
 1

RAPID: Collaboration Results from Three NASA Centers
in Commanding/Monitoring Lunar Assets

R. Jay Torres
Jet Propulsion Laboratory,

California Institute of
Technology

4800 Oak Grove Drive
Pasadena, CA 91109

818-393-0037
Jay.Torres@jpl.nasa.gov

Mark Allan
NASA Ames Research

Center
Mail Stop 204-2

Moffett Field CA, 94035
650-604-0537

Mark.B.Allan@nasa.gov

Robert Hirsh
NASA Johnson Space

Center
2101 NASA Parkway
Houston, Texas 77058

765-532-8922
Robert.L.Hirsh@nasa.gov

Michael N. Wallick
Jet Propulsion Laboratory,

California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91109

818-393-0037
Michael.N.Wallick@jpl.nasa.gov

Abstract—Three NASA centers are working together to
address the challenge of operating robotic assets in support
of human exploration of the Moon12. This paper describes
the combined work to date of the Ames Research Center
(ARC), Jet Propulsion Laboratory (JPL) and Johnson Space
Center (JSC) on a common support framework to control
and monitor lunar robotic assets. We discuss how we have
addressed specific challenges including time-delayed
operations, and geographically distributed collaborative
monitoring and control, to build an effective architecture for
integrating a heterogeneous collection of robotic assets into
a common work. We describe the design of the Robot
Application Programming Interface Delegate (RAPID)
architecture that effectively addresses the problem of
interfacing a family of robots including the JSC Chariot,
ARC K-10 and JPL ATHLETE rovers. We report on
lessons learned from the June 2008 field test in which
RAPID was used to monitor and control all of these assets.
We conclude by discussing some future directions to extend
the RAPID architecture to add further support for NASA’s
lunar exploration program.

TABLE OF CONTENTS

1. INTRODUCTION ...1
2. RAPID PROTOCOL ..2
3. RAPID IMPLEMENTATION ..3
4. MOSES LAKE FIELD TRIAL ..8
5. CONCLUSIONS AND FUTURE WORK9
REFERENCES ..10
BIOGRAPHY ..10

1. INTRODUCTION
NASA’s initiative to return to the Moon has brought about
many interesting challenges to overcome. Multiple NASA
centers have been working on different robotic assets to aid
in this goal. Each center has different design strategies and
techniques. As a result, learning to manage all of the
different assets, or managing them at once can be quite

1
1 978-1-4244-2622-5/09/$25.00 ©2009 IEEE
2 IEEEAC paper #1307, Version 8, Updated 2008:11:02

complicated, as they will all have a different communication
structure and interaction interface. We address these issues
through our Robot Application Programming Interface
Delegate, or RAPID Project. This paper discusses the
development of the RAPID Protocol, a standard "language"
by which assets communicate; and the RAPID components:
1) RAPID Workbench, 2) RAPID Bridge, 3) RAPID
Middleware Components.

One of the greatest challenges is to be able to command and
monitor lunar robots developed at different NASA centers
via a single software tool. NASA’s Human Robotic Systems
project is integrating and testing several robotic assets
developed by different NASA centers. Each of these assets
was developed according to differing specifications. This
proposes a problem since each robot has its own: 1)
commands and messages 2) communication pipeline 3)
system architecture 4) commanding and monitoring tool.
RAPID was developed to address these issues. The RAPID
Workbench is a software tool that gives the ground operator
the ability to command and/or monitor lunar assets.

The goal of this paper is to present how obstacles were
overcome in order to implement and utilize the RAPID
Workbench. It describes the development, testing, and field
trial environments as far as getting the RAPID interface
implemented. Through the development of the RAPID
protocol each lunar asset can be monitored and commanded
via the RAPID workbench. The protocol has been designed
such that any tool integrating into the RAPID API can be
used to command and/or monitor any lunar asset.

In June 2008 teams from several NASA centers converged
at Moses Lake, on an off-road vehicle site in central
Washington State for a two-week field test to characterize
the performance of several candidate lunar surface robots.
The test team included robots from the Jet Propulsion
Laboratory (JPL) in Pasadena, California; Ames Research
Center (ARC) in Mountain View, California; and Johnson
Space Center (JSC) in Houston, Texas. Lessons learned
from the Moses Lake field test will be incorporated into the
evolving design of the lunar operations system, and will be
tested at subsequent field trials [2].

