
 1

Development of a Relay Performance Web Tool for the
Mars Network

Daniel A. Allard Dr. Charles D. Edwards

Jet Propulsion Laboratory Jet Propulsion Laboratory
California Institute of Technology California Institute of Technology

4800 Oak Grove Drive, Pasadena, CA 91109 4800 Oak Grove Drive, Pasadena, CA 91109
818-354-4344 818-354-4408

Daniel.allard@jpl.nasa.gov charles.d.edwards@jpl.nasa.

Abstract—Modern Mars surface missions rely upon orbiting
spacecraft to relay communications to and from Earth
systems. An important component of this multi-mission
relay process is the collection of relay performance statistics
supporting strategic trend analysis and tactical anomaly
identification and tracking.

Through the early Mars Exploration Rover (MER) mission
this data collection was performed via a tedious manual
process cumulating in the continuous update of an Excel
spreadsheet. For the Phoenix mission, this process was
greatly improved with a new software system called the
Relay Data Engineering (RDE) system. This system
provides sharing of performance data via event-driven
automated data collection processes, a back-end database
and a web user interface.

This paper will discuss lessons learned form the
development, deployment and operations of the RDE
system. 1 2

TABLE OF CONTENTS

1. INTRODUCTION ...1
2. DATA COLLECTION PROCESS BACKGROUND2
3. RELAY DATA ENGINEERING UPGRADE2
3. RELAY DATA ENGINEERING UPGRADE ARCHITECTURE3
3. ACCOUNTABILITY SERVICE CORE (ASC)4
4. RELAY ACCOUNTABILITY ADAPTATION7
5. RELAY ACCOUNTABILITY ANALYSIS13
6. CONCLUSIONS ..14
ACKNOWLEDGEMENT ..14
REFERENCES ..15
BIOGRAPHY ..15

1. INTRODUCTION
The Relay Data Engineering (RDE) process is a part of
JPL’s Multi-Mission Ground System and Services Office
(MGSS) multi-project relay operations infrastructure. The
objective of this process is to provide access to consolidated
relay planning and performance information to support flight

1
1978-1-4244-2622-5/09/$25.00 ©2008 California Institute
of Technology
2 IEEEAC paper #1289, Version 6, Updated November 4, 2008

data delivery planning, data loss tracking analysis and
historical performance assessment. Over time this process
will grow to include further related information sources (e.g.
navigation and tracking) and improve the operational relay
process through automation and consolidation of tactical
overflight changes.

From 2004 through 2006, the relay process was coordinated
through a series of manual collection and calculation steps,
culminating in the update of the “Relay Summary
Spreadsheet.” The spreadsheet was used to conduct the
daily relay tag-up coordination meetings. It contained the
full set of relay passes (several thousand) and was at times
referred to as a “database,” though of course it did not
provide the full capabilities of a database.

Since June of 2006 it was determined that the relay process
did not provide enough value for its cost as the relay process
“stabilized” with only one ground system to consider (MER)
after the loss of Beagle.

With Phoenix completely dependent upon relay support of
Odyssey (ODY), Mars Reconnaissance Orbiter (MRO), and
possibly Mars Express (MEX), it became necessary to
address the complexity of this process once again. Staffing
limits drove the need for a highly automated system, and a
web interface could provide the demanded level of user
access. The eventual development task was called the “RDE
Upgrade.”

The RDE Upgrade task took advantage of a suite of
accountability components called the Accountability Service
Core (ASC). ASC has been under development since 2004
as part of JPL Deep Space Mission Systems (DSMS)
architecture prototype and pilot activities. In early 2006, the
JPL Mars Network Office funded the Mission Control, Data
Management and Spacecraft Analysis subsystem (MDAS)
Data Accountability team to implement an RDE Upgrade
that would provide a Phoenix life-of-mission accountability
database using ASC.

The ASC was implemented as a set of “application
frameworks” include:

- A Core Information Service Framework

 2

o User-defined information tracking
o Access to persistent object and tables

defined by XML Schema Definition
(XSD) user models

o Transactional “CRUDS” (create,
read, update, delete, subscribe)
interface

o User-configurable deployment of
multi-server network

- An “Event-Driven Workflow” Framework
o Agent application
o Java application programming

interfaces
- Supporting common libraries and tools

o Web I/F in Asynchronous Java and
XML (AXAJ) using Javascript Object
Notation (JSON)

o Configuration
o Logging
o Model management
o Etc.

- User-Configurable Persistent Data Layer
o Implement to local standards and

best-practices

The RDE was architected as an adaptation of core ASC
components. This adaptation effort took advantage of the
full gamut of ASC components and identified key ASC
extensions, time management in particular.

The following additional software was developed to meet
target RDE requirements:

• A persistent relay data model (XSD)
• A set of relay data collection applications

o Often performing translation functions to
and from legacy/input data formats

• Collection automation components
o Pass Event Scheduler
o Adaptation of JPL Distributed Object

Manager (DOM) event distributor
o Tie into ASC “Agent Framework”

mapping “mission domain events” to user
workflow (i.e. “event-driven workflow”)

• A responsive web interface to Phoenix life-of-
mission relay data they are being collected from the
live operational network

• A framework of auto-test applications

Key challenges included the automation of timely data
collection from the legacy Odyssey mission, as well as the
problem of implementing a rich, responsive web interface on
top of a rapidly evolving data set.

The following section provides a small amount of
background on the legacy data collection process that was to
be automated with the RDE upgrade.

2. DATA COLLECTION PROCESS BACKGROUND
The original relay process involves the coordination from all
relay participants from the earliest stages of planning
through post-mission analysis. Accurate data accountability
through this process has been a challenge due to the fact that
most key accountability information is found in informal
interfaces such as “byproduct” planning notes, data
spreadsheets, and post-pass email reports. Other
information, such as post-pass data volumes, requires
calculation directly from telemetry out of relay and user
GDS Telemetry Data System (TDS) databases.

