formed system configuration that was secure, easy to administer, and
easily allowed global changes across the whole environment – while necessitating almost no downtime during tour
operations.

This paper documents these efforts, covering the evolution of the design process from its pre-launch ad hoc
configuration to the formal design efforts that involved the preparation for Saturn Orbital Tour Operations. This
discussion also portrays this effort compared with industry “best practices” for fault tolerance, disaster recovery, and
security. We provide an example for similar engineering efforts. While this may be of use to another highly focused
Ground Data System for a flagship class interplanetary mission, there is significant applicability for other cases
where a large engineering team has to analyze and process large amounts of data in a precise, efficient, and secure
manner under tight time constraints.

II. History

Lately it occurs to me: What a long, strange trip it’s been, …
 -The Grateful Dead3

In order to understand the evolution of this system engineering process, it may be helpful to consider this effort

against the overall background of the Cassini/Huygens mission. The Cassini/Huygens mission launched on
October 15, 1997, and spent the next seven years on a journey crossing the solar system until its arrival and entry
into Saturnian orbit on June 30, 2004. This joint project between the United Sates National Aeronautics and Space
Administration, European Space Agency, and Italian Space Agency (NASA/ESA/ASI) would perform a total of four
planetary flybys on its journey to Saturn, including two Venus flybys on April 26, 1998 and June 24, 1999, an Earth
flyby on August 18, 1999 and an impressive dual science mission, culminating during its flyby of the planet Jupiter
with the Galileo spacecraft (then in orbit around Jupiter) on December 30, 2000. When the spacecraft arrived in
Saturn orbit, the Cassini/Huygens combined spacecraft began a four-year aggressive tour of the Saturnian system,
including the deployment of the Huygens probe on December 25, 2004 and the subsequent landing of the Huygens
probe on the surface of the Saturnian moon Titan on January 14, 2005. This orbital tour would also comprise more

American Institute of Aeronautics and Astronautics

092407

4

than seventy orbits of the Saturn system, involving fifty-two close targeted flybys of the largest moons of Saturn,
consisting of Titan (comprising the majority of the flybys), Enceladus, Hyperion, Dione, Rhea, and Iapetus. Figure 1
describes the mission from Launch till Saturn Orbital Insertion (SOI).4

A. Pre-Launch Environment
Initially, the computational environment for the Navigation Ground Data System, called the Multi-Mission

Navigation Operations Network (MMNAV Nav Ops Net for short) suffered from a number of issues that concerned
Cassini Navigation Operations. While maintained by very skilled systems and network administrators, this
environment had been subject to several years of harsh cost constraints in terms of both computer and network
hardware and adequate personnel support for Ground Data Systems engineering. One year prior to launch, an effort
was undertaken to revamp, upgrade, and improve the operational capability of this computational environment. At
first, this was done in an unstructured manner where immediate concerns dominated such efforts. However, after
several years of successful improvements and lessons learned from such efforts, a formal design process was utilized
to perform a complete overhaul of the Navigation Ground Data system.

The initial computational system, utilized during the mission design stages prior to launch, consisted of a dozen

Hewlett-Packard workstation-class machines and two Sun Microsystems workstation-class machines running on a
heterogeneous Ethernet Local Area Network (LAN) scattered across three buildings. Although supported by a well
trained network and system administration staff and well documented, this network, among the oldest at the Jet
Propulsion Laboratory, had developed in an unplanned fashion. In addition, security and version control of software
on the Cassini Navigation computational environment was implemented in an ad hoc manner that was confusing and

Figure 1. Cassini Launch and Cruise

American Institute of Aeronautics and Astronautics

092407

5

inconsistent. The result was a configuration that made it difficult to lock down machines, to operate in a secure
manner, or determine the cause of a crash. It was clear that improvements needed to be made.

During this pre-launch period, initial fixes and improvements to the Navigation computer environment began to

resemble a rather large game of “whack-a-mole,”5 for as one problem would be resolved, two (or more) would be
revealed. However, a long-term push on the part of the system administration staff during this struggle for better
configuration management, fault tolerance, and security would slowly promote a more reliable system design.

Starting in late 1996, one of the first areas that would benefit from this long term effort would be version

control–both for operating system releases (and attendant patches) and software versions. Initially the workstations
used a variety of operating system releases (HP-UX 9.05 and 9.07 on the HP workstations, Solaris 1.1.3 and 1.1.4 on
the Sun workstations) with a varying set of patches applied to each. Software versions varied on each workstation as
well, so that it was difficult to determine easily which software set was running under which OS and patch
combination. To make matters worse, several Navigation staff members expressed a strong desire to expand cross-
mounting between all the workstations to help provide a workaround for this version control issue–so that all
conflicting versions of the software could be run on all machines. Instead, what was needed was a single “known
good” working version of the software, not twenty different problematic software versions that worked in slightly
divergent ways. Additionally, with the cross-mounting envisioned (especially considering the implementation of the
Network File System (NFS) file system under HP-UX), if one workstation failed it could bring all the other
workstations down. This helpful, but misguided approach, demonstrated one of the first needs for an overarching
organizational paradigm change in how this network would be set up.

The resolution of this issue would take many months, but ultimately it served as a catalyst for further design

improvements. Each of the workstations on the team would have to be reinstalled with the identical set of operating
system software (HP and Sun) and patch clusters and regression tested to ensure that the Fight Software running on
the workstations would function as intended to design specifications. The two most powerful workstations (one of
which was set up already as a file and compute server) would be set up as identical file servers in a classic “star”
configuration, with one running as a warm backup and would serve as the single repository for all software,
including Flight Operations ground software, not directly a part of the operating system of the other machines. The
cross-mounting approach was opposed vigorously by the Navigation system administration team until other
Navigation staff members came to appreciate the advantages of a centralized software repository. The configuration
of the machines (with most of the software being offloaded transparently onto a remote file server) was similar to an
approach first considered at Carnegie-Mellon University in its Andrew Distributed Computing Environment.6 With
such a setup, all machines could have their (non operating system) software updated in a single, atomic (as used in
Distributed Systems literature)7 operation; only one single point of failure (the active file server) would be
necessary. This was far superior to each workstation, domino-like, acting as a single point of failure. Additionally,
from this effort came the idea that each workstation should be capable of running all software necessary for
Navigation operations (i.e. be interchangeable with all other Navigation workstations). This idea was divergent from
nominal Flight Operations ground software practice because rather than having a customized set of software for an
individual machine, each machine could run all of the software, so that in event of a failure, or even just a desire to
run software on a different, perhaps faster, machine, each machine would behave in the same manner. (As during the
Industrial Revolution, the concept of interchangeable parts improved efficiency and would prove invaluable for
troubleshooting problems as well as greatly simplifying configuration management throughout the rest of the
mission.)

Coming fresh on the heels of this difficult change, it had become clear that the security setup of these machines

would need to undergo a similar organizational push. Although SSH and Encrypted TELNET were available, most
users still defaulted to using the non-encrypted versions of RLOGIN and TELNET due to familiarity and the fact
that the settings for SSH were not the same on each machine. Moreover, the security setup of the machines needed a
similar Configuration Managed approach to ensure that all of the machines were tightened down to the same
security level. This would involve another standardization effort applied to the machines to ensure that these
encrypted communications tools worked as expected, as well as a strong effort towards Navigation staff education
on how to use SSH (as a replacement for the set of “R” commands such as RLOGIN and RCP). After some further
effort it was possible to totally disable these non-encrypted tools on the Navigation computer systems.

American Institute of Aeronautics and Astronautics

092407

6

B. Launch Mode
Once this initial round of environmental fixes was accomplished, a significant mission milestone was achieved.

The timeline of the Cassini/Huygens Spacecraft would assert itself in 1997, in that the final phases of Launch
Reviews and Operational Readiness Test exercises (ORT’s) would come to consume all of the available time of the
Navigation team, and require a great deal of system administrator effort to ensure that the then-current system
configuration would work as expected to ensure a reliable environment for launch. At this point, during these ORT
exercises, the embedded system administrator staff would have not just the concern of support of a complex network
of production UNIX workstations and servers, but also to experience the demands and concerns of being part of a
flight operations team, where the highest possible level of effort would be demanded, at the highest level of priority,
where troubleshooting and successful resolution of problems as they occurred, by any means necessary, could be
critical to the operation of the Spacecraft. A former Flight Director for NASA, Gene Kranz, described the required
attitude for Flight Operations personnel: “…they fully understand that the price of their admission is Excellence, and
that a Spartan set of standards will govern their conduct. … Failure does not exist in the lexicon of a flight
controller. The universal characteristic of a controller is that he will never give up until he has an answer or another
option.”8

 In addition to formal exercises, a significant Disaster Recovery (DR) program was put in place to ensure that in
the event of an emergency, such as the ever-present threat of a major earthquake in Southern California, a backup
control site could provide a limited Spacecraft Navigation capability. This DR program involved the deployment of
several Navigation workstations to the Goldstone Communications Complex (GCC), 200 miles northwest of the Jet
Propulsion Lab’s main campus in Pasadena. This site, directly tied in to the Deep Space Network’s (DSN) array of
radio telescopes at Goldstone, would allow Operations staff to receive and uplink commands to the Spacecraft even
without the infrastructure support of the main JPL campus. A number of ORT operations were implemented,
involving the deployment of Navigation team members for days to the remote site. Due to the limited network
communications to Goldstone (aside from the spacecraft communications channels), keeping this site synchronized
with the main Navigation computational environment became a real challenge during Launch Operations. (At one
point the lead author almost had to be restrained from running “just one more set of backup tapes…” to the very
remote site!) Unfortunately, due to funding constraints, support of the DR facility lapsed soon after launch; due to
the cost of provisioning personnel, networking, and hardware at the remote site, this effort has not been resumed.

