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Abstract—Over the past several years the Center for 
Evolutionary Computation and Automated Design at the Jet 
Propulsion Laboratory has developed a technique based on 
Evolutionary Computational Methods (ECM) that allows 
for the automated optimization of complex computationally 
modeled systems.  An important application of this 
technique is for the identification of emergent behaviors in 
autonomous systems.  Mobility platforms such as rovers or 
airborne vehicles are now being designed with autonomous 
mission controllers that can find trajectories over a solution 
space that is larger than can reasonably be tested.  It is 
critical to identify control behaviors that are not predicted 
and can have surprising results (both good and bad).  These 
emergent behaviors need to be identified, characterized and 
either incorporated into or isolated from the acceptable range 
of control characteristics. We use cluster analysis of 
automatically retrieved solutions to identify isolated 
populations of solutions with divergent behaviors. 1 2 
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1. INTRODUCTION 
We will describe a methodology for employing evolutionary 
computational methods (ECM) to address the problem of 
identifying and characterizing emergent behavior in 
complex and incompletely specified autonomous systems.  
These types of systems have many examples in the 
aerospace community with applications in robotic mobility 
and path finding.  Unmanned land and air vehicles have 
complex controllers that can respond over a wide range of 
environmental variables that would otherwise require 
exhaustive testing and modeling in order to understand their 
modes of operation and operational safety requirements.  
There is a need to safely control intelligent, tele-operated or 
autonomous platforms and to predict autonomous 
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performance in non-deterministic, emergent behavior, and 
unscripted modes of operation. 

Autonomous systems are becoming increasingly capable of 
independent action in dynamic unpredictable environments, 
resulting in non-deterministic behaviors that may not have 
been apparent or anticipated by the tester or developer.  
Current capabilities and methodologies are insufficient to 
address testing of such complex systems operating in non-
deterministic or unscripted modes.  There is a need to 
predict how modifications may be produced by external 
stimuli or environmental changes, especially those that yield 
unacceptable and unpredictable outcomes that can be 
detrimental to the autonomous systems, humans, or test and 
evaluation systems.  ECM techniques can effectively search 
the space of possible behaviors to identify and characterize 
emergent behaviors that are unexpected or detrimental. 

2. BACKGROUND  
Over the past several years the Center for Evolutionary 
Computation and Automated Design at the Jet Propulsion 
Laboratory has developed a technique based on 
Evolutionary Computational Methods (ECM) that allows for 
the automated optimization of complex computationally 
modeled systems [1-4].  An important application of this 
technique is for robotic mobility such as the optimization of 
robotic arm path finding or in terrain path finding [1, 5].   

Evolutionary computation is a method that operates on a 
population of existing computational-based engineering 
models (or simulators) and competes their results using 
biologically inspired genetic operators on large parallel 
cluster computers.  We have demonstrated that complex 
engineering and science models can be automatically 
inverted by incorporating them into evolutionary 
frameworks and that these inversions have advantages over 
conventional searches by not requiring expert starting 
guesses (designs) and by running on large cluster computers 
with less overall computational time than conventional 
approaches [1,2,4].  The result is the ability to automatically 
find design optimizations and trades, and thereby greatly 
amplify the role of the system engineer.   

We have further applied these techniques to the automated 
retrieval of spectral signatures in data from terrestrial Earth-
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shine [6].  Part of this analysis was to characterize the 
degenerate behavior of automatically retrieved spectral 
solutions.  We automatically found a population of synthetic 
spectral solutions that matched the observed data.  We then 
determined how many of the solutions of synthetic spectra 
matched the real observational parameters associated with 
the data and if additional solutions exist in the population 
that match the observational spectrum, but use widely 
incorrect observational parameters. We used a cluster and 
principal components analysis to identify the populations of 
degenerate solutions [6,7]. 

These same evolutionary computational techniques for 
finding a population of solutions (in the case of trajectories 
for autonomous systems) and the clustering technique for 
characterizing the solution space can be applied to the 
identification of emergent behaviors.  These methods have a 
proven record of cost effectively discovering the optimum 
performance characteristics of incompletely specified 
systems over a wide range of environmental variables that 
would otherwise require exhaustive testing and modeling in 
order to understand their modes of operation and operational 
safety requirements [1,2,4].  This paper describes the 
architectural methodology of employing evolutionary 
computational methods for finding the range of likely 
operational behaviors of a complex autonomous system, and 
then identifying out-lying behaviors by using principle 
component clustering methods. 

3. EVOLUTIONARY COMPUTATIONAL METHOD  
The primary technology, which enables the Evolutionary 
Computational Method (ECM) to find optimal solutions in 
complex search spaces, derives from evolutionary 
algorithms such as the genetic algorithm and differential 
evolution [8, 9]. These methods take inspiration from 
biological processes, in particular from genetics, to define 
an iterative process that evolves a population of parameter 
sets to the global optimum. We have demonstrated the 
success of these methods for a wide variety of applications 
where the range of operational control must be explored, 
tested and optimized (robotic arm, rover, spacecraft 
trajectory) [1, 10, 11, 12]. 