 2

There were many barriers that had to be overcome in order
to get a successful field trial. Even after those barriers were
broken, many lessons were learned from the experience such
that the issues should return in subsequent tests. The
barriers include but not limited to communication issues
between centers and coordination of developers between all
centers.

During the field trial, lunar robots and space suits (assets)
were commanded and monitored through RAPID. Figure 1-
1 displays the entire set of lunar assets at Moses Lake, WA.
The following is the list of lunar assets that, unless otherwise
noted, were commanded and monitored during the field trial:
1) 2 Astronaut Suits; monitored only (JSC) 2) The
ATHLETE robot (JPL) 3) The CHARIOT lunar vehicle
(JSC) 4) The K10 robots (ARC)

2. RAPID PROTOCOL
Motivation—The requirements of commanding and
monitoring lunar assets motivated the development of the
RAPID protocol.

The RAPID protocol arose from a previous iteration called
Astronaut Interface Device (AID). The AID interface was
used as a way for Astronauts to command and monitor
assets[5]. Figure 2-1 shows a screenshot of the AID
interface program. It was used in limited forms in previous
field trials. The evolution to RAPID was such that the
interface was more general and it also allowed for a more
feature rich capabilities.

Figure 2-1. AID Graphical User Interface

Requirements—The requirements for RAPID are as follows:

1) Multi-center communication

2) Asset control language agnostic

3) Real time remote communication

Multi-center communication—The system must be able to
monitor and command regardless of center/asset ownership,
for example a JSC asset should be controllable by a JPL
operator located either at the field trial or JPL.

Asset control language agnostic—The system must be able
to handle assets developed in different control languages.
The JPL assets are developed in JAVA, while the JSC and
Ames assets utilize C/C++.

Figure 1-1. Assets Family Portrait, Moses Lake, WA

 3

Ames K10 – The K10 robot’s native communication is
through the use of CORBA. This allowed for a seamless
integration with the RAPID middleware. Since it was also
in CORBA, the RAPID message types became a part of the
native language understood by the robots. The underlying
code was written in both JAVA and C++.

JSC Chariot – The Chariot vehicle utilizes sockets as its
main communication pipeline. Both the flight software and
the existing ground software was written in C++. The
design was to use the JAVA components of RAPID and
have it coexist with current CHARIOT software.

JSC Suits – The astronaut suits only sent telemetry status
information. To accomplish this, a RAPID bridge was
created that connected the suits to the RAPID pipeline.

JPL ATHLETE – The existing commanding and monitoring
tool used for ATHLETE is the ATHLETE Workbench [1].
The ATHLETE Workbench communicates in the
ATHLETE native language through the JMS and a direct
socket connection [2].

RAPID takes all these different types of communication
configuration and unifies them through the middleware and
RAPID command dictionary.

Real Time Remote Communication—This requirement
includes having a robust system with the following
specifications: 1) commands cannot be dropped 2) telemetry
from the asset can be dropped 3) time delay must be taken
into account.

An operator console called the Exploration Technology
Development Program Multi-Center Cockpit was developed
to perform remote operations [3]. The console is able to
send commands to the assets as well as monitor remote
telemetry. A monitoring station at JSC was also used to

display all asset real-time telemetry data simultaneously.
The station is discussed in Section 4 of this paper.

3. RAPID IMPLEMENTATION
The RAPID Workbench software, developed at JPL, is
meant to provide operators with a ground operations tool in
order to command and monitor multiple assets through
RAPID. The RAPID interface is collaboratively developed
across the three NASA centers.

The RAPID Workbench is based on an existing tool called
the ATHLETE Workbench. The ATHLETE Workbench is
used to command and monitor the ATHLETE robot. There
are two main differences between these software tools. The
first is that the ATHLETE Workbench contains many
ATHLETE specific features that are not required for generic
robot software. The second difference concerns the
messaging protocol used. The ATHLETE workbench
utilizes the Java Messaging System (JMS) since all of the
components communicating with the workbench are in the
Java programming language [2]. The RAPID workbench,
on the other hand, had to be designed to be language
independent. This gives the freedom for existing
components, written in languages other than Java, to be able
to be compatible with the RAPID workbench. The
Middleware Component section describes how CORBA was
used in the RAPID workbench to allow messaging between
different software. Figure 3-1 shows the diagram of the
RAPID Workbench and communication between the
different assets.