C. Post-Launch to Jupiter Flyby
 After the successful launch of the Cassini/Huygens Spacecraft and the initial post launch operations in October

of 1997, a second round of system improvements was undertaken. This would provide further good examples for a
more formal system design. During this time, the Sun workstations were retired and the HP workstations were
upgraded in a scripted manner to HP-UX 10.20. HP-UX 10.20 would require extensive version control as the
thousands of patches to the operating system required a clear methodology for configuration management to ensure
that all HP workstations would have the same version of HP-UX 10.20 with the same functionality and feature set.
Patches from the operating system vendor were assembled into patch clusters that would be applied at one time, to
explicitly defined versions of the HP-UX operating system. HP, like several other vendors, would periodically
update its operating system release media, which would require the installation of a set of release media with a
particular date and part number, along with the assembled patch clusters, to ensure that a given software set
containing a given feature set would be installed on the particular machine. This required a much more time
consuming operation than in the previous version of the operating system, but the end result was a much more stable
and well defined environment for the staff. This would also have the advantage of serving as a useful prototype
setup for the types of configuration management problems that would be encountered in working with the open
source Linux operating system used later on in the mission.

In addition, the RSYNC9 protocol was deployed on the two central file servers so that they could automatically

remain in lockstep – the backup server would mirror the primary server every night so that in the event of failure of
the primary server, the backup server would contain a day-old copy of everything on the primary server, allowing
for improved fault tolerance, albeit with a several minute failover. In addition, this also allowed for a degree of “user

American Institute of Aeronautics and Astronautics

092407

7

proofing” of the file system. With this backup configuration, if important files or directories were corrupted or
deleted by accident, it was no longer necessary to refer to the backup tapes to recover prior versions, possibly days
or weeks old. As long as the affected user or users became aware of the problem within the one-day window of the
RSYNC cycle, the files could be reverted back to their prior state. (With the commensurate problem that, at
midnight, in a Cinderella-like fashion the opportunity for change would be lost!) This was a significant boon to the
user community, that, although imperfect, represented a real improvement in system capability at low cost (the
largest cost item being the sacrifice of almost half of the disk storage of the Navigation team–a sacrifice that would
prove to be invaluable over time).

During this period, it became apparent that the firewall and secure server utilized for the MMNAV Nav Ops Net

was in dire need of an overhaul. After extensive effort and numerous staff discussions, a Cisco statefull packet
filtering firewall was put in place along with a secure, “bastion host”, mail and SSH server that minimized the
number of open ports from thousands to a handful of ports (most of the effort involved went towards convincing
staff members that numerous protocols, such as X-Windows and network printing did not need to, and should not,
go through the firewall!). The approach used for such a network security upgrade is discussed in Cheswick and
Bellovin10 ‡‡, while an excellent roadmap (though somewhat dated) for such an upgrade can be seen in Chapman and
Zwicky.11 Although the network would still need significant organizational improvements and hardware upgrades,
this significantly improved its front line security defenses.

After the significant difficulties of the upgrade of the operating system, it became clear that some type of system

imaging setup that would allow for more automated deployments of Navigation workstations would be neccessary.
Keeping both development and operational workstations in lock-step configuration management became a
significantly difficult and time consuming task. The length of time required to deploy a workstation, and the ease of
making a mistake in its deployment (on average each scripted install would take on the order of ten hours of careful
loading, patching, version checking, securing, and cross-checking) made such a system mandatory. Fortunately HP
had included the IGNITE system imaging software set12 as part of its HP-UX operating system software. Although
somewhat tricky to set up, once established, new fully configured workstations could be deployed in under ninety
minutes from a master “golden image” stored on the IGNITE server. Patch updates, and ensuring that machines
were configured in the same manner became easy, nearly automatic, operations. It became possible to guarantee at a
very atomic level that machines had exactly the same operating system software set. This would prove a significant
benefit to system administration tasks such as troubleshooting operations problems, as one could ensure that there
were no differences in the operating system between two machines, eliminating whole classes of problems.

Furthermore, during this push, it became clear that this imaging not only allowed for clones of workstations to be

made in a rapid manner, it allowed for clones of very tightly secured machines to be made in a rapid manner. Instead
of being a nearly impossible goal, it was now a reasonably easy task to deploy a workstation configured in a highly
secure manner. This included locking down file system permissions and running processes and even security
features that normally required a high degree of customization, such as secure remote monitoring and process
accounting, could be easily configured. This allowed for a significant jump forward in system security, as now all
Cassini Navigation machines could be configured in an identical and secure manner.13 This allowed for the
formation of not just a “hard on the outside, soft and chewy on the inside…,” security configuration that exemplifies
most firewalled network security configurations, but true “defense in depth” – a layered approach where multiple
systems provide redundant layers of protection.14 Such an approach (similar in many ways to the multiple-redundant
system design approach used as a method to improve reliability) would prove to be an invaluable model for later
formal designs.

D. Jupiter Flyby to Saturn Orbit
Another significant improvement to the computational infrastructure occurred during the second half of 2000

that, although successful in greatly improving system reliability and fault troubleshooting and diagnosis, was met
with some concern on the part of the MMNAV System and Network administration staff. It was decided to merge

‡‡ Although the second edition of Firewalls and Internet security is much more up to date, the first edition has a
much longer discussion on the mechanics of firewall and “bastion host” construction – this open source approach
had largely been supplanted by commercial appliances by the time of the second edition.

American Institute of Aeronautics and Astronautics

092407

8

network support duties with the younger, but much larger, JPL Flight Operations Network. This process was very
successful, for funding was made available to upgrade, reroute, and standardize the network configuration used by
Cassini and other MMNAV projects, including the Galileo mission to Jupiter, Stardust, Deep Impact and numerous
missions to Mars. Instead of a problematic network design that suffered from years of austere cost constraints, a
robust, redundant, modern network infrastructure was put in place. Concerns about this change existed among the
MMNAV System and Network administration staff for two major reasons. First, this network would be directly
connected to the Flight Operations Network firewall, which, although even newer and more robust than the Nav Ops
firewall, had to support far more users and projects (hence open routes in its configuration). Second and more
problematic, this network infrastructure would no longer be under the direct support of MMNAV System and
Network administrators. We would no longer have control over a very significant part of the critical infrastructure
necessary for the MMNAV Navigation Operations network. These concerns would be ameliorated over time due to
the sizable advantages present in having network and firewall upgrades supported by another organization, for
numerous long needed improvements in performance and reliability, albeit perhaps not in the manner desired, were
accomplished through this merger.

In 2002, an effort was put underway to perform a complete upgrade and overhaul of the Cassini Navigation

computational environment. Due to the demanding needs of Saturn Orbital Tour Navigation operations, it had been
decided to forego this upgrade process as long as possible to take advantage of the ever increasing memory and
computational horsepower of current workstations. The oft cited ever increasing computer performance curves of
Moore’s Law meant that every two years (sometimes incorrectly cited as eighteen months) aggregate computer
processor performance would double.15,16 The less well known but even more aggressive corollary for disk drive
storage, Kryder’s Law considers that every year aggregate disk drive storage would double.17 Requirements for Tour
Operations were defined and analyzed over the course of numerous Navigation team meetings, specifying
computational, memory and file system storage needs along with reliability and security requirements. A formal
process of evaluation and benchmarking of state of the art workstation, server, and file system vendors was
implemented in the context of these requirements. These results and associate performance requirements are
summarized in the next section.

After significant deliberation, high-end Intel (32 bit x86) workstations and servers, running Red Hat Linux were

purchased from Dell Computer Corporation. These workstations would work in conjunction with a Network
Attached Storage (NAS) device, purchased from Network Appliance that would serve as the NFS primary file server
for the Navigation computational environment. A backup disk array was configured on one of the servers to provide
a day-old RSYNC copy of the NAS server (much like the primary and backup file servers did in the Navigation
computational environment used after launch). A small number of Sun workstations were also configured into this
environment to provide support for Flight Operations ground software components used in other parts of the Cassini
Project that would not be ported to the Red Hat Linux operating system. Lifecycle upgrades to the Navigation
software and hardware system were planned into the design so that the components of the system, such as
Navigation software updates, operating system patches and updates, individual workstation upgrades, and even
upgrades to the NAS could be accomplished quickly and efficiently. (For more detail on the configuration of the
Tour Navigation computational environment, please see the Appendix.)