For the early MER mission, a full time engineer was staffed
to collect data for a “Relay Summary Report” (RSR) Excel
spreadsheet. Odyssey and Mars Surveyor missions both
provided relay support in this time frame. The manual
report update process involved a unreasonable number of
individual steps including:

- Copy-and-paste plans out of a text file

- Update individual cells out of orbiter pass
latency spreadsheet

- Update cells with individual values out of
email reports

- Execute data volume collection scripts and
copy values to spreadsheet

As MER progressed, this task was formalized in a set of data
collection procedures. The total process added up to over a
thousand individual manual steps per week. In mid-2005,
when the MER relay picture “settled down” using Odyssey
as primary relay support, the funding for this position was
removed and maintenance of the relay report stopped.

The next section discusses the RDE upgrade task begun in
2006 to tackle this problem with a shared data system and
data collection automation mechanisms.

3. RELAY DATA ENGINEERING UPGRADE
As we began engineering early in the task there were a few
candidates to potentially address with an upgrade. The
original, expensive relay data accountability task was a
prime candidate for automation. “Data Accountability” is
defined as the collection and persistence of data and
metadata in a manner that enables end-user access for
analysis. “Relay Data Accountability” is defined as the
accountability of data relating to the end-to-end relay
process.

One important benefit of choosing Relay Accountability
over other tasks is the low to no impact of an accountability
system upon end-user machines and networks.

 3

Another candidate was the tactical email system used for
coordinating overflight pass utilization and operational
tactical changes. This “formalized” tactical change
management approach adds a number of limitations,
especially the inability to track relay user transactions for
potential audit and analysis. However introducing a new
tactical system within the Phoenix timeframe would have
had serious impacts upon the tactical network, particularly
upon end-users comfortable with an existing process. Such
an upgrade is proposed for the MSL timeframe.

Extended product tracking functions were also considered in
light of a Phoenix end-to-end Product Request Identifier, but
were cut largely due to scheduling constraints.

With these and other constraints we chose limit the scope
and impact of our RDE task:

• Focus on core Relay Accountability problem over
other potential areas of improvement,

• Provide user interface via web server, maximizing
access while limiting impact on deployment
network, and

• Not require software delivered to mission
workstations, as there will not be schedule margin
to deal with integration impacts.

Requirements for this automated system were gathered as far
back as 2003 and updated through the MER mission and
again in advance of Phoenix.

At the beginning of the 2006 fiscal year, the MDAS Data
Accountability team proposed to implement a Relay
Accountability solution built from a common application of
software called the Accountability Service Core (ASC).

The RDE began integration with Phoenix and relay ground
systems prior to the first Phoenix relay operational readiness
test (ORT). These tests involved the Phoenix Ground Data
System (GDS) team, Odyssey and MRO teams as well as
other coordinating management staff. The RDE was
implemented “in parallel” with Phoenix, providing a
standalone “relay accountability service”3 tracking data from
out of each GDS team. Through each ORT, data collection
mechanisms were validated during daily team meetings. The
relay upgrade took part in four successive ORTs prior to
Phoenix EDL and surface operations.

As mentioned, a primary goal has been to minimize impact
on end-user systems. While there was no need to deliver
code to user workstations, the auto-data collection
mechanisms do interface with relay and user GDS systems
such as telemetry databases and mission file stores. At these

3
3 That is, as much of a service as funding and staffing would allow.

integration points there is the potential to impact user
systems (e.g. by flooding a telemetry database with query
requests), and so an automated RDE has additional quality
requirements to minimize impact in these areas.

A final delivery was completed in October of 2008 with an
improved test framework, some automation upgrades, and a
number of web user interface improvements based on
mission user inputs. This paper includes findings through
this final delivery.

The following section describes the architecture of this new
system as it is built upon the ASC software framework.

3. RELAY DATA ENGINEERING UPGRADE
ARCHITECTURE

As indicated earlier, the RDE Upgrade was implemented as
an extension to the ASC system.

A layered view of the upgrade is illustrated in Figure 1.

Figure 1 – Layered RDE Architecture with ASC

Tables 1 and 2 explain each upgrade component.

Table 1 – RDE Components

RDE Information Model User persistence model as
defined by shared XSD
schema. The current model
describes the “Relay Pass
Overflight”, an Annotation
type, and associated table
structures.

RDE Applications Data management tools
including most publish
functions including
planning, latency predictions
and post-pass relay ACE
reports.

 4

RDE Agent Components Automated relay data
collection workflow. Built
with the “ASC Agent
Framework”.

RDE Web UI RDE specific web views.
Implemented in Javascript,
HTML, and CSS.

Table 2 – ASC Components

Information Server /Server
Framework

Serving persistent data
defined via user information
model and “CRUD”
interface. System provides
for user-configurable
deployment for a multi-
server network. Solves a
problem of “object-
relational mapping”. [3]

Agent Application
Framework

Providing configurable
“event-driven workflow” via
a framework of application
components.

Web Access Layer Asynchronous ASC service
API for web clients via
AJAX/JSON and servlets.

Utilities and Libraries Configuration, logging, JMS
I/F, etc.

Persistent Data Store Manage relational data
access and database
transaction.

The next section describes in greater detail ASC components
as well as the use of the persistent store.

3. ACCOUNTABILITY SERVICE CORE (ASC)
Overview

The ASC has been under development since 2004 to address
a JPL multi-mission system need for “common
accountability” components. With end-to-end subsystems
taking advantage of these common components, the
accountability problem becomes greatly simplified and thus
less costly and risky.