Message Set – The following the basic set of message types
that are implemented in the RAPID protocol.

1) Status – reports the power reserve of the asset as
well as information about the current task.

Figure 3-1 RAPID Connection Diagram

 4

2) Position Data – provides the location vector,
orientation, heading and velocity of the asset.

3) Joint Data – gives detailed information on the
robot’s current joint configuration if applicable to
the asset.

4) Picture Data – returns an image acquired by the
asset.

Command Set – The following is the set of commands that
all RAPID assets must implement, if appropriate for that
asset.

1) Get Status – returns one or more of the messages
above to indicate the current status of the asset.

2) Robot Move Commands – are the basic
commands to navigate the robot in a particular
direction, and stop when necessary. These
commands do not make sense for all assets, such as
the suits, and therefore do not need to be
implemented.

3) Robot Specific Commands – are commands that
are specific to a particular asset, such as placing a
robot’s joints into a particular configuration.

4) Camera Commands – instructs the camera to
point in a given direction, take a picture, etc.; and
send the acquired image back through picture
message above. These commands only need to be
implemented when the asset contains a camera.

Middleware Layer— The middleware component used for
RAPID for the purpose of the June 2008 Field Trial was
CORBA. The reasoning for using it was it was inherited
from the AID interface used in previous field trials. Many
existing designs using CORBA and AID were modified to fit

into the RAPID infrastructure. Figure 3-2 shows a diagram
of the CORBA Notification Service.

CORBA allows the RAPID Workbench and the RAPID
bridges to perform two types of communication: 1) push
model 2) pull model. Both depend on the Notification
Server holding a CORBA Event Channel. Any client of the
CORBA middleware registers with the Notification Server.
That client also registers with the Event Channel in the
Notification Server.

Push Model – The RAPID Bridge publishes messages
through the CORBA notification server. Any client that
desires to listen to the messages, can register with the
notification service and receive published messages.

The asset, through the RAPID Bridge, registers with the
Event Channel. The asset is considered a push supplier
because it supplies the Event Channel with information. The
asset publishes telemetry type messages in this channel at a
given rate, i.e. updated position information is published at
1Hz; status information can be published at 4Hz. Each asset
will register with its own Event Channel, publishing RAPID

messages to any subscriber. The map view utilizes the
information published to display position information for all
assets in a single display.

The RAPID Workbench is also registered with all Event
Channels for all assets. Relevant information is displayed
based on which asset the operator is currently controlling;
and messages are filtered as such. In this model, the RAPID
workbench has no control over when messages are being
published by the asset. If a command is sent via the Event
Channel, it is the asset’s responsibility to ensure that the
command is meant for that asset. Any client listening to the
Event Channel will be able to obtain the response message
published by the asset.

Pull Model – The RAPID Workbench can communicate to
the robot by connecting to the asset itself, via the RAPID

Figure 3-2. CORBA Middleware Notification Service [4]

 6

notified of the message.

Figure 3-3 shows the central server at Moses Lake, WA.
The Hab EC is the command habitat where clients and assets
connect. The figure also shows the Ground EC or the
remote operations federation at JSC in Houston, TX. The
Ground EC component is another federation connecting to
the Moses Lake site. Its purpose was to handle the remote
traffic while allowing local client computers to have a
central server to connect to.

The RAPID Workbench— The workbench, shown in Figure
3-4, has the following features that can be used by all robots:
1) Mapping features 2) Commanding graphical user
interface 3) Ability to receive telemetry information and
display them to the operator 4) ability to specify on a single
workbench, which robot the operator is interested in viewing
data from.

Mapping Features— The mapping capabilities of the
RAPID workbench provide the operator with visual cues as
to where the assets are located. The benefit of having this is
that the operator can have a general sense of the proximities
of the robots. This is important since looking at raw values
sent from the assets as to its position data is difficult to
comprehend without a visual tool.