This environment, after initial shakedown, would become the Navigation Ground Data System utilized

throughout Saturn Tour Operations, significantly outperforming all performance and capability requirements, with
almost no system-wide downtime, during an aggressive orbital tour of the Saturnian system including the Launch
and Landing of the Huygens probe, fifty-two flybys of the largest moons of Saturn, and more than one hundred and
fifty precision orbital course corrections through the end of prime mission on June 30, 2008.

III. Requirements from Navigation Tour Specifications
The successful design of the Tour computational environment for the Cassini Navigation team involved the

analysis of performance and capability requirements gathered from the Navigation team and of requirements on
reliability, availability, and security derived from several years of successful operations and lessons learned along
the way. Many of the Navigation team performance requirements used launch and cruise operations performance as
a baseline for the requirements of Saturn Tour operations.

American Institute of Aeronautics and Astronautics

092407

9

Navigation team performance requirements for Tour Operations derived from the concern that the computer

hardware used in the Navigation computational environment during launch and cruise operations did not have the
computational horsepower to successfully complete the Saturn Orbital Tour within acceptable limits. Initially, these
requirements were defined in terms of processing capability and speed of key software sets used by the Trajectory
Analysis, Optical Navigation, Orbit Determination, and Maneuver Analysis components of the Cassini Navigation
team. They included requirements to update the satellite ephemeris of the nine major Saturnian satellites in a single
run (necessitating temporary file space requirements exceeding 1 GB!), requirements on Orbit Determination
software for parameter fields and data sets expected during Saturn Tour, Trajectory Analysis requirements based on
the scale of Saturnian operations, Optical Navigation requirements covering Optical Navigation picture processing,
scheduling, storage requirements, and Maneuver Analysis design requirements for Tour Operations. Unfortunately,
most of these requirements were based around models and software sets which did not exist when these formal
design parameters were being codified. (Several software sets for Saturn Tour were not implemented due to the fact
that the computational environment itself had not been chosen, a difficult “chicken and egg” problem!) In order to
resolve these difficulties, a set of standard requirements was chosen that would encapsulate specific Tour
requirements by performance requirements for the entire Navigation computer environment that would meet or
exceed the individual Tour software requirements. They stated key requirements:

4.18 The Navigation Hardware and Operating System Software shall be benchmarked in its current operational
[Launch/Cruise] state, on both client and server systems, using evaluation tools including industry standard CPU
benchmarks as well as NBODY (Section 312) suite of benchmarks. These benchmarks should be used to determine and
obtain hardware that at a base level is five times (5x) faster than the current Navigation Hardware [ten times (10x) goal]
for Tour operations.18

From these requirements, the Navigation software benchmark utility NBODY (an in-house hardware benchmarking
tool, using Navigation algorithms built in C, Fortran 77 and Fortran 90) was utilized along with the results from the
industry standard SPEC2000 CPU19 set of benchmarks to derive benchmarks for the Navigation hardware used at
that time for cruise operations, and then to benchmark state-of-the-art workstation and server models that
represented leading candidates for upgrades to the Navigation computational system. Results from cruise hardware
served as a useful baseline to evaluate then-current vendor offerings for workstation systems:20

Cruise hardware specification under HP-UX 10.20, NBODY results, (lower is better):
Type of Benchmark: HP J2240 (Server), 240 Mhz, 1.5

GB RAM, HP 10.20:
HP J210XC (Workstation), 120
MHz, 512 MB RAM, HP 10.20:

NBODYC: 8.3s 23.3s
NBODYF77: 5.1s 18.8s
NBODYF90: 5.1s 21.8s

(These metrics use the same NBODY algorithm compiled with C, Fortran 77, and Fortran 90.)

Table 1. Cruise hardware specification: NBODY results

American Institute of Aeronautics and Astronautics

092407

10

Cruise hardware specification under HP-UX 10.20, SPEC2000 CPU (Est.), (higher is better)
Type of Benchmark: HP J2240 (Server), 240 MHz, 1.5

GB RAM, HP 10.20:
HP J210XC (Workstation), 120
MHz, 512 MB RAM, HP 10.20:

INT: 176.0 62.6
FP: 159.0 59.0
INT_RATE: 4.02 0.72
FP_RATE: 2.71 0.67

(In the SPEC2000 CPU benchmark scheme four separate categories are considered: maximum integer performance
[INT], maximum floating point performance [FP], integer processing throughput [INT_RATE], and floating point
processing throughput [FP_RATE].)19 With these performance baselines, selected vendor workstations could be
evaluated against these software metrics:

Performance Benchmarks on selected vendor hardware platforms: NBODY results (lower is better):
Type of Benchmark: Sun Blade 2000,

1.05 GHz, 1 GB
RAM, Solaris 8:

x86 PC Workstation,
3.0GHz, 1 GB RAM,
Red Hat Linux 7.3:

HP Itanium 2, 1.0
GHz, 1 GB RAM,
Red Hat Linux 7.3:

HP C3700 750 MHz
1 GB RAM, HP 11.0:

NBODYC 1.72s 0.86s 1.48s 2.30s
NBODYF77 1.72s 0.96s 0.73s 2.40s
NBODYF90 1.72s 0.92s 0.73s 1.80s

Performance Benchmarks on selected vendor hardware platforms: SPEC2000 CPU results (higher is better):
Type of Benchmark: Sun Blade 2000,

1.05 GHz, 1 GB
RAM, Solaris 8:

x86 PC Workstation,
3.0GHz, 1 GB RAM,
Red Hat Linux 7.3:

HP Itanium 2, 1.0
GHz, 1 GB RAM,
Red Hat Linux 7.3:

HP C3700 750 MHz,
1 GB RAM, HP 11.0:

INT: 537-610 1060-1103 807 568-604
FP: 701-827 1025-1115 1356 526-576
INT_RATE: 6.2-7.0 12.3-12.8 9.39 6.59-7.00
FP_RATE: 7.3-8.4 11.9-12.0 13.6 6.10-6.68

Although useful, this CPU performance characterization would represent only part of the requirements derived

from the Navigation team. Capacity planning, in terms of disk storage capability, and memory requirements for
associated workstations would also be evaluated. As the requirements were being considered, some discussion as to
the overall architecture of this environment became an important part of these considerations. Possibilities were
entertained for a number of different configurations: the classic “star” configuration utilized during Launch/Cruise
operations, a purely peer-to-peer approach (an improved version of the cross-mounted NFS directory approach
considered before launch), or a “thin client” approach where all processing would take place on a few high end
server class systems. Examining a number of concerns helped us to evaluate these differing architecture models.

Table 2. Cruise hardware specification: SPEC2000 CPU results

Table 3. Selected vendor hardware platforms: NBODY results

Table 4. Selected vendor hardware platforms: SPEC2000 CPU results

American Institute of Aeronautics and Astronautics

092407

11

Possible Navigation Architecture Design Configuration:

The peer-to-peer approach, with each node connected to every other node as seen in Fig. 3,21 was rejected due to

the high value in having one set of software distributed to all workstations through a network file system (no central
servers). Although tools such as RSYNC, would allow for a peer-to-peer network to be Configuration Managed
effectively, it was clear that there would still be a need for some centralized services, running on one or more central
servers, which would not function in a peer-to-peer model. These included tools that would gather and distribute
various spacecraft data sets and software packages that would help automate routine tasks in the Maneuver Analysis
function. With such needs, it was not clear what advantage the peer-to-peer approach would possess, and it clearly
suffered from a much higher degree of complexity than other architecture approaches.

The “thin client” approach, in the classic “star” configuration with the large server as seen in Fig. 4,22 had a

number of advantages in its design that made it an attractive option. Instead of the expense of purchasing systems
for Navigation engineers that could each individually meet the processing power requirements for Saturn Tour
Operations, a few high-end servers would be purchased and utilized by the whole team, while individual Navigation
engineer workstations would serve only as “dumb terminals” (or thin clients). This option represented an effective
choice; however, a number of factors rendered this a poor option for Navigation architecture. The first concern
involved the computationally expensive nature of Navigation Operations software. Unlike most software sets that
are a good fit for such centralized computation, Navigation software’s numerical processing used aggressive
amounts of memory, CPU power, and disk space during its operation. Moreover, it suffered from performance
problems and bugs that could cause such resource utilization to spiral out of control. Furthermore, utilization of the
software was difficult to control with traditional resource allocation techniques such as disk quotas and memory
usage limits, as almost all such approaches relied upon oversubscription of such limited resources to be effective.
Like the hotel, restaurant, and travel industry, many system resource controls rely on the premise that most users
will not use all (or, on most computer systems, even a significant proportion) of their allotted quota of resources.
Navigation software had the hallmark of using all available system resources in its computation cycle; indeed, some
Navigation software was notorious for bringing the largest and fastest machines available to their knees in the event
of a bug or even poorly chosen inputs to the software! This is a user community that by its fundamental nature has
difficulty sharing resources. Finally, the issue of cost became the definitive concern in that the high cost of central
servers capable of supporting Navigation processing requirements was significantly greater than the cost of
individual high end workstations that could meet such performance requirements.