The ASC was developed in parallel with a military
communications network prototype system called SharedNet
[4]. The SharedNet system looked at providing dependable
quality-of-service (QOS) communications across
“undependable” 4 field deployments. The system needed to
be adaptable to broad user information model schemas and
provide communications via simple “CRUD and Subscribe”
interface. Key concepts and even core interface components
were shared from the SharedNet work to the ASC. In
particular the hashtable-structured top-level shared object
class was adapted from the SharedNet version.

ASC adherence to shared technology standards including
JPL and others from academia and industry maximizes the
adaptability of the system. These include Extensible
Markup Language (XML) Schema for persistent model
definitions and Java Messaging Service (JMS) for
messaging.

As a framework, the ASC is specified to provide:

• A data repository for accountability data, including
XML to relational data mapping

• A unified query and update interface for all
accountability data

• Accountability event generation and management
• Automated reporting
• Standard Web Service and messaging interfaces
• An information model defining what is tracked,

which can be extended for project-specific
implementations

• A framework for building custom components and
adding domain-specific logic

• Administration and configuration utilities for these
capabilities

ASC Architecture

The Accountability Service Core (ASC) subsystem is
composed of several primary components:

- An external, underlying persistent data store

- A “shared database service” providing a

transactional Create, Read, Update Delete
(CRUD) interface to the persistent data store in
a manner defined by an explicit XSD
information model, and

- An “event-driven workflow” framework

enabling configuration-based mapping of JMS
event messages to the execution of user
adaptation software components.

4
4 “Undependable” including low-bandwidth, high levels of signal loss and
potentially high latencies.

 5

The current ASC implementation uses a relational database
as a back-end data store. It supports standard SQL
statements for table and object transactions. It is limited to
tracking hierarchical (“is-a”) relationships across object
types, but does not directly support associative (“has-a”)
references. We look to address this limitation in our
ongoing work.

Other supporting common libraries and tools include:

- Web I/F in AJAX using JSON
- Configuration
- Logging
- Model management
- JMS and Simple Object Access Protocol

(SOAP) interfaces

Ease of adaptation has been a driving ASC goal and
therefore it offers a minimal interface set that is configurable
enough for end-user domain needs.

ASC Server

At the heart of the problem of accountability is a basic
information tracking function.

The ASC server provides an abstraction layer over the
persistent store for local and remote clients. Access to the
ASC is performed via “service” invocations as defined by an
XML interface. This interface was originally implemented
via industry standard WSDL/SOAP [5]. However, early
pilot efforts determined that the performance using available
SOAP implementations failed to keep up to throughput
requirements when dealing with large-volume and high-rate
transactions. As JMS was at the time taking hold as a JPL
standard, a JMS “request/reply” protocol was implemented
in parallel with the SOAP interface. While this new JMS
interface required more code in support of service
connection management, it demonstrated acceptable
throughput performance with available JMS providers
including institutionally supported Fiorano and open source
ActiveMQ.

Most persistent data management functions are handed off
to a data store layer. In particular, persistence transaction
management (execute/undo) is left to the store layer
implementation, typically via a relational database. Ideally
this function is identified by an institutional standard and/or
supported as an institutional function.

The problem mapping end-user information definition
models to operational relational database has grown in the
industry to be called the “object-relational mapping”
problem [6]. This runtime object-relational mapping
function remains the problem of the ASC server.

ASC Service API

As mentioned, ASC provides a transactional “CRUD” API.
We have found a simple CRUD interface is enough to make
the full use of our “user-domain persistence models”.

Create: Model-defined objects are “Created” and inserted as
records into tables.

Read: The “Read” query capability includes the full
expressiveness of standard SQL to all model-defined
information types and tables.

Update: Modify object values after the object has been
created. While legacy accountability systems typically rely
on “creating” each data point and not modifying captured
data our experience is that a user update capability is
required to enable complex object types such as the RDE
“Overflight Pass” type [c.f.].

Delete: Remove an object from the store.

Subscribe: ASC requirements have also carried along the
notion of a “subscribe” capability however it is not currently
implemented. To date this has only been implemented via
an auto-polling use of “read/query”. The aforementioned
SharedNet system made great use of a proprietary, priority-
based subscribe to meet information delivery requirements
in a resource-constrained system, particularly in the area of
maximizing scant bandwidth resources.

Persistent Data Store

At the base of the architecture supporting this set of servers
is a central data repository. This repository is a relational
database. The current implementation requires Oracle,
however the choice of Oracle is not essential to the
architecture. Presenting the repository is a set of
information servers interpreting the relational database by
way of an information model (an XML schema). Both
clients and servers utilize the XML schema to interpret data
in the database.

ASC Adaptation

Development of a new adaptation of the ASC (i.e. the RDE
upgrade) begins with the implementation of an information
model describing shared system data types and supporting
tables. Much up-front adaptation time is spent engineering
and developing this model. Provided generic database
utilities are used to auto-generate database schemas directly
from the model schema. The Core Information Server loads
the information model at run-time and manages database
transactions as defined by the model. The server itself is
otherwise “model-independent”, with no specific domain-
based elements.

Specific “domain data ingestion” clients are then developed
to transform raw data (e.g. queried from GDS telemetry
databases) into “information object updates” as allowed by

 6

the model. All client-server transactions are handled
through standard APIs and domain-independent software
infrastructure. The only software code that needs to be
developed provides the specific logic to transform domain
data into model-based objects, and this is further simplified
by the object interface provided as part of the core
infrastructure. Standalone, “daemon” client applications are
referred to as “Software Agents”, though the underlying
client software is the same. These agents are used to ingest
data published as messages to the message bus as provided
by the JMS message bus.