Figure 3-5. Mapping Visualization in the RAPID
Workbench

The Map View displays a high-resolution photo of the site
where all the assets will be located. Moses Lake,
Washington was the site of the June 2008 field trial.
Therefore, the image displayed was of the Moses Lake
testing site.

The Map View takes the RAPID messages pertaining to
position information, from all assets received by the RAPID
Workbench and overlays a glyph representing the asset on
the map. The history of the traversal is also displayed by
overlaying a line representing connecting two consecutive
RAPID position data.

Commanding User Interface - Commanding the asset is
done through the telemetry canvas. The telemetry canvas is
composed of clickable widgets that provide the operator an
interface to send RAPID commands. The purpose of this is
so that the operator does not have to type in the RAPID
command and all the required parameters.

Figure 3-6. Commanding and Monitoring Telemetry
Canvas in the RAPID Workbench

If the operator is comfortable with entering commands
through a command line, the RAPID Workbench provides
that capability. The operator will open up a Commander
View and the command prompt will be available.

The smooth operation of a complex vehicle in a dynamic
environment requires that the operator have an easy way to
quickly ascertain the state of the vehicle and respond
appropriately. The Telemetry Canvas (Figure 3-6)
graphically and intuitively provides that feedback to the
operator and facilitates commonly used commands and error
recovery techniques [2].

Telemetry Data Representation— The RAPID messages
received are presented to the operator in the form of
Graphical User Interface widgets. These widgets provide
information based on the telemetry received from the asset.
There are indicators notifying the operator when a particular
value has exceeded its threshold. Other widgets show the
position information as well as its heading and velocity
through dials. There is also a widget that displays what the
asset is doing at that particular time.

These widgets are populated by the RAPID messages
received from the asset. The RAPID Workbench determines
what type of message is has received and represents that
information accordingly.

Multi-robot Workbench – The polymorphic capabilities of
the workbench allows the operator to command and/or see
telemetry information from any specified asset. This
eliminates any confusion the operator may have as to which
asset they are dealing with. The operator specifies during

 8

4. MOSES LAKE FIELD TRIAL
The RAPID Workbench played a big role here because the
operators at JSC used it to obtain RAPID information from
the assets used it. Specifically, the lessons learned could be
categorized into four types: 1) operator experience 2)
Mapping and tracking all assets 3) Commanding. 4) RAPID
middleware pipeline

Operator Experience – The operator experience was
designed prior to the field trial. Still, it proposed a difficult
scenario since the total number of assets tracked was more
than doubled in the field trial compared to the dry runs.
There was much data to monitor and each required space to
be adequately visualized. The number of assets that
required monitoring included five robots and two space
suits.

The other issue was that how it became clear that monitoring
and commanding multiple assets proved to be difficult to do
for a single operator, no matter what tool was presented for
use.

The solution to monitoring all assets was to have the RAPID
Workbench shown on an elevated platform displayed on
multiple monitors (Figure 4-2). The operator in charge of
monitoring the assets sat near the console and viewed the
telemetry streaming from the assets.

The commanding operator was able to stay on their console
and only deal with the asset they were interested in. The
operator was still able to view the map view from the
RAPID Workbench when required.

Mapping and Tracking Assets – This proved to be one of the
significant features of the RAPID Workbench that operators
found useful.

The Map view allowed the operator to view field trial site
and see all assets position and heading in real time. It also
allowed the operator to view this history of each of the
tracked objects to determine possible missed target areas.

The Map view was instrumental in allowing the operator to
plan a traverse.

Commanding – Although the commanding through the
RAPID Workbench was limited, using it at the field trial
provided feedback on how to improve the usage.

The person commanding must also do monitoring, but the
RAPID telemetry messages should provide more useful
information.

Commanding more that one robot at one time was very
complicated and impossible. The RAPID Workbench

should provide improved indicators to notify the operator
when constraints of any kind are violated.

The command dictionary must also be richer that the
rudimentary commands. The field trial provided a proof of
concept that will enable the development of more RAPID
commands.