From these architecture considerations, the classic “star” approach, as seen in Fig. 2,15 provided a middle ground

that was a best fit for Tour operations, offering the benefits of ease of Configuration Management of centralized file
service and processes needing centralized services, while allowing for numerical computation to be performed on
the end node workstations rather than on the central server. The method of resource allocation would be that of “one
engineer, one workstation” for normal operations, with overflow capability in the system, so that each engineer
could perform all computational tasks on their individual machine (without concern that they would encounter

Figure 2. Figure 3. Figure 4.
 Classic “star” configuration Peer-to-Peer configuration “thin client” configuration

American Institute of Aeronautics and Astronautics

092407

12

interference from other engineers). With this architecture approach having been decided, a number of performance
and capability requirements could be codified for Tour operations:18

• All Navigation Engineers would have their own workstation in the Navigation Operations area.

• Each workstation and server would be capable of meeting the performance functional requirements for

Navigation Operations.

• Each workstation and server would be connected to the MMNAV Nav Ops Net (avoiding communication
problems with remote machines, perhaps external to the Flight Operations Firewall).

• The MMNAV Nav Ops Net would be capable of transferring data at Gigabit speeds (needed for the file size
and file system loading expected during Tour Operations).

• Each Workstation and Server would have the storage capability for 150 GB of local file system storage

(mirrored).

• The Navigation computational environment would support online data storage for all navigation delivery
files, and files necessary to duplicate such deliveries, until the prime end of mission (estimated at 3 TB). The
Navigation computational environment would be configured so as to allow online disk storage to be easily
scaled up to five times its capacity to provide for future growth.

These requirements were combined with Quality of Service (QoS) and Mean Time to Restore (MTTR)

specifications on the system:18

4.8 The Navigation Hardware and Operating System Software shall provide 99.97% [i.e. 2-3 hours unplanned downtime
per year] uptime capability.
4.9 The Navigation Computer System shall be configured to have a mean time to restore overall system functionality of
30 minutes during critical periods and 60 minutes during non-critical periods. While this does not imply that all
subsystems will be functional, all systems necessary to fulfill the NAV operational requirements will be restored in this
period.
4.11 The Navigation Hardware and Operating System Software shall provide 24-7 uptime capability.

IV. General Design Principles
With these performance, capability, and reliability requirements as well as lessons learned from Launch and

Cruise operations, a framework emerged for a system design. However, several general principles would also be
incorporated into the Navigation Ground Data System Design to provide a successful computational system for
Navigation operations during Tour. Requirements for system fault tolerance, security, and configuration
management came from successful operations and feature improvements to operations during interplanetary cruise.
Although the performance requirements drove many aspects of the workstation, server and networking
benchmarking and design, these more general requirements derived from lessons learned along the way will have
more long term utility as an example to other efforts. With these principles, not only would the requirements for the
system be met reliably and efficiently, but troubleshooting and system repair, system installation and
reconfiguration, software installation and regular maintenance would be greatly simplified.

A. Configuration Management
The first of these general principles, Configuration Management, would have several large improvements over

the Launch and Cruise configuration. Similar to the effort set up to support the numerous software revisions and
patch kits utilized for HP-UX 10.20 during the spacecraft cruise, a regimented system of software installs and

American Institute of Aeronautics and Astronautics

092407

13

patching was put into place to support the Red Hat distribution of Linux. A specific set of distribution media
(determined by manufacture date) was chosen and loaded onto a x86 PC workstation. A carefully scripted set of
software was installed from the distribution media, and then specific patches were applied against the machine.
Great care was taken to get accurate version numbers of package sets on the machine (called RPM’s on Red Hat
Linux for Red Hat Package Manager) and then replicate that installation on another machine. These installs were
done not only on carefully selected hardware platforms that were known to support the Red Hat distribution of
Linux, but also on hardware platforms that were carefully chosen to be as similar as possible to each other (difficult
indeed on the PC platform where part and even hardware component vendors can and were swapped out almost at
will by PC manufacturers to get the lowest possible component price). This was accomplished by defining precisely
the exact configuration desired as part of the initial purchasing, and whenever possible, buying in bulk (really the
only effective approach, as hardware bought at exactly the same time would often use the exact same part
configuration).

We used a software tool to automate a large portion of this effort. Much like the IGNITE tool used on HP-UX,

an open source tool known as SYSTEMIMAGER23 performed automated installations of machines. Now the
laborious scripted software installs would only have to be performed on one machine and then the precise
configuration could be copied over to an install server. Once the server was set up, it was capable of performing
“bare-metal” (i.e. on a workstation without any underlying operating system installed) installations of these
customized operating systems in an average of fifteen minutes. By design, all non-ephemeral user files would be
located on the central NAS NFS server, so these machines were configured to be clones of one another with file
systems that should be static (except for swap and temporary files used by the users). (As noted, this is a similar
approach to the efforts first seen in the Andrew Distributed Computing Environment at Carnegie-Mellon.)6 With this
system in place, it became possible to completely re-install a customized version of the operating system on nearly
thirty Cassini Navigation workstations and servers in about eight hours. These machines would, down to a very
atomic level, have an identical set of files on them, which would not only allow for very hardened security
configurations requiring considerable customization to be configured, but such installations could be
cryptographically validated, file by file, against the original “golden image” stored on the SYSTEMIMAGER
server. Indeed, even on machines with differing hardware configurations, all that would need to be changed would
be the configuration files and file system links to point to the appropriate drivers for a given machine architecture. If
a machine was modified, either by accident or by system compromise, the changes made to the file system on that
machine could be determined and, if desired, corrected in a manner of minutes. Troubleshooting and repair of
problems became far simpler as it became clear that if a given problem occurred on one machine, and not on another
identical machine, then the problem must be caused by a user error or a hardware error. (Indeed, in one case, this
increase in troubleshooting capability and sensitivity enabled us to determine that a specific software routine used by
a Navigation program was in fact sensitive to the slight differences in the Arithmetic Logic Unit (ALU) used on the
CPU between two x86 processors!)

Further aiding the CM task, the central file server chosen, a Network Appliance NAS NFS file server, had a

number of features that helped improve the server-side of CM. In addition to the previously noted advantages of
using one centralized copy of a given file or software set, large amounts of disk were set aside for storage of
Navigation Flight Software. This would prove to be an exceptionally effective use of resources! It enabled the
storage of multiple versions of the software used on the Navigation computational environment. Now instead of
having to delete older versions of software, as had to be done to save space on the previous configuration of the
Cassini Navigation computational system, it was possible to maintain many different versions of software. With
carefully set up file system links and well configured software execution “PATH” statements, it became possible to
select any prior combination of software quickly. Although a well defined default setup used normally by the system
users would always point to a current, Configuration Managed software set. In addition, the Network Appliance file
server had a feature known as “snapshotting”24 that would, once configured, make a backup image of the file system
every few hours that would be archived for up to one month. Now both users and system administrators could revert
to numerous prior versions to recover a file, directory, or even a whole previous configuration of the file system. As
with the previous day-old RSYNC9 server “user proofing” of the file system, if important files or directories were
corrupted or deleted by accident, it was no longer necessary to refer to the backup tapes to recover prior versions. In
this setup however, instead of just maintaining a day-old copy, multiple versions would be maintained, going back
one month. This setup was further improved over the previous cruise configuration in that the Network Appliance

American Institute of Aeronautics and Astronautics

092407

14

file system used clever mechanisms in the file system designed to implement these “snapshots” so that they would
only take up a fraction of the disk space used by the RSYNC server. Indeed, instead of a full copy of the file system,
taking up twice the total space of the single copy, only the changes to the file system between the older and newer
versions of a file were saved. An analysis of overhead on the Navigation computational environment shows that on
quiet file systems with few changes these “snapshots” could occupy less than 1% of the total file system space used.

