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Abstract—Modern Mars surface missions rely upon orbiting 
spacecraft to relay communications to and from Earth 
systems.  An important component of this multi-mission 
relay process is the collection of relay performance statistics 
supporting strategic trend analysis and tactical anomaly 
identification and tracking.  
 
Through the early Mars Exploration Rover (MER) mission 
this data collection was performed via a tedious manual 
process cumulating in the continuous update of an Excel 
spreadsheet.  For the Phoenix mission, this process was 
greatly improved with a new software system called the 
Relay Data Engineering (RDE) system.  This system 
provides sharing of performance data via event-driven 
automated data collection processes, a back-end database 
and a web user interface.   
 
This paper will discuss lessons learned form the 
development, deployment and operations of the RDE 
system. 1 2 
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1. INTRODUCTION 
The Relay Data Engineering (RDE) process is a part of 
JPL’s Multi-Mission Ground System and Services Office 
(MGSS) multi-project relay operations infrastructure. The 
objective of this process is to provide access to consolidated 
relay planning and performance information to support flight 
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data delivery planning, data loss tracking analysis and 
historical performance assessment. Over time this process 
will grow to include further related information sources (e.g. 
navigation and tracking) and improve the operational relay 
process through automation and consolidation of tactical 
overflight changes.  
 
From 2004 through 2006, the relay process was coordinated 
through a series of manual collection and calculation steps, 
culminating in the update of the “Relay Summary 
Spreadsheet.”  The spreadsheet was used to conduct the 
daily relay tag-up coordination meetings.  It contained the 
full set of relay passes (several thousand) and was at times 
referred to as a “database,” though of course it did not 
provide the full capabilities of a database.   
 
Since June of 2006 it was determined that the relay process 
did not provide enough value for its cost as the relay process 
“stabilized” with only one ground system to consider (MER) 
after the loss of Beagle.   
 
With Phoenix completely dependent upon relay support of 
Odyssey (ODY), Mars Reconnaissance Orbiter (MRO), and 
possibly Mars Express (MEX), it became necessary to 
address the complexity of this process once again.  Staffing 
limits drove the need for a highly automated system, and a 
web interface could provide the demanded level of user 
access. The eventual development task was called the “RDE 
Upgrade.” 
 
The RDE Upgrade task took advantage of a suite of 
accountability components called the Accountability Service 
Core (ASC).  ASC has been under development since 2004 
as part of JPL Deep Space Mission Systems (DSMS) 
architecture prototype and pilot activities.  In early 2006, the 
JPL Mars Network Office funded the Mission Control, Data 
Management and Spacecraft Analysis subsystem (MDAS) 
Data Accountability team to implement an RDE Upgrade 
that would provide a Phoenix life-of-mission accountability 
database using ASC. 
  
The ASC was implemented as a set of “application 
frameworks” include:  

- A Core Information Service Framework 
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o User-defined information tracking 
o Access to persistent object and tables 

defined by XML Schema Definition 
(XSD) user models 

o Transactional “CRUDS” (create, 
read, update, delete, subscribe) 
interface 

o User-configurable deployment of 
multi-server network 

- An “Event-Driven Workflow” Framework 
o Agent application  
o Java application programming 

interfaces 
- Supporting common libraries and tools  

o Web I/F in Asynchronous Java and 
XML (AXAJ) using Javascript Object 
Notation (JSON) 

o Configuration 
o Logging 
o Model management 
o Etc. 

- User-Configurable Persistent Data Layer  
o Implement to local standards and 

best-practices 
 
The RDE was architected as an adaptation of core ASC 
components. This adaptation effort took advantage of the 
full gamut of ASC components and identified key ASC 
extensions, time management in particular.  
 
The following additional software was developed to meet 
target RDE requirements: 
 

• A persistent relay data model (XSD)  
• A set of relay data collection applications 

o Often performing translation functions to 
and from legacy/input data formats  

• Collection automation components 
o Pass Event Scheduler 
o Adaptation of JPL Distributed Object 

Manager (DOM) event distributor 
o Tie into ASC “Agent Framework” 

mapping “mission domain events” to user 
workflow (i.e. “event-driven workflow”) 

• A responsive web interface to Phoenix life-of-
mission relay data they are being collected from the 
live operational network 

• A framework of auto-test applications 
 
Key challenges included the automation of timely data 
collection from the legacy Odyssey mission, as well as the 
problem of implementing a rich, responsive web interface on 
top of a rapidly evolving data set.   
 
The following section provides a small amount of 
background on the legacy data collection process that was to 
be automated with the RDE upgrade.  

2. DATA COLLECTION PROCESS BACKGROUND  
The original relay process involves the coordination from all 
relay participants from the earliest stages of planning 
through post-mission analysis.  Accurate data accountability 
through this process has been a challenge due to the fact that 
most key accountability information is found in informal 
interfaces such as “byproduct” planning notes, data 
spreadsheets, and post-pass email reports.  Other 
information, such as post-pass data volumes, requires 
calculation directly from telemetry out of relay and user 
GDS Telemetry Data System (TDS) databases.   