Generally there are two sorts of clients: clients with the
responsibility of auto-publication of data to the database,
and clients that present data to the end user. Specific
implemented relay data collection clients are described in a
later section.

ASC Core Model

A primary goal of ASC is that the user defines all aspects of
shared data persistence. Thus, the minimum of constraints
is imposed on end-user persistence models.

To support interoperability across multi-mission
accountability information models, ASC adaptation model
extensions include the following constraint:

All highest-level objects extend from an Accountable Item
type with the following parameters:

- ASC Unique identifier
o Typically randomized

- Adaptation Unique Identifier
- Creation Time
- Source

The current ASC supports hierarchical relationships among
information-model defined objects and the mapping of user-
defined data types to the appropriate tables. Operational
“information relationship management” (e.g. performing
operational modification of persistent objects) sits in the
hands of user workflow as it interacts with the core
information service.

As of the time of this writing, the extensions for the RDE
task and other ASC pilots and prototypes have been
relatively flat and simple table structures as opposed to rich
object types. Our experiences starting with early prototypes
have been that the flat object structure has been easier for
users to work with as opposed to deep “hierarchical”
information trees, and so the limitations of the current ASC
have not, to date, held us back from implementing our key
user functionality. This will be discussed further in Section
4.

ASC Agent Framework

The next ASC problem domain to address is automation.
Funding and staffing profiles of continued JPL operational
systems make no space for additional daily operations tasks.
Ideally, the entire GDS will one day evolve to automate all
forward and return link data processing functions. Such
automation brings with it high expectations of operational
system dependability.

For example, ongoing funding profiles have precluded
“24/7” reliability system with full backup capabilities. In
response, we implemented additional data re-collection
functions to minimize occasional data collection downtimes
providing a level of robustness.

During the early era of ASC implementation, the “agent”
pattern was growing into use [7]. This pattern was enabled
largely by the emergence of messaging as a common and
successful system interface pattern.

Industry and academic use of agents can be very broad in
functional scope (e.g. inference agents). However, we
needed to stay focused on providing an automated system
from within a “stove-piped” software system alongside of a
quickly evolving shared information vocabulary. This was
especially apparent through the first three Phoenix ORTs,
where the RDE database schema grew from 80 to 94 pass
statistics and 3 to 5 tables.

The ASC framework attempts to take a “minimalist”
approach to adaptation interfaces, however it must provide a
broad range of potential user adaptations and deployments.
The current framework provides an XML interface to event-
triggered user workflow. For the RDE task, most adaptation
configuration items deal with data collection timing issues
and data re-collection functions.

The ASC provides automation via event-driven execution of
user workflow. It takes advantage of messaging services to
drive event reaction logic.

Some components of the user workflow interface include:

• Execution from onMessage()
• Inheritance from abstract AgentComponent

o Java Logging
o XML configuration
o DSMS message bus I/F

Through ASC prototypes and pilots we have found set of
components have been effective at providing for highly
adaptive automation mechanisms such as seen in the RDE.

ASC Subsystem Connectors

The following lists key ASC subsystem architectural
connectors:

• The ASC CRUD-based service API provides a
primary software component connector.

 7

• Messaging provides a primary application

connector.

• Events act as “triggering” connectors.

Subsystem Constraints

The primary constraint of the ASC system on end-user
adaptations is requiring inheritance of the top-level
accountable object type.

The primary constraint on the ASC is the requirement that
user information definition and user workflow be fully
configurable and adaptable as part of an adaptation effort.

ASC Conclusions

The software architecture and implemented functionality
have provided at least the following benefits:

• Decoupled component implementation reduces
code-base impact, thereby reducing the impact of
implementing to unexpected requirements.

• The simple operational interface, supporting

remote service calls for database transactions,
enables complete ignorance on the part of clients as
to the nature and implementation of the underlying
persistent store. It enables very low system
integration costs.

• The model abstraction to persistent data allows

end-user applications to deal with objects as
objects as opposed to just tables. It supports a
widely used table view as well, as most mission
data are typically handled as tables rather than
objects.

• The model abstraction also enables tools to auto-

generate relational database schemas including data
types and mapping to tables. This makes for low-
cost schema updates and thus improves the overall
ability of the system to evolve.

• The approach is highly amenable to automated

regression testing as each path in the automated
collection process can be auto-tested separately.

The current ASC implementation has some key limitations
from state-of-the-art at the time of original design and
development in 2003. A primary limitation is a locked-in
Oracle interface. This conflicts with a number of MGSS
users requesting compliance with MySQL. Ongoing work
looks ahead to take advantage of the rapidly advancing
state-of-the art addressing basic “object-relational”

functionality to address this concern as well as others,
including support of relational, in addition to hierarchical,
associations.

The next section describes in more detail the process of
adaptation of this framework for the RDE upgrade.

4. RELAY ACCOUNTABILITY ADAPTATION
Overview

The primary goals of the RDE system include:

• Automating collection of key end-to-end relay
parameters with a minimum of human intervention
and

• Providing web access to life-of-Phoenix-mission
relay database, supporting planning, analysis, and
tactical functions

The adaptation of ASC for relay accountability faced a
number of ongoing challenges toward meeting system goals,
including:

- Maintaining an accurate picture of relay status
(e.g. provide “relay situational awareness”) in
a highly dynamic operational environment,

- Dealing with rapidly evolving data interfaces
across a broad spectrum of the end-to-end
relay process from the start of relay ORTs
through surface operations,

- Automating data collection within the bounds
of the secure flight network, while still
providing data accessibility outside of flight,
and

- Delivering a dependable “relay data service”
with a low level of funding and staffing.