B. Fault Tolerance
The second of these general principles, that of integrating fault tolerance into the underlying system design,

would also be greatly improved over the Launch and Cruise implementations of the Navigation computational
environment. Instead of having to add fault tolerance to an already established design, fault tolerance concerns were
considered as part of the initial specifications and purchasing decisions. These fault-tolerance principles which the
system design was based around included modularity, where the system architecture is divided into separate
modules that, upon failure, can be replaced with a new module, fail-fast, where a system component will ether work
correctly or stop immediately, independent failure modes, in that if one module fails it does not affect the other
modules in the system, and redundancy and repair, where spare modules are configured so that when one module
fails a second can replace it almost instantly, while the first can be repaired or replaced off-line.25

Each of the PC workstations was identically configured. Superior quality and more reliable components (such as

SCSI or SAS drives in preference to IDE/SATA drives) as well as spare parts were purchased for components likely
to fail, such as disk drives. As the requirements for Quality of Service for MTTR were written from the view of the
whole Navigation computational system, the individual PC workstations were seen as functional units–if one failed,
it was considered, by design, to be easily replaceable with another unit, as each was a clone of the master “golden
image.” Furthermore, almost like in a RAID array, a spare office was set up with a spare workstation, so that in the
event of a failure of an individual workstation, users could simply go to the spare office and continue on an identical
workstation until the workstation in their own office was repaired or replaced. Like the “snapshots” discussed
previously, which also served to promote improved fault tolerance on the part of the users of the system, these spare
machines and office setup enabled the disentanglement of system failure from both a system administrator response
perspective and an event which prevents users from completing their tasks. Now a user could simply move their
work to another workspace and continue working, while the ever-busy system administrator could fix the machine at
their leisure. (It should be noted that in practice it was not quite so simple, as users would normally rather wait to
have their own machine fixed rather that move their work to a separate office. However, it did serve as a gauge to
the criticality of the user’s needs: if they needed to finish a task, they would use the spare office!)

Moreover, in terms of the server and peripheral systems such as the printers, similar approaches to fault tolerance

would also prove to have great utility. We purchased three identical x86 PC server class machines in a dual
processor configuration with twice the memory of the user’s workstations. These machines were configured with the
same image as the user workstation, once again aiding CM, with one server that was designated as the “prime”
server that would run processes that needed to run on a central server for the entire Cassini Navigation Ground Data
system. This includes services such as processes to gather and store, or even broadcast locally, certain spacecraft
data sets taken from real time and near-real time downlinked data from the spacecraft. This also comprised
centralized tools that aided in automating certain Navigation processes such as the Maneuver Automation software
set. The other two server machines would be configured to take over the role of the “prime” server in the event of a
failure. Users were trained to switch some of the critical user processes, where possible, from the “prime” server to
the “alternate” server in the event of a failure. In addition, peripheral systems were configured in a similarly
redundant manner. The Sun workstations that had been purchased to support Cassini Project Flight Operations
ground software (the majority of Flight Operations workstations used at JPL are currently from Sun Microsystems)
that could not be ported over to the Linux platform were, like the Linux PC workstations, cloned, and a spare Sun
workstation was placed in the spare office. In like manner, a primary network printer was set up for the workstation
users, as well as several redundant backup network printers.

American Institute of Aeronautics and Astronautics

092407

15

Behold, the fool saith, “Put not all thine eggs in the one basket” – which is but a manner of saying “Scatter your money
and your attention”; but the wise man saith, “Put all your eggs in the one basket and-watch that basket!”
 -Puddin’head Wilson’s Calendar, as quoted in Firewalls and Internet Security26

In the prior systems noted, fault tolerance was improved, much in the manner of a RAID disk array, by adding
additional functional units to a resource collective or pool to increase reliability, by ameliorating failure cases.
However, some systems in the Navigation computational environment could not be improved in this manner and so,
as seen in the quote above, other approaches to improving fault tolerance needed to be considered. Functionally, the
most significant point of failure in the Navigation computational environment was the central NFS file server.
Indeed, this was one of the significant drawbacks to the classic “star” architecture: the central server was a critical
component without which the rest of the configuration would probably not function. There were several ways to
mitigate this risk, ranging from making changes to the client end nodes (the workstations and servers in the Cassini
Navigation example) that would permit the clients to survive for a length of time without the central server (which
however would move the architecture design to a more peer-to-peer configuration that could play havoc with CM) to
improvements to the central server. As considered in the quote above, the second option was taken in the Navigation
environment. Due to the complexity of the central file server, obtaining meaningful reliability metrics would prove
impractical, however a similar setup by Santonja, Molero, Alonso, Serrano, and Gil, utilizing a RAID-5,
configuration, although not an identical configuration, would provide guidance and approximation of the reliability
improvement achieved by differing components of such a multiple-redundant setup (they consider not only the usual
concerns about disk failure, but also evaluate failure rates of support equipment such as controllers, cabling, power
supplies, and even the time it takes for spare disks to be shipped from the manufacturer and replace failed units).27
As noted before, to fulfill these high availability requirements, a high-end Network Appliance NAS NFS server was
purchased. This multiple-redundant system had dual redundant power supplies (tied into different electrical circuits)
on each of its subcomponent systems (network interface head and multiple disk trays) with three multiple redundant
network cards (in three different ports) configured as a hot-hot-warm backup of one another (in the event of a failure
of one of the network ports one of the other two continue to serve data at a degraded capability). This system served
data from several disk shelves containing more than fifty fiber channel disks, with dual redundant connections to
dual redundant controllers, configured as part of a modified RAID-4 disk array. Every component, except the whole
system itself, had at least dual, or n+1 redundant components. This system had mechanisms for automatically
(without human intervention) swapping failed components (such as disks) out with working components from a
spare pool. To improve further the robustness of the Navigation environment, a RAID array from a different
manufacturer (deliberately, to avoid possible unknown faults with Network Appliance) was attached to one of the
spare servers that behaved in the same manner as in the Launch and Cruise configuration, in that RSYNC was used
to backup the central file server every night.

From our considerations of fault tolerance we have had to utilize empirical approaches based on prior experience

to achieve our requirements for Quality of Service and MTTR. Although approaches for improvements to reliability
are clearly understood, it can be difficult even under simple, limited cases, without artificial constraints on the
system, to analyze system dependability and derive quantifiable metrics for system evaluation.28 This system design
sought to minimize single points of failure and ameliorate those points that could not be eliminated. The approach is
to do all that is possible within the budgetary and time constraints available, and then test and examine the empirical
results to see if they meet the established QoS and MTTR metrics requirements. If the system, by trial and error,
does not perform up to the required values, parameters are examined and modified to bring the system within
required values. Indeed, given enough resources, how far one chooses to go to evaluate and then improve system
reliability in such efforts are almost always due to the limits of time and money! To illustrate this point, consider the
far end of the spectrum, where QoS requirements would be very high and there would be virtually no limit on
resources (with virtually unlimited budget and schedule freedom). Yeh provides us with such an example when he
describes the flight avionics systems, such as the Primary Flight Control System found on the Boeing 777, that
achieve ultra high reliability metrics and had enormous design resources in terms of budget and time. The system
portrays a highly available, highly redundant, system used by the fly-by-wire avionics controls, that is a Triple
Modular Redundant (TMR) system (usually the highest order of redundant design with three redundant components
for each single point of failure) providing QoS metrics (required for a commercial aircraft) specifying a rate of
failure of the flight controls of less than 1.0x10-11 per flight hour. To obtain these failure metrics required programs

American Institute of Aeronautics and Astronautics

092407

16

of trade-off design study, analysis and simulation of failure modes, 20,000 lab-hours, and 3,800 flight-hours of flight
testing as part of the evaluation process! 29

C. Security
The problem becomes far more acute when one considers the possibility, not of random chance, but of intelligent

actors as a failure mode. Considering security as a measure of reliability does provide the benefit that systems that
are hardened to be fault-tolerant against intelligent actors will often prove robust against numerous “natural” failures
as well. Security design takes on several principles that have similarities to architecture in that the strength of a
system can often be improved, not by what one adds, but by what one takes away. As noted above, secure systems
are considered, not as a single defensive stronghold or chokepoint, but as a series of overlapping defenses, one after
the other, much like other fault-tolerant multiple-redundant systems, characterized as “defense in depth.”26 This
approach is based on the idea of likening security to a series of overlapping walls, much like World War I trench
warfare or a Medieval castle-in that one presents so many barriers to entry that a hostile adversary will choose to
pick a less well defended target. Cheswick, Bellovin, and Rubin characterize this approach in that “…we use a
restricted meaning for the word ‘secure’ when applied to a host. There is no such thing as absolute security. Whether
a host is penetrated depends on the time, money, and risk an attacker is willing to spend, compared to the time,
money and diligence we are willing to commit to defending the host.” 30

The security design of the Navigation computational environment is based around the cornerstone security

principles of Confidentiality, Integrity, and Availability (CIA). These principles define the key concerns in securing
a system, not in terms of specific technique or subsystem protected, but in terms of what things about the
computational environment need protecting (i.e., if one considers a bank vault’s security, the concern was for what
needs protection-the contents of the bank vault-not the design of the bank vault). Confidentiality concerns the
concealment of resources or information, much like the oft-repeated military principle of “need to know,” Integrity
is concerned with preventing unauthorized changes to the system, and Availability is the concern that an unavailable
system can be as bad or worse than no system at all.31

 For the Navigation computational environment these traits manifest in a different manner than as seen in

military or financial systems. While Confidentiality is extremely critical in military computational systems (in some
cases destruction of the system is more desirable than the unauthorized release of information), and of high priority
for financial systems (where customer data is not only a crucial part of business operations, but strong legal
regulations also come into play for control of consumer information), it is less critical in the context of the
Navigation computational environment. Confidential information for the Navigation computational environment
includes the (very important) password databases and password authentication system, used for system access as
well as detailed information on system and network configuration (which could be used by an intelligent adversary
to subvert security). As an example of such information and the importance of Confidentiality as a baseline
configuration, the naming of individual nodes can be seen to be an important part of Confidentiality – because host
names may reveal a great deal of information about the underlying network design.32 For example, consider the
hostname “casnfs3,” which relays the immediate information that the machine is a Cassini server, running NFS, and
that there are at least two other Cassini NFS servers. This is a strong argument for individualized but non-
informative host names.§§ Another important part of Confidentiality is concerned with the control of information
ether critical to mission operations or which has not been cleared for public release (although we are a public
civilian mission, access to some data sets are restricted).