For the early MER mission, a full time engineer was staffed 
to collect data for a “Relay Summary Report” (RSR) Excel 
spreadsheet.  Odyssey and Mars Surveyor missions both 
provided relay support in this time frame.  The manual 
report update process involved a unreasonable number of 
individual steps including: 

- Copy-and-paste plans out of a text file 

- Update individual cells out of orbiter pass 
latency spreadsheet 

- Update cells with individual values out of 
email reports 

- Execute data volume collection scripts and 
copy values to spreadsheet 

As MER progressed, this task was formalized in a set of data 
collection procedures.  The total process added up to over a 
thousand individual manual steps per week.  In mid-2005, 
when the MER relay picture “settled down” using Odyssey 
as primary relay support, the funding for this position was 
removed and maintenance of the relay report stopped.  

The next section discusses the RDE upgrade task begun in 
2006 to tackle this problem with a shared data system and 
data collection automation mechanisms.  

3. RELAY DATA ENGINEERING UPGRADE  
As we began engineering early in the task there were a few 
candidates to potentially address with an upgrade.   The 
original, expensive relay data accountability task was a 
prime candidate for automation. “Data Accountability” is 
defined as the collection and persistence of data and 
metadata in a manner that enables end-user access for 
analysis. “Relay Data Accountability” is defined as the 
accountability of data relating to the end-to-end relay 
process. 

One important benefit of choosing Relay Accountability 
over other tasks is the low to no impact of an accountability 
system upon end-user machines and networks.   
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Another candidate was the tactical email system used for 
coordinating overflight pass utilization and operational 
tactical changes. This “formalized” tactical change 
management approach adds a number of limitations, 
especially the inability to track relay user transactions for 
potential audit and analysis. However introducing a new 
tactical system within the Phoenix timeframe would have 
had serious impacts upon the tactical network, particularly 
upon end-users comfortable with an existing process.  Such 
an upgrade is proposed for the MSL timeframe. 

Extended product tracking functions were also considered in 
light of a Phoenix end-to-end Product Request Identifier, but 
were cut largely due to scheduling constraints.  

With these and other constraints we chose limit the scope 
and impact of our RDE task: 

• Focus on core Relay Accountability problem over 
other potential areas of improvement,  

• Provide user interface via web server, maximizing 
access while limiting impact on deployment 
network, and 

• Not require software delivered to mission 
workstations, as there will not be schedule margin 
to deal with integration impacts. 

Requirements for this automated system were gathered as far 
back as 2003 and updated through the MER mission and 
again in advance of Phoenix.   

At the beginning of the 2006 fiscal year, the MDAS Data 
Accountability team proposed to implement a Relay 
Accountability solution built from a common application of 
software called the Accountability Service Core (ASC).   

The RDE began integration with Phoenix and relay ground 
systems prior to the first Phoenix relay operational readiness 
test (ORT). These tests involved the Phoenix Ground Data 
System (GDS) team, Odyssey and MRO teams as well as 
other coordinating management staff.  The RDE was 
implemented “in parallel” with Phoenix, providing a 
standalone “relay accountability service”3 tracking data from 
out of each GDS team. Through each ORT, data collection 
mechanisms were validated during daily team meetings. The 
relay upgrade took part in four successive ORTs prior to 
Phoenix EDL and surface operations.  

As mentioned, a primary goal has been to minimize impact 
on end-user systems.  While there was no need to deliver 
code to user workstations, the auto-data collection 
mechanisms do interface with relay and user GDS systems 
such as telemetry databases and mission file stores.  At these 
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integration points there is the potential to impact user 
systems (e.g. by flooding a telemetry database with query 
requests), and so an automated RDE has additional quality 
requirements to minimize impact in these areas.    

A final delivery was completed in October of 2008 with an 
improved test framework, some automation upgrades, and a 
number of web user interface improvements based on 
mission user inputs.  This paper includes findings through 
this final delivery.  

The following section describes the architecture of this new 
system as it is built upon the ASC software framework.  

3. RELAY DATA ENGINEERING UPGRADE 
ARCHITECTURE  

As indicated earlier, the RDE Upgrade was implemented as 
an extension to the ASC system.   

A layered view of the upgrade is illustrated in Figure 1. 

 

Figure 1 – Layered RDE Architecture with ASC 

Tables 1 and 2 explain each upgrade component. 

Table 1 – RDE Components 

RDE Information Model User persistence model as 
defined by shared XSD 
schema.  The current model 
describes the “Relay Pass 
Overflight”, an Annotation 
type, and associated table 
structures.  

RDE Applications Data management tools 
including most publish 
functions including 
planning, latency predictions 
and post-pass relay ACE 
reports.  
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RDE Agent Components Automated relay data 
collection workflow.  Built 
with the “ASC Agent 
Framework”.  

RDE Web UI RDE specific web views.  
Implemented in Javascript, 
HTML, and CSS.   

 

Table 2 – ASC Components 

Information Server /Server 
Framework 

Serving persistent data 
defined via user information 
model and “CRUD” 
interface.  System provides 
for user-configurable 
deployment for a multi-
server network.  Solves a 
problem of “object-
relational mapping”. [3] 

Agent Application 
Framework 

Providing configurable 
“event-driven workflow” via 
a framework