RAPID Middleware Pipeline – Setting up the RAPID
pipeline also proved to be somewhat difficult. Initial issues
crossing the firewall provided difficulty in getting RAPID to
work. Once all the firewall issues and middleware

Figure 4-1. RAPID Workbench Actively Monitoring All Assets

 9

initialization issues were resolved, the pipeline proved solid
and RAPID messages were successfully passed between the
RAPID Workbench and the assets.

The experience gained here showed that more middleware
diagnostic tools were required. It also showed the pipeline
needed to be extremely robust to be able to handle clients
and servers going offline due to technical issues.

5. CONCLUSIONS AND FUTURE WORK

The June 2008 field trial in Moses Lake, Washington
provided the avenue for continual development on RAPID.
The feature rich RAPID Workbench provided the tools the
operators required to remotely command and/or monitor the
assets. An operator was able to send and receive messages
remotely in a timely manner.

The collaborative work between three NASA centers
allowed for developing useful capabilities in the RAPID
Workbench. Many of the capabilities, including the
mapping features, were found to be vital to commanding the
assets remotely. The lessons learned from the experience
provided a path on how to make the intra-center asset
communication better through the RAPID Workbench. We
will continue to develop features that will enhance the
operator’s ability to perform desired tasks. This includes
generating a larger RAPID command dictionary allowing
the operator to command more complex tasks.

The mapping feature of the RAPID Workbench will also be
enhanced to allow for point and click mobility commanding.
 This will allow the operator to create waypoints on the map
and the RAPID Workbench will generate the commands to
the asset. Mapping will also be expanded to display
indicators as to where cameras are pointing. The operator
will point the camera on the asset to the target and the
RAPID Workbench will send the appropriate commands.

As far as the RAPID protocol is concerned, there is room
from improvement. The field trial did prove that RAPID

messages can be passed along assets and clients developed
in different NASA centers. Utilizing the RAPID
Workbench enabled an operator to remotely perform
required tasks. The middleware configuration allowed for
seamless communication between the Moses Lake site and
the remote site at Houston.

Although, commanding assets through RAPID was
successful, certain deficiencies were discovered. The
command dictionary was lacking in many complex
commands. It was clear that a richer command dictionary
would have allowed operators to control the assets through
intricate operations scenarios. Many native commands were
sent to perform these tasks, but with a larger set of RAPID
commands, it would not have been necessary to send native
commands.

Native commands cannot be eliminated since RAPID
commands cannot perform all asset specific tasks due to
different asset configurations. However, if the RAPID

Figure 4-2. Display Configuration of RAPID Workbench at JSC

The Workbench was used to remotely monitor asset activities at
Moses Lake, WA.

 10

workbench understood the native commands, it could
provide the operator help in generating the required inputs
to the commands. Future iterations of the RAPID
workbench software should be aware of some, if not all,
native commands of assets such that command completion
can be performed. This will allow the operator to
concentrate on the task at hand and not deal with ancillary
parameters.

The middleware performance showed there were aspects
that could be improved upon. It should be noted that when
CORBA connections were made, they were highly efficient
and provided the best service for RAPID. Unfortunately,
getting the services up and running and consistently
connected took too much resources (including time and
personnel) that a conclusion could be made that CORBA
was more complex than what we required. The main issue
was the level of CORBA expertise amongst the different
teams as well was not equal. Other issues showed that there
were not enough adequate debugging tools available to
pinpoint the server issues (in our case firewall issues). We
are currently looking into alternatives to the CORBA
middleware. But, one of the designs that did perform well
was the federation configuration. Having clients and assets
only be aware of a single server eased the implementation
for both. The new middleware should be able to perform in
a similar fashion.

The components each center was responsible for
successfully completed their goals. The RAPID servers
along with the asset specific bridges allowed RAPID
commands and messages to flow between clients and assets.
The asset bridge will stay center specific, but the RAPID
server can be universal. Future designs will allow for more
uniform components, specifically, utilizing the same source
code and software in all three centers.