Integrity continues to be a very crucial trait in the Navigational computational environment, as unauthorized or

improper modification of the system could lead to very serious problems. Integrity can be seen as being broken
down into two separate subcategories, that of prevention mechanisms (which comprises the gamut of the security
configuration of a system) serving to deter unwanted intrusion by means of “defense in depth,” and detection
mechanisms, in which after-the-fact systems determine when system integrity has been compromised. Detection

§§ The lead author can recommend that a number of Science Fiction and Fantasy series provide a wealth of

objects and characters that serve as effective host names. In addition, D. Libes’s “RFC 1178 –choosing a name for
your computer” can serve as excellent guidance.32

American Institute of Aeronautics and Astronautics

092407

17

systems on the Navigation system include tools such as programs that monitor logs from the Navigation computer
systems. Other tools served to validate the integrity of a file system cryptographically, looking to observe what
changes have occurred since a last known “good” configuration, such as the SYSTEMIMAGER installer mentioned
above, and the TRIPWIRE33 cryptographic file system integrity checker. Finally, a locally developed real time log
monitoring system provides immediate detection of anomalous system faults (whether hardware and operating
system related or caused by unwanted intrusion).

Availability in the Navigation computational system, coupled with the reliability constraints from concerns about

fault tolerance, had the additional concern that someone might deliberately try to deny access to data sets or a
system service. The mechanisms used to improve reliability, such as redundant units, resilient components, and
multiple-redundant systems, provided some protection against attempts to subvert availability, but further protection
would require additional changes to the system design. Operating system configurations for systems such as
networking and network file services were radically modified to increase memory pools, counters, and
communication timing in an effort to prevent attempts to launch Denial of Service (DOS) attacks against the
Navigation computational environment. In addition, many unsafe toolsets were either removed or stripped of the
privileges necessary to be used in a hostile manner on the Navigation computational environment. Furthermore,
many files and directories (especially system files and directories) were restricted to a “read-only” state, to even
further defend against unwanted modification, so that even if flaws were found and utilized in the security setup, a
penetration would not provide sufficient access to the system to make changes that would affect system availability.

While the concepts in CIA capture useful concerns regarding what was in need of protection in the Navigational

computational environment, the opposite side of such concerns, considering security as an aspect of reliability,
would prove useful to encapsulate these concerns in an approach for general hardening of the system against
external intelligent actors (i.e. going back to the example used before, this focus is on how the bank vault will
protect its contents). Cheswick, Bellovin and Rubin34 offer an excellent summation of the process of hardening a
host against outside attack for webservers and other Internet information servers, to the point where they render it
very difficult to break into the machine without direct physical access. This level of concern and effort is similar to
the design goals for the Navigation computational environment. They remark, “It is not that difficult to make a
specific host highly resistant to anonymous attack from the Internet, The trick is to have that host remain useful.”35
Likewise the Navigation computational environment is designed with “defense in depth” as a paradigm, in that
should an attacker get past the Firewall, they will encounter a very hostile network of layered defenses to make any
further progress futile. As noted by Cheswick, Bellovin, and Rubin, the difficulty comes in securing such a system
while keeping it functional for legitimate users. This process of external hardening, as noted above, had principles
with similarities to architecture in that the strength of a system can often times be improved, not by what one adds,
but by what one takes away. Very secure systems can be constructed by minimizing a system configuration, but
such systems are not generally appropriate for a “normal” user population. (E.g. the removal of the X-Windows
system and associated window managers can be clearly seen to improve the security posture of a machine, but few
users would desire to interact with a local machine over a terminal connection.) In the Navigation computational
environment, the system hardening process involved the characterization of what services and activities the local
user population either needed to complete their Navigation Operation critical tasks (e.g. the successful function of
mission critical Flight Software and delivery of Operations data sets to appropriate parties), or what the user
population thought was necessary for completion of their job role (e.g. functional compilers, formatting and
visualization tools, editors, viewers and third party software sets such as MATLAB), or what they believed the
system would not be useful without such a capability (CD and DVD writing capability, and the ability to mount CDs
and DVDs in a secure manner without system administrative assistance, as well as X-Windows). With this
characterization, a clear delineation between what actions a user would be expected to perform and what actions a
user would never be expected to perform was drawn. From this characterization, software sets and privileges a user
was never expected to need were removed from the system image, and restrictions were put in place so that users
would have difficulty in performing anomalous actions. As noted above, a preliminary effort during Cruise served as
a useful prototype for this system hardening activity.13

From this prototype, seven steps could be categorized as a part of the system hardening process for these Linux
systems after installation and patching:

American Institute of Aeronautics and Astronautics

092407

18

1. Shutdown of all unnecessary network services
This includes any services supported by INETD or XINETD – there should be no services that
INETD/XINETD should support on a secure system (while there may be some reason to use services such as
ftp, finger or one of the other “legacy” services in INETD/XINETD, there is no call for the server daemons to
be enabled on a secure machine). With some effort it became possible to strip the system down to where only
SSH and a handful of other services were running.

2. Configuration of the network stack to be robust against numerous Denial of Service (DOS) attacks

This was accomplished by modifying the kernel network configuration files such as “/etc/sysctl.conf” to set
default settings to much higher values to disable the resource exhaustion techniques utilized by numerous
DOS attacks.

3. Shutdown of all unnecessary system services

As was done with the network services in the first stage, all unnecessary system services were shut off.

4. Local and network file systems were reviewed and restrictive permissions were set up

File systems such as “/usr/local” had the most restrictive permissions possible, such as read-only access.
Removable media (CD/DVD/USB drives) mounts were set up so that they would not support devices or
setUID and setGID programs (which could be used to circumvent system security and give the user elevated
privileges).

5. The file system was scanned, looking for files and directories that had poor permission settings

World writable files and directories were minimized. The set of setUID and setGID executables was
minimized to a very limited and well-defined list.

6. Logging was set up

The system was set up to save log files, and, additionally, changes to the system were made to transfer them
to a remote log server for storage and analysis.

7. Finally, the seventh stage involved the deployment of a customized host-based firewall

This further restricted access to only a few limited TCP/IP TCP ports. The machine could make a few
connections, such as SSH, but otherwise would not respond to any network traffic, including the venerable
network tool PING.

These machines were still useful to the users of the Navigation computational environment, but both internally and
externally they had been hardened against system compromise by hostile adversaries. Once this effort was
completed, the system was evaluated and fingerprinted using tools such as TRIPWIRE and then the
SYSTEMIMAGER software was used to take a “golden image” of the machine and load the image on the install
server for further use.

A mechanism for deriving metrics to evaluate the security level of a machine was a necessary part of this effort.

Fortunately, a number of tools exist to evaluate a machine’s internal and external defenses. A number of tools were
selected to assist in this effort, but other tools may make more sense in other environments. To conduct external
network scans of the machine, industry standard network scanning tools such as ISS (Internet Security Systems)36,38
and NESSUS37,38 determined the open ports on the system, with the custom firewall in an up and down
configuration (to examine differing layers of the network-based defenses). Using differing approaches, each of these
tools determined what ports on the system would respond, and then would attempt to determine if the software
listening on these ports was vulnerable to a catalog of hacking techniques. After these results were generated any
problematic results were corrected and the scans run again until a system with a minimum set of open external holes
was achieved.

In a similar manner, an internal host scanner from the Center for Internet Security (CIS)39 was chosen to perform

scans of the internal defenses of the machine. CISscan had three significant advantages which made it a clear choice
for this effort. First, it had a consistent set of metrics for evaluating host security on a variety of operating system

American Institute of Aeronautics and Astronautics

092407

19

platforms, which enabled comparisons between differing machines, to be made. Second, CISscan represented an
effort to develop an industry standard “best practices” series of guidelines for system security based around a
consistent set of metrics, with the CISscan tool used to check a given system against such guidelines. Third, it was
also very well documented, so that the security implications of each tested system component was well understood
and could be evaluated against the requirements of the system. With this too, although its metrics were somewhat
subjective, it was possible to establish a baseline security level, and ensure that patching and operating system
changes continued to meet those metrics.