Adaptation Implementation Approach

The RDE tool was developed with an “adapted” Agile
methodology [8]. As with a common Agile approach, early
development involved simple prototypes with frequent user
demonstrations. However, hard mission deadlines and
quality requirements meant that the quick-turnaround
approach would have to come to an end.

We started the RDE adaptation by implementing a simple
information model schema describing a set of parameters
making up an “overflight pass” object type. After presenting

 8

this model to the multi-mission relay operations team, we
implemented “prototype” data collection applications.
These included a “planning publisher” application and a first
cut at an automated pass performance data volume collector
as an extension of the ASC Agent Framework. We also
implemented a basic web query interface and performed a
series of user demonstrations and multi-mission relay
planning meetings, enabling us to adopt user feedback at an
early stage.

As Phoenix Operational Readiness Tests (ORTs)
approached, we adopted a more formal development and
delivery process. This included a complete delivery prior to
EDL and surface operations, and a final Phoenix delivery in
October 2008 was completed incorporating updates
resulting from operational issues and user feedback.

With each ORT, new functionality was added and
automation improved. In particular, the “Overflight Review”
web view was a focus of daily relay test meetings and at
times evolved on a daily basis to keep up with user needs.

The following sections describe the various components
adapted for RDE.

The Relay Data Model

The first component of the RDE tool to be developed was
the information model schema. The model is defined in the
XML Schema Definition Language (XSD) [1]. The model
schema defines all the information that is “tracked” by the
system. It defines the persistent object types as well as the
relational tables that store objects. This model schema is the
primary input of the ASC server application.

The focus of the RDE model is the relay overflight and
associated information. The heart of the RDE model has
always been the relay pass, otherwise known as the
“overflight pass” type. During early development of the
model, a couple of different overflight representation
options were analyzed. In one approach, the overflight was
described as a hierarchical set of classes, with “Odyssey
overflights” and “MRO overflights” extending an abstract
overflight class. However, the addition of this hierarchical
layering complicated the data publishing mechanisms and
eventual user interface. End users expressed greater comfort
with seeing all possible available fields in a single view.
The simplest way to achieve this was to consolidate all of
the tracked data fields in a single object type, an Overflight
object. This overflight inherits from a simple, abstract
Accountable Item class.

With next-generation missions such as MSL, we expect to
further extend the Relay Engineering model and develop
new clients to ingest new types of information and from
different sources.

Pass Identification

One key concern of pass data tracking is the identification of
the overflight. Fortunately certain pass parameters can be
combined into a natural unique identifier. Passes are
identified by the combination of the following parameters:

• Relay (or “hailing) asset, such as any relay orbiter
• User (or “responding”) asset, such as any surface

asset
• Day of year
• Pass number (1 to X)
• Year

These parameters combine into a unique natural identifier
for each pass that is useful in pass visualization views as
well a means for publishing applications to perform live pass
object updates. This same natural identifier is used in each
of the input sources. The rest of this paper will refer to this
composite identifier as the “relay pass identifier”.

Automated Relay Data Collection

A primary driving goal of the RDE is that overflight data be
published without end-user intervention.

A primary challenge to the development of the RDE has
been a lack of established interfaces. A large amount of
required information is present in spreadsheets, email
“reports”, and other text file byproducts. Several of these
sources underwent nearly continuous format changes from
one operational readiness test to the next, up until early
Phoenix operations.

To provide the data to meet this model, data ingestion
clients (planning and performance) were developed. Note
that the total client development time for this initial upgrade
took less than one month, once we had a solid model in
place.

For RDE, there are two sorts of “reactive” clients that run as
full-time processes to provide automated data publication:

• A Message Reactor that provides an interface to a

legacy file management system called DOM
(Distributed Object Manager), and

• An ASC “Agent” application built that schedules

relay events, publishes event messages, and
performs automated data volume lookup.

The DOM was utilized for two primary reasons. First, the
DOM is widely used by JPL mission systems and its
interface is available to all operational machines with a
standard multi-mission software deployment. Second, and
perhaps more importantly, the DOM is capable of
publishing messages when files of any type are published to
the file store. These messages may be filtered by file type
and other supported metadata. This allows for the creation

 9

of “message reactor” applications that can automatically
trigger further processing when a file is published simply by
reading the correct message off of a shared message bus.

In the architecture of the RDE, a message reactor
application reacts to one of several possible file types
published to DOM by executing a new application, the
purpose of which is to extract the newly published file out of
the file repository, parse the relevant accountability data out
of the file and publish the new data to the RDE database.

The Assembled RDE Upgrade System

Figure 2 shows how runtime automation and web servers
were assembled operationally:

As can be seen, much of the data are being provided through
the DOM and message reactor interface.

The RDE Overflight Record Lifecycle

The following section discusses the lifecycle of the
“overflight record” and what data sources provide updates at
what point in the process.

Pass Planning

The RDE “overflight pass” record is first created when a
planning file is published with a set of passes not currently
present in the database.

Pass planning information includes:

• Geometric pass
• Requested passes
• Elevation angle
• Planned data rates

The long-range link planning process includes the creation

the APGEN file that contains all pass schedules. The
APGEN file is typically published more than once, with an
initial version that contains all geometric opportunities, and
further updates identifying those opportunities for which a
relay service is requested. When a planning file is published
that contains records already present in the database, each
existing record is updated with any changes from the new
file. This is typically to update each geometric pass with the
requested times and pass durations.