REFERENCES
[1] Wilcox, B. H., Litwin, T., Biesiadecki, J., Matthews, J.,

Heverly, M., Morrison, J., Townsend, J., Ahmad, N.,
Sirota, A., and Cooper, B., “ATHLETE: A Cargo
Handling and Manipulation Robot for the Moon.” Journal
of Field Robotics [online journal], Vol. 24, No. 5, URL:
http://www3.interscience.wiley.com/journal/114211098/is
sue, Wiley Periodicals, May 2007, pp. 421–434

[2] Mittman, D. S., Norris, J. S., Powell, M. W., Torres, R. J.,
and McQuinn C., “Lessons Learned from All-Terrain Hex-
Limbed Extra-Terrestrial Explorer Robot Field Test
Operations at Moses Lake Sand Dunes, Washington,”
AIAA Space 2008 [submitted for publication], AIAA,
Washington, DC, Sep. 2008.

[3] Mittman, D. S., Norris, J. S., Torres, R. J., Hambuchen, K.
A., Hirsh, R. L., Allan, M. B., Utz, H. H., Burridge, R. R.,
and Seibert, M. A., “The Exploration Technology
Development Program Multi-Center Cockpit,” AIAA
Space 2008 [submitted for publication], AIAA,
Washington, DC, Sep. 2008.

[4] Trythall, S., “JMS and CORBA Notification
Interworking”,
http://www.onjava.com/pub/a/onjava/2001/12/12/jms_not.
html.

[5] Hirsh, R. L., Simon, C. L., Tyree, K. S., Ngo, T., Mittman,
D. S., Utz, H., Allan, M. B., and Burridge, R. R.,
“Astronaut Interface Device (AID),” AIAA Space 2008
[submitted for publication], AIAA, Washington, DC, Sep.
2008.

BIOGRAPHY
R. Jay Torres is a staff member of the
Planning Software Systems Group at
the Jet Propulsion Laboratory in
Pasadena, CA. He leads the Maestro
Planning Software tool for the Mars
Exploration Rover (MER) Project

allowing MER scientists around the world, to plan the day-
to-day science tasks for both rovers. He also works on a
science planning software that allows orbital missions to
visually plan their science observations. The tool is called
the Science Opportunity Analyzer and is currently being
used on several missions, notably CASSINI and DAWN. He
holds a B.S. degree from the California Polytechnic
University, Pomona. In his free time he spends time with
his wife, Cora, and kids, Sara and Zachary.

Mark B. Allan is a Senior Software
Engineer with the Intelligent Robotics
Group at NASA Ames Research

http://www.onjava.com/pub/a/onjava/2001/12/12/jms_not.html
http://www.onjava.com/pub/a/onjava/2001/12/12/jms_not.html

 11

Center. Mark has been a contractor in the Intelligent
Systems Division for over 10 years, and is currently
employed by Stinger Ghaffarian Technologies, Inc. He
specializes in data visualization and has worked in the
areas of ground control systems for remote exploration,
novel human/computer interfaces, massively parallel data
flow architectures, and flight simulators. Mark holds a M.S.
in Information Systems from Santa Clara University and a
B.S. in Biology from U.C. Santa Barbara. Current topics of
interest include the use of virtual worlds to effectively
explore remote worlds, the application of technology to
enhance individual and team effectiveness, and
architectures that enable efficient human-robotic
coordination.

Robert Hirsh is an Aerospace Engineer
in the Intelligent Systems Branch of the
Automation Robotics and Simulation
Division at the Johnson Space Center.
He first joined NASA during college as a
Co-Op student in 1995, and has been

working full time at JSC since 2001. During his 13 years at
JSC he has worked in the design and development of
multiple planetary robots and exploration vehicles. Robert
has participated in 9 analog field tests with prototype
surface robots in various moon/Mars analog locations
around the United States. He is currently working on
software development and human interface systems. Robert
received a B.S. in Electrical (1997) and a M.S. in Computer
Engineering (1999) from Purdue University.

Michael Wallick received his BS in
Computer Science (with Honors) from
the University of Central Florida in
2001. He was awarded a Masters and
Ph.D. in Computer Science from the

University of Wisconsin-Madison in 2003 and 2007
respectively, where he worked on software for automatic
video editing and automatic organization of large
collections of digital photographs. In 2004 he was named as
a Microsoft Research Graduate Fellow. He joined the
Operations Planning Software Group (and Ensemble
Project) at the NASA Jet Propulsion Laboratory in 2007,
where he is leading the development of a mission data
search interface for the Mars Science Laboratory rover, and
future missions.