D. Human Factors
From these considerations of Security, Fault-Tolerance and Configuration Management a more general principle

was derived that also could be applied to the support of this well configured system. Using ideas gathered from
Configuration Management, scheduling and implementation of software patching, operating system updates and
hardware upgrades was tightly managed. During Saturn Tour Operations, the system was expected, as noted above,
to function 24x7, with less than 2-3 hours of unplanned downtime per year. While it was possible to bring down
redundant components of the system, such as individual servers, workstations, or printers, the whole system was not
to be brought down except under the most extreme cases. Even bringing down redundant components had to be
scheduled for time periods where no significant Spacecraft Navigation Operations would be underway, as the
continued smooth functioning of the Navigation computational environment was considered crucial to mission
success. These time periods of critical activity and then relative calm were determined by the Spacecraft mission
sequence and the motions of Saturn, Titan, and the numerous smaller moons and moonlets of the Saturnian system.
The times of peak activity and calm were not tied into the 9-5 regular work day schedule or even the Monday
through Friday work week schedule. Sometimes it was possible to perform major system maintenance on a Monday
afternoon, while the previous weekend had seen many Navigation engineers working until the early morning hours
of Sunday to handle a particular critical event. (Indeed it was a bit of a running joke that one of the unwritten
requirements of the mission, as implemented by a few particular scheduling planners, was to try and eliminate all of
the JPL scheduled holidays!)

Maintenance and emergency repair operations were designed, as noted above, with fault tolerance as a guiding

design principle. Another key consideration, observed from Launch and Cruise operations, was ease of restoration in
the event of a critical situation. As system administrators are well familiar, it is in a crisis one appreciates a well
designed recovery procedure, and conversely is the worst time to deal with a confusing, overly complicated setup.
This design paradigm was a central component in the design of numerous components of the computational system.
As noted in the discussion on fault tolerance, a spare office and several spare components, including a server and
disk array comprising a day-old copy of the entire primary file server were configured as hot backups of the primary
computational environment. In the event of emergency, the backup server with the disk array attached could be
moved to a different location and function as a stand-alone copy of the entire Navigation computational
environment. During the failure of a user workstation, users should be able to resume work using the spare computer
systems without even having to involve the system administrators. Under such a setup the restoration of a functional
configuration of the Navigational computer system should be possible within the Quality of Service MTTR
requirements in all but the most catastrophic failure cases. In the event of an emergency where the primary fileserver
would have to be restored from backup tapes (consider just how many components would have to fail in a line to
necessitate such an event!), such tapes were comprised of clearly labeled “dump archive format” tapes representing
level-0 backups of the file system. In other words, the backup tapes are configured in a format that can be read on
almost any Unix or Linux system, and that only one tape, or sequence of tapes, would have to be read for a full
recovery of a file system. Most system components are interchangeable, and even if the spare parts supply was
exhausted, functional workstations could be scavenged from spare workstations. Moreover, with the
SYSTEMIMAGER server in use, in the event of a serious configuration problem on a workstation or server, a
“known good” copy could simply be re-installed from the server in a manner of minutes–often faster than the
traditional troubleshooting and repair process would take. With this approach of including the system administrator
as part of the recovery process, and considering the means to make the recovery process as easy and as rapid as
possible, the system administration staff became a central part of the QoS guarantee for the system.

American Institute of Aeronautics and Astronautics

092407

21

• System administrators would be kept on the same sleep schedule. Avoiding the “jet-lag” effects of a
widely divergent sleep schedule would help a great deal to improve the tolerability of a difficult schedule.
(As seen above, this could induce interesting schedule divisions.)

• Wherever possible, shifts would be kept to under ten hours in duration.

These approaches, along with some flexibility on the part of the systems administrators, helped a small support staff
provide coverage for hundreds of critical shifts over the course of the prime mission, often at highly unusual times
and days and dates.

V. Observations and Lessons Learned
In such an effort, a number of caveats, miscellaneous points of wisdom and foundational ideas will emerge.

Although not seminal considerations, some observations may prove useful in the design of future systems of this
scale. Many of these are well known System Administrator proverbs. As with all such injunctions, your mileage
may vary.

1. “Disks are cheap.”
Even in 1996 the cost of disk storage was much, much cheaper than the System Administrator and
Navigation Engineer time necessary to work around insufficient file system space, or recover a file from a
backup tape that could have had an online backup. Working through this problem proved to be the single
greatest improvement to system reliability accomplished throughout the mission.

2. “Buy as much disk as you can afford.”

After reviewing the painstakingly gathered capacity requirements for disk storage, the lead author (who
purposely put in a large margin for each of the Navigation subsystems) is struck by how wildly inaccurate the
estimates for file system actually were. In some cases file system usage is off by twenty times the estimated
value in 2002. This is not meant however as an accusation of waste or inefficiency, for new techniques and
software sets have come into use that were difficult to foresee as part of the estimate made for the functional
requirements. It would have been more cost effective to have simply skipped that part of the requirements
gathering and used the money saved to buy more disk. (It is also somewhat disturbing to consider that the
Cassini Navigation team managed to cross most of the solar system using less than 36 GB of disk for the
entire Navigation team, where now one Navigation subgroup has problems fitting into 2 TB of disk storage
for its day-to-day-operations.)

3. “Buy the best disk you can afford.”

SCSI and SAS drives still provide a much greater performance and lifespan than commodity SATA (or older
disks). RAID arrays further improve performance and reliability, and further differentiate on such metrics, as
well as support options, by cost. As noted, it is sometimes ok to put all of one’s eggs in one basket, but it is
reckless to not make the appropriate investments in that basket. This author cannot count the number of times
he discovered a disk had failed in the primary disk array by coming into work and seeing a package
containing a replacement disk sitting on his chair. This is a vast improvement over frantic phone calls made
by Navigation Engineers at 2 am.

4. “Make your life as easy as possible in the event of a crisis.”

Complicated failover and backup disaster recovery procedures will not be of help during a crisis when the
pressure is on and users are screaming. Recovery procedures should be simple, must be tested, and must
work as expected.

5. “Never delete anything as a System Administrator, for that is what users do… .”

This does go hand in hand with the first three points. The lead author has become so enamored of version
control that he keeps multiple versions of software, toolsets and configurations around. The time saved in not
having to recreate a prior configuration for numerous classes of questions and problems is almost magical.

American Institute of Aeronautics and Astronautics

092407

22

(Besides, the System Administrator area on my servers is the only area that is using remotely close to the
initial functional requirement estimates for file system storage!) Furthermore, if a user asks to have
something deleted it is likely that a restoration from a backup is soon to follow. This request is often due to a
permission problem, or because they do not want to take responsibility for deleting files owned by other
users. Instead of possibly creating a bigger problem, find out why they are asking you to do their dirty work.
It may prove instructive for both you and the user.

6. “Repair failures consistently and regularly.”

This is an issue that can occur in systems with multiple redundant functional units and busy System
Administration staff. Although the system can tolerate numerous failures before problems lead to work
stoppages, it is important that the failure of individual components - no matter how low a priority of the
component - be repaired in a regular manner. Otherwise one can find oneself spending a whole afternoon
running around fixing trivial printing problems when one discovers that the redundant spare printers were
down for repairs as well.

7. “Have an off-site Disaster Recovery plan.”

The seventh point is an issue that has been a concern since the beginning of the Cassini Mission. As
mentioned above, during the Launch phase of the mission, an extensive, and expensive Disaster Recovery
plan was implemented that had an off site Emergency Operations Center located at the Goldstone
Communications complex. After launch, support of that effort was terminated due to lack of funding. For a
true Disaster Recovery capability, there is no substitute for such an off-site capability. As always budget
constraints serve as a practical limit to the design of fault tolerant systems, for, just as not all children get to
grow up to be astronauts, as noted above, not all computer systems can be designed to have the fault tolerant
capability and reliability of the Boeing 777 Fight Avionics system. This is an understood part of risk
management. However, such DR capability (to be able to tolerate a site-wide failure) is an important
consideration for fault tolerant and reliability design. Although considering the late phase of the primary
mission it is very unlikely that such a capability will be restored, it is strongly recommended that future
efforts of this size consider such a Disaster Recovery capability.

8. “Sometimes it is ok to rely on someone else.”

Although their were some concerns with our partnership with the Flight Operations Network Engineering
organization, that partnership has provided a fault tolerant, high speed network for many years now.
Although this author continues to maintain that, with adequate funding, such services could be better
provided in house, it is clear that the Cassini Navigation computational environment has greatly benefited
from the services provided by our peers.