There are a number of concerns when selecting a pass for
use. Limited lander energy resources drive the need for
selecting passes with the best telecommunications

Figure 2 – Assembled RDE Upgrade System

 10

performance. The maximum elevation angle of the pass is a
primary consideration when choosing a pass for use. When a
relay orbiter is in view near the horizon, link performance
can be poor due to the large off-boresight angles of the
lander and orbiter antennas, the long slant range between
orbiter and lander, and potential multipath effects off of the
Mars surface and/or lander deck. As the orbiter rises, the
signal improves until it reaches the maximum elevation, and
then degrades the orbiter again approaches the horizon. The
orbital elevation for a “quality” signal is typically greater
than 5-10 degrees. Also, the higher the maximum orbtier
elevation angle for a given , the longer the overflight and the
greater the possible total volume of data that can be
transmitted. Therefore, overflight passes with a high
maximum elevation are typically selected over passes with a
low maximum elevation.

Planning files and updates are typically published every one
or two weeks.

Pass Latency Predictions

One parameter the RDE is required to track is the end-of-
pass “latency”, that is, the time the relay products for a given
pass are expected to arrive at the lander’s GDS. On its own,
the end-of-pass latency might be considered a secondary
parameter in comparison with pass planning and
performance. For relay missions that provide a “trigger”
mechanism to indicate product completion such as MRO via
the CCSDS File Delivery Protocol (CFDP), this a parameter
is not of high value, as the “trigger” from the publication of
the relay file product provides a means to identify that the
complete data product has been delivered.

For non-CFDP relay there is a significantly greater challenge
to timely relay data collection. The primary non-CFDP relay
asset in use is Odyssey, which has delivered more data than
any other relay orbiter. Because no external event trigger to
drive the data collection, the best that Odyssey can provide
is a prediction of the time that all data should be available to
the ground system GDS Telemetry Data Service (TDS)
based upon orbital geometry, data rate, etc. Nominally, this
predict (plus some margin) should be enough to reliably
trigger data collection in a timely manner soon after the data
are made available. However, additional latencies are not
rare and data may be received at later times, so that partial
or no data may be retrieved at the time of the end of pass
predict. To mitigate this, it is necessary to re-request data at
a later time than the pass.

The RDE design utilizes this pass predict to drive an
automated lookup process using the “ASC agent”
component.

The Odyssey latency predictions have been distributed via
email as an XML spreadsheet. To support the RDE tool, the
Odyssey planning team agreed to publish a CSV (comma
separated value) text version of the XML spreadsheet to the

DOM file store. Upon publication, this file is parsed and the
latency values are published via the ASC service API
“update” function to the RDE database, using the natural
pass identifier as an index.

Pass Volume Predicts

The ability to compare predicted versus actual data volume
is an important function of the RDE. Such comparisons
require the ingestion of predicted volumes for each pass.
However comparisons are not as straightforward as merely
picking the right predict for each pass. Each pass has a
number of predicted values for the volume. These predicts
depend upon a number of concerns such as data rate,
elevation mask, elevation angle, and the remote antenna
used for transmission (Helix or Monopole). These concerns
change over the course of the tactical cycle, sometimes more
than once, and so the final "correct" predict may not be the
same as the original "planned" predict.

The source of Phoenix predicts is a file called the
“Integrated Overflight Summary”, another Microsoft Excel
spreadsheet type. This spreadsheet contains a table of
predicts for each pass with values taking into account
forward and return rates, remote antenna used, etc.

We devised a means of exporting these predicts to a CSV
file and publishing a table of those values to the RDE
database, associating the set of predicts for each pass. To
present an accurate predict, the web interface presents
predicts that align with the latest set of relating pass
parameters (e.g. final forward and return rates for the link).

The identification of an accurate predict from post-pass
parameters turned out to be one of the bigger challenges of
the RDE upgrade task. Some open issues remain in this area
to be addressed in ongoing work, such as the identification
of the actual utilized antenna out of lander GDS telemetry.

Pass Performance

There are a number of sources for post-past performance.
The primary tracked value is the transmitted pass volume.
Both forward and return link volumes are tracked closely.
These data are required for all current analysis views.

Other pass-related collected information includes end of
pass times, average transmitter power levels, and frame and
packet counts.

Pass performance data is collected from a variety of sources,
including:

• Query of “raw” telemetry database frames
• Parsed from data product log files
• Relay ACE text file report “scorecard”

 11

We implemented to the broadly used JPL Telemetry Data
System to calculate “raw” total telemetry volumes from
Relay and User GDS databases. This was the only
mechanism available to calculate data volumes out of the
Odyssey data flow.

Unlike Odyssey, the MRO mission uses CFDP to distribute
relay data. With MRO/CFDP, a local JPL process provides
an XML file containing pass information. The total pass
volume is identified in a field in this file, as well as final
Pass Start and End times.

The Relay “Scorecard” was provided through the
aforementioned DOM interface and included relay
calculated data volume, frame and packet counts, and
additional average, minimum, and maximum AGC values.

Web Views

A major portion of development work involved the
construction of a set of web views supporting strategic and
tactical use. To support these views we implemented an
extension of the ASC CRUD API in JavaScript Object
Notation (JSON) as part of the Asynchronous Java and
XML (AJAX) style [9]. This provides an interface between
client JavaScript and an ASC servlet running within a
Tomcat application. The AJAX “asynchronous XML”
pattern provides for a highly responsive XML interface.

Other web components include:

• HTML to provide frames, etc.,
• CSS Style sheets, and
• JavaScript.

The following five views were released as part of the final
Phoenix-era RDE delivery:

• Overflight Review,
• Export Volumes,
• General Query,
• Drop Dead Uplink Times, and
• Overflight Report.

Overflight Review

The purpose of this view is to present a “quick summary” of
pass performance. This includes an indication of predicted
vs. actual values. This view was used daily during early
ORTs to identify and track pass anomalies and reporting
discrepancies. Often enough the view was valuable as a
“double-check” of data collected by various operational
teams and the RDE software itself. It might be considered
the most “mature” of the available views. We expect MSL
will benefit from this view.