Evolutionary Computational Methods operate on computer 
models or simulators.  An Autonomous Mission Controller 
(AMC) is one example of this, as is a Command and 
Control (C2) computer model.  Generally, for a given goal 
these models will generate an outcome (or response) based 
on several inputs.  For an AMC the outcome could be a 
trajectory or path of an autonomous system (rover), while 
the inputs would be terrain, obstacles, sensor inputs, etc.  
The goal might be to cross a field and arrive at a particular 
destination.  ECM creates a metric based on how well the 
goal is achieved.  This could be based on parameters such as 
minimized time, distance, fuel, visibility, data drop-outs, 
etc, or maximizing payload, terrain coverage, 
communication, etc.  These goals are weighted according to 

their importance and make up a metric called fitness.  In an 
optimized case we would be searching for the behavior of 
an autonomous system that maximizes the fitness.  ECM 
uses biologically inspired techniques that mimic the action 
of evolution and development in a population of solutions 
over many generations.  We use multiple copies of the AMC 
and run them on parallel processors.  By using a collection 
of randomly varying inputs we generate a population of 
initial solutions (e.g. trajectories or paths).  These solutions 
are individually evaluated for their fitness and competed 
against the entire set.  The highest fitness individuals are 
used to create a next generation of inputs and are again put 
through the process of random variation and selection.  This 
cycle is repeated until an optimum solution is discovered. 

We have demonstrated that the ECM technique is extremely 
effective at quickly finding not only individual best 
solutions, but also an entire collection of best solutions for 
all possible ranges of conditions.  The following are 
demonstrated features of applying ECM to a computer 
model (like an Autonomous Mission Controller): 

• Best solutions are found automatically with very 
efficient use of computer time. 

• No expert initial guesses or knowledge of the 
environment is required.  

• Genetic searches are very opportunistic and will 
explore non-traditional uses of resources to accomplish 
a goal (maximize objective fitness). 

• Optimum solutions are found for varying conditions, 
allowing the simple visualization of trade-offs for a 
range of requirements. 

• ECM returned solutions provide a best-case standard 
that can be used to test against actual AMC 
performance in computer or field environments. 

• Unexpected solutions can be identified and 
characterized as emergent behaviors. 

 
The metric, or objective function against which we measure 
the performance of the autonomous system Autonomous 
Mission Controller, is essentially determined from the 
optimum path in a given environment and for a given goal 
requirement. This complex optimization process consists of 
exploring a vast set of possible paths in parallel to converge 
toward an optimum. We have successfully demonstrated 
that the Evolutionary Computational Method automatically 
performs this task with high efficiency on distributed 
computing platforms such as multi-core processors currently 
available on commercial workstations.  An example of this 
path optimization is the application to robotic arm path 
finding [1].  Here, for the goal of finding the optimal 
collision-free and joint motion minimization path.  We used 
the JPL FIDO rover control algorithms (both on a 
computational rover simulation environment and on the 
actual rover) to test for path fitness.  Figure 1 shows an 
example of the multiple arms paths explored by ECM.   
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Figure 1:  The left two images are from the ECM for robotic arm control.  They are taken directly from the 
simulation environment that is used for testing the FIDO rover algorithms (same ECM object code running 
on rover as that in the simulation).  As can be seen, after three iterations the populations of possible paths 

are converging to multiple methods. The algorithm takes less than one second to determine an optimal safe 
path.  The right image shows an ECM arm deployment on the FIDO Rover. 

 

4. TECHNICAL APPROACH 
We used several of our ECM applications to demonstrate 
the ability to automatically generate multiple, high-fitness 
solutions to complex control problems [1].  The FIDO rover 
arm path finding application has demonstrated optimum 
path finding in a high degree of freedom environment.  
However, many of the ECM derived solutions will be high-
fitness but, not necessarily, the optimum.  To eliminate the 
sub-optimal solutions a set of non-dominated solutions are 
sorted that are the best solutions for a given set of input 
variables.  Non-dominated solutions are used to create a set 
pareto-optimal solutions that define the frontier of best 
solutions.   

For two dimensions of fitness (like propellant and flight 
time for the propulsion optimization problem), a line can be 
determined as the pareto-optimal front [11].  Occasionally, 
discontinuities exist in the front because of changes of 
control state.  An example would be changing the integer 
number of orbits required to gain a specified velocity, or 
reducing the propellant mass so that the launch vehicle can 
be one discrete size smaller.  Discretization of certain 
allowed states can cause discontinuities in the pareto-front.  
Identification of these discontinuities is difficult when high 
degrees of dimensions are involved in the fitness. These 
state changes are also important to identify emergent 
behaviors.  For this reason we use principal component 
analysis to define solution clustering.  The advantage of this 
technique is that the largest parameter differences are 
extracted first and deeper parameter searches can be easily 
performed.  Figure 2 shows the principal component 
clustering of solutions for the spectral retrieval problem [6]. 
  

 
 

Figure 2: Principal component plots of spectral retrieval 
solutions satisfying defined fitness requirement.  

Multiple discrete clusters indicate wide variance of 
acceptable solutions. 

Identification of emergent behaviors can be visualized using 
principal components analysis of the population of ECM 
derived solutions.   Clustering of solutions indicates that 
they have similar properties.  Outlying clusters indicate 
different paths to the same goal.  Examination of the 
parameters (or components) of outlying clusters can 
determine if it is emergent behavior and characterize 
whether it has advantages or disadvantages to the system.  
For the application to automated retrieval of spectra, we 
demonstrated that outlying solution states can be 
characterized by their principal components. 

For analysis and identification of emergent behavior in an 
autonomous mobility system we incorporate the control 
model, environmental model and goal requirements into an 
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