9. “In Flight Operations there is no such word as ‘surrender’…”

Finally, the importance of the right attitude of the System Administration staff can not be overemphasized.
The stubborn refusal to accept failure is vital for people who serve in this role. This serves as a reminder of
both the stress and the reason why people want to take up the compelling challenge of Flight Operations
work. Much depends on the right focus of the people who serve to keep these critical systems running that fly
the spacecraft. They must be willing to do whatever is necessary, by any means necessary, as former NASA
Flight Director Chris Kraft once defined, to “…take any action necessary for mission success.”41 Flight
Director Peter Frank codified what this attitude entails, “To always be aware that suddenly and unexpectedly
we may find ourselves in a role where our performance has ultimate consequences. To recognize that the
greatest error is not to have tried and failed, but that in trying, we did not give it our best effort.”42

VI. Conclusion
We have described the efforts to maintain, improve and formally overhaul the Cassini Navigation Ground Data

System. We have considered such efforts over the history of the mission, from the initial efforts to derive a launch-
ready configuration, through a system of gradual improvements to the Navigation computational environment over
the Cruise portion of the mission, to a culmination in the formal specification, design and implementation
undertaken to support Saturn Tour Operations. As a part of this effort a number of design constraints were

American Institute of Aeronautics and Astronautics

092407

23

considered, some derived from Navigation Orbital Tour requirements on system performance and operation, and
some representing general system design paradigms considered as a result of lessons learned during Cruise. It is
hoped that such efforts will find utility with other organizations and missions that may be facing similar
computational challenges.

Appendix
As a part of this discussion, after considering the operational constraints and system requirements that have been

evaluated, it may be of some interest to examine an overview of the current configuration of the Cassini Navigation
Ground Data system. Figure 6 describes the general layout of the Navigation computer environment. While not all
of these systems were purchased as part of the initial overhaul of the Navigation computational environment
described above, they were purchased as part of a gradual program of hardware upgrades over the course of the
mission.

CURRENT CONFIGURATION:

Red-Hat Linux PC Workstations and Servers:
• 29 x High End PC-DELL, P4, 3.06-3.80GHz, 1.5GB RAM.
• 4 x Low End PC-DELL, P4, 2.66GHz, 1GB RAM.
• 3 x PC Server-DELL, dual Xeon, 2.8GHz, 3GB RAM.
• 1 x PC Server-DELL, dual Xeon, 3.7GHz, 2GB RAM.

Sun Solaris Workstations (AMMOS/SFOC Software Support):
• 7 x Sun Ultra 10, 440 MHz UltraSparc II, 1 GB RAM.

Other Server Hardware:
•Network Appliance FAS 3020 8TB (mirrored) Network Disk Array

Cassini Navigation Operations Network Backbone:
• 1000 BT (copper) Ethernet connectivity, 36 GB/sec total.

How Cassini Hardware addresses Navigation Functional Requirements:

• All Linux systems have the performance to handle all Navigation tasks
 - but not all Flight software has been ported. (allowed in FRD)

• Estimates indicate that performance close to ten times (10x) Cruise.

• Classic “Star” configuration, with multiple “hot” redundant systems and
 full mirroring of all Server data, as well as cloned configurations provide
 highly redundant and available environment.

• 8TB mirrored NetApp FAS 3020 disk array, 1000BT (Gigabit)
 networking to each system, provide capacity required for Tour.

• Archival: A DVD/CD writing capability is available (8.5 GB
 max capacity) as well as unlimited tape archival through EOM.

American Institute of Aeronautics and Astronautics

092407

25

6 Morris, James H. , Satyanarayanan, Mahadev, Conner, Michael H., Howard, John H., Rosenthal, David S. H., and Smith,

F. Donelson, “Andrew: A Distributed Personal Computing Environment”, Communications of the ACM, Vol. 29, No. 3 March
1986, pp. 188-191

7 Coulouris, George, Dollimore, Jean, and Kindberg, Tim, Distributed Systems, Concepts and Design 4th Ed., Addison-

Wesley, New York, 2005, p. 519.

8 Kranz, Gene, Failure is not an option: mission control from Mercury to Apollo 13 and beyond, Berkley Publishing Group,

New York, 2003, p. 307.

9 “rsync” URL:http://www.samba.org/rsync [cited 24 March 2008]

10 Cheswick, William R. and Bellovin, Steven M., Firewalls and Internet Security, Repelling the Wily Hacker, Addison-

Wesley, Reading, MA, 1994, pp. 49-131.

11 Chapman, Brent D. and Zwicky, Elizabeth P., Building Internet Firewalls, O’Reilly & Associates Inc. , Cambridge, 1995

pp. 55-375.

12 “Ignite-UX Home” URL: http://docs.hp.com/en/IUX [cited 24 March 2008].

13 Beswick, R. M., “How to Build and Secure a General Purpose ‘Internet Ready’ Workstation”, The SANS Institute, URL:

http://www.giac.org/certified_professionals/practicals/gcux/89.php [cited 20 March 2008].

14 Cheswick, William R., Bellovin, Steven M., and Rubin, Aviel D., Firewalls and Internet Security, 2nd Ed., Addison-

Wesley, New York, 2003, pp. 4, 10-14.

15 Moore, Gordon E., “Cramming more components onto integrated circuits”, Electronics, Vol. 38, No. 8, 19 April 1965, pp.

114-117.

16 Intel, “Excerpts from A Conversation with Gordon Moore: Moore’s Law”, [Video Transcript], 2005 Intel Corporation,

URL: ftp://download.intel.com/museum/Moores_Law/Video-Transcripts/Excepts_A_Conversation_with_Gordon_Moore.pdf
[cited 30 March 2008].

17 Walter, Chip, “Kryder’s law”, Scientific American, August 2005, pp. 32-33.

18 Beswick, R. M., “Cassini Navigation Hardware Requirements”, JPL IOM 312.D/007-2002, Jet Propulsion

Laboraory/NASA, Pasadena, CA 30 September 2002.

19 “SPEC CPU2000 V1.3”, Standard Performance Evaluation Corporation, 7 June 2007, URL: http://www.spec.org/cpu/

[cited 30 March 2008]

20 Beswick, R. M., “Initial Product Evaluation for Cassini Navigation Upgrades”, JPL IOM 312.D/008-2002, Jet Propulsion

Laboraory/NASA, Pasadena, CA 24 November 2002.

21 Wikipedia, “Peer to Peer Network” [online encyclopedia] URL: http://upload.wikimedia.org/wikipedia/commons/thumb

/3/3f/P2P-network.svg/150px-P2P-network.svg.png

22 Wikipedia, “Server based Network” [online encyclopedia] URL: http://upload.wikimedia.org/wikipedia/commons/thumb

/f/fb/Server-based-network.svg/150px-Server-based-network.svg.png

23 “Main Page – SystemImager” URL: http://wiki.systemimager.org [cited 24 March 2008].

24 Network Appliance, “Network Appliance Snapshot Technology”, 2004 Network Appliance Incorporated, URL:

http://media.netapp.com/documents/snapshot.pdf [cited 30 March 2008].

American Institute of Aeronautics and Astronautics

092407

26

25 Gray, Jim and Siewiorek, Daniel P., “High-Availability Computer systems”, IEEE Computer Society, Los Alamitos, CA,

September 1991, p. 42.

26 Cheswick, William R., Bellovin, Steven M., and Rubin, Aviel D., Firewalls and Internet Security, 2nd Ed., Addison-

Wesley, New York, 2003, p. 279.

27 Dal Cin, Mario, Meadows, Catherine, Sanders, William H. (eds). Dependable Computing for Critical Applications 6, IEEE

Computer Society, Los Alamitos, CA, 1998, pp. 249-270.

28 Iyer, Ravishankar K., Tsai, Timothy K., and Jewitt, Doug, “An Approach towards Benchmarking of Fault-Tolerant

Commercial Systems”, IEEE Proceedings of FCTS-26, 1996, pp. 314-323.

29 Iyer, Ravishankar K., Morganti, Michele, Fuchs, W. Kent, Gligor, Virgil (eds). Dependable Computing for Critical

Applications 5, IEEE Computer Society, Los Alamitos, CA, 1998, pp. 3-18.

30 Cheswick, Bellovin, Rubin, p. 259.

31 Bishop, Matt, Computer Security, Art and Science, Addison-Wesley, New York, 2003, pp. 3-6.

32 Libes, D. “RFC 1178 – Choosing a name for your computer” August 1990.
URL: http://www.faqs.org/rfcs/rfc1178.html [cited 27 March 2008].

33 “Tripwire” URL: http://www.tripwire.com [cited 24 March 2008].

34 Cheswick, Bellovin, Rubin, pp. 259-277.

35 Cheswick, Bellovin, Runin, p. 260.

36 ISS (Internet Security Systems), URL: http://www.iss.net/ [cited 24 March 2008].

37 Skoudis, Ed., with Liston, Tom, Counter Hack Reloaded, A Step-by-Step Guide to Computer Attacks and Effective

Defenses, Prentice Hall, New York, 2006, pp. 310-319.

38 NESSUS, the Network Vulnerability Scanner, URL: http://www.nessus.org/ [cited 24 March 2008].

39 The Center for Internet Security, URL: http://www.cisecurity .org [cited 25 March 2008]

40 “Ol’ Lonely” [the Maytag repairman] URL: http://en.wikipedia.org/wiki/Maytag [cited 25 March 2008]

41 Kranz, Gene, p. 123.

42 Kranz, Gene, p. 393.

Copyright 2008 © California Institute of Technology. Government sponsorship acknowledged.