Figure 4 – Overflight Review

As shown, this view contains a large number of “filtering”
functions as well as other types of modifying functions.

Table 3 describes each of the view control options:

Table 3 – Overflight Review View Control Options

View

Control
Description Default

Days Range Filter passes in view to a time
range from < Text Entry Field
1 > days ago to < Text Entry
Field 2 >. This provides a
“moving window” of recent
passes.

3 days
prior to 2
days hence

SOL/DOY Filter passes by SOL or Day
of Year (DOY).

None

Show #
Records

Limit the query of number of
passes displayed.

100

UA Filter by User Asset. All
RA Filter by Relay Asset. All
Requested Display “requested” passes.

This includes all passes with a
non-null value in the
requested field in the APGEN
pass plans, as well as any
utilized pass (RA volume >
0).

True

Utilized Displays any pass with an RA
volume > 0.

True

SOL Time of
Day

Filter passes by local (i.e.
Mars) time of day.

False

Compare
Threshold

Percentage difference allowed
between predicted and actual
values to trigger visual
discrepancy (c.f. “Comparing
Predict vs. Actual”).

40%

Remove RS Remove the Reed-Solomon True

 12

Overhead encoding overhead from the
displayed RA Volume values.
 Final value = value * 233 /
255.

Query Re-query data from database. N/A
Auto-Query Auto-query the data in view

according to the time delay
selected from the adjacent
pull-down menu (in seconds).

Export Export the data in view to csv
format (c.f. “Export”).

N/A

Report Run a JasperSoft report of the
selected pass (c.f. “Report by
Pass”).

N/A

Export Volumes

As mentioned earlier, a primary purpose of this tool is to
provide life-of-mission performance data. Over the course
of the early mission, the export function on the “Overflight
Review” was used for this purpose. After approximately two
months of data had been collected the review page became
unresponsively slow to load all the required data. This was
largely due to the amount of Javascript on the Review page.
 So an additional page was added with the purpose of quick
export to csv.

General Query

Another important use of the RDE tool is ad-hoc analysis.
To meet this need, we provided a general-purpose query
display. This includes selection of any set of fields as well
any number of SQL “where” clauses. Only the SQL “add”
of where clauses are currently supported, “or” is not.

Figure 3 – General Query View

Drop Dead Uplink Times

Pass plans include a time value called the “Drop Dead
Uplink Time”. These times represents the latest possible
time that a User GDS team can submit a forward link
product to a Relay GDS team and have it delivered via the
indicated link.

Figure 4 – Drop Dead Uplink View

The provided view is not necessarily a great deal better than
the current set of pass spreadsheets for those who are used to
them. However, new functions such as a “countdown alarm”
should improve its utility.

Overflight Report

Any tabular record in the Review and General Query
displays can be selected and viewed as a report. The report
view shows all fields for the overflight record in question.
Underlying this view is the JasperReport software.

Figure 5 – Example Report

Other Views

Not all of our initial views made the final cut. Key
remaining views include a “Latest Pass” statistics view (like
the Overflight Report) with an auto-update of recent passes
utilized.

Use of Web Technologies

The web development effort involved a long learning curve
for some of the RDE Upgrade development team.

HTML

 13

We used HyperText Markup Language (HTML) to layout
the web framework and page structures.

AJAX/JSON

The AJAX (asynchronous JavaScript and XML) pattern was
introduced to support a responsive web GUI. An
implementation of JSON (JavaScript Object Notation)
provides the data service interface from the web client to a
tomcat-maintained servlet. We have run into very few issues
with this technology. [9][10][11][12].

CSS

Cascading Style Sheets (CSS) provide a straightforward way
to manage web page styles. The language is well supported
through the open-source FireBug Editor. [13][14]

JavaScript

We used JavaScript to provide a rich interactive web
interface, however our experience with JavaScript was not
entirely favorable. The JavaScript (JS) “brute force”
approach to APIs including widgets led to our implementing
more JS code than we might otherwise have. We found the
“typeless” language occasionally caused confusion. We did
find that it could be “made to provide” a rich web interface,
though probably a heavier interface than it needs to be. One
real positive for JS is the huge volume of sample code
available on the Internet, saving time when dealing with the
many implementation problems that spring up.

JasperReport

We used a toolkit called JasperReport to build a database
report we could execute from our web interface. A
JasperReport is edited using the iReport tool. When the
report is opened, the JasperSoft library is executed which
updates each field from the database and presents the
updated report.

The next section describes some of the “analysis views” that
can be generated from data in the RDE store.

5. RELAY ACCOUNTABILITY ANALYSIS
From the start of the Phoenix mission through the current
day the RDE tool has been used primarily to extract pass
statistics for reporting. The key primary tracked statistic is
the total volume of data delivered by each relay spacecraft.
Typically the “Export Volumes” web view is used for a
“quick” export of these data, though the “General Query”
view can also be used for this purpose. Raw tabular data are
exported in Comma Separated Value (CSV) format and then
normally imported into an Excel spreadsheet for charting.

Figure 6 shows the total volume over time from the start of
Phoenix mission (Sol 0) to Sol 120, about a month past the
end of prime mission:

Cumulative Return Link Data Volume

0

5000

10000

15000

20000

25000

30000

35000

0 30 60 90 120
Sol #

MRO Cumulative Ret Fill DV
MRO Cumulative Ret PHX DV
ODY Cumulative Ret Fill DV
ODY Cumulative Ret PHX DV

Figure 6 – Cumulative Return Link Volume

Figure 7 shows the same data values, but charted to show the
total data volume transmitted per Sol:

Return Link Data Volume by Sol
(PHX Lander Data + Fill Data)

0

50

100

150

200

250

300

350

400

0 30 60 90 120
Sol #

ODY Ret Data Volume (PHX Data + Fill bits)

MRO Ret Data Volume (PHX Data + Fill bits)

Figure 7 – Data Volume By Sol

On Figure 6 and Figure 7, the Phoenix Data Volume (DV)
shown represents actual telemetry data and science product
delivered. The Fill DV on both figures represents “fill”
frames that are transmitted when a relay link is open but no
actual lander data is available to transmit. This chart shows
that the Odyssey mission has carried the most part of
Phoenix relay data over MRO. The low MRO volumes at
the very early end of the chart are due to early MRO
communications issues with Phoenix that were not resolved
until later in the mission. The volume discrepancies are
clearly visible from both charts.

Figure 8 shows the data volumes for the 128K overflights as
a function of Mars LMST (Local Mean Solar Time):

 14

128 kbps Return Link Data Rate

0

10

20

30

40

50

60

70

80

90

100

0:00:00 6:00:00 12:00:00 18:00:00 0:00:00
Local Mean Solar Time

ODY
MRO

PHX Requirement: 30 Mb/pass

Figure 8 – Data Volume By Sol

Figure 9 shows a comparison of data volume predicts vs.
pass performance values:

Figure 9 – Volume Predicts vs. Performance

6. CONCLUSIONS
For ASC, the next step is to achieve a level of database
independence. We look to take advantage of emerging best
practices technologies and patterns (e.g. Hibernate) [3] to
upgrade our core server function to database independence,
and our Agent Framework to take advantage of a workflow
execution function or language such as the Business Process
execution Language (BPEL) [2].

RDE is planned for update with the Mars Science
Laboratory (MSL) mission. This will include any required
updates to the planning inputs (MSL will utilize a wider
range of relay parameters, including higher data rates,
multiple frequency channels, and possibly new modulation
and coding schemes and adaptive data rate functionality)
and a likely major change in the handling of predicts.

One significant additional RDE improvement proposed is to
develop a web-based tactical interface supporting pass
utilization requests and tactical updates. Currently, all
tactical relay coordination is accomplished via email and
phone. This process could be greatly improved with the
upgrade to of a web-based system. However, if adopted,
this upgrade would have a large impact on the current
operational tactical process and thus must be carefully
engineered across a broad user base.

Overall we found we were able to accomplish our primary
relay accountability goals using our chosen architecture.
The ASC server held up as a useful way to manage object-
relational transactions over a distributed network, and our
event-driven client mechanisms were assembled in a
straightforward manner using the existing ASC Agent
Framework as well as the DOM message reactor function.
Our ability to accomplish this broad integration at a
consistently low level of funding tells us that these
technologies and patterns are worth pursuing as part of
further accountability prototype, pilot, and deployment
activities.

ACKNOWLEDGEMENT
The work described in this paper was conducted at the Jet
Propulsion Laboratory, California Institute of Technology,
under a contract with the National Aeronautics and Space
Administration.

The authors wish to further acknowledge other individuals
who made key contributions to research and development
including Marti DeMore, Lloyd DeForrest, Derek Kiang,
Ashley Shamilian, Lori Nakamura, Mark Palm, Priscilla
Parrish and Mike Tankenson.

 15

REFERENCES
[1] http://www.w3.org/XML/Schema

[2] “Web Orchestration with BPEL”,
http://www.idealliance.org/papers/dx_xml03/papers/04-
06-01/04-06-01.html

[3] Hibernate home page www.hibernate.org

[4] Allard, Dan and Hutcherson, Joe, “Communications
Across Complex Space Networks”, IEEE Aerospace
Conference, March 1-8, 2008.

[5] Web Service Definition Language
http://www.w3.org/TR/wsdl

[6] Bauer, Christian and King, Javin, Java Persistence for
Hibernate, New York: Manning Publications, 2007.

[7] “Software Agents: An Overview”,
http://www.sce.carleton.ca/netmanage/docs/AgentsOverview/a
o.html

[8] http://agilemethodology.org/

[9] http://www.riaspot.com/articles/entry/What-is-Ajax-

[10] http://www.json.org/

[11] http://tomcat.apache.org/

[12] http://java.sun.com/products/servlet/

[13] http://www.w3.org/Style/CSS/

[14] http://getfirebug.com/

BIOGRAPHY
Dan Allard has worked as a software engineer at the Jet
Propulsion Laboratory for the past 17 years. He currently
leads the development of core JPL accountability systems
applications and infrastructure. Other recent work includes
the development of a message-based ground data system for
the Mars Science Laboratory as well as research and

development of ontology-
based distributed
communications.

Dr. Charles D (Chad) Edwards, Jr. received his A.B.
degree in Physics from Princeton University in 1979 and his
Ph.D. in Physics from the California Institute of Technology
in 1984. Since then he has worked at NASA’s Jet
Propulsion Laboratory, where he currently serves as
Manager of the Mars Network Office and as Chief
Telecommunications Engineer for the Mars Exploration
Program, leading the development of a dedicated orbiting
infrastructure at Mars providing essential
telecommunications and navigation capabilities in support of
Mars exploration. Prior to that he managed the
Telecommunications and Mission Operations Technology
Office, overseeing a broad program of research and
technology development in support of NASA’s unique

capabilities in deep space
communications and mission
operations. Earlier in his
career, Dr. Edwards worked
in the Tracking Systems and
Applications section at JPL,
where he carried out research
on novel new radio tracking
techniques in support of deep

space navigation, planetary science, and radio astronomy.

http://www.w3.org/XML/Schema
http://www.hibernate.org/
http://www.w3.org/TR/wsdl

 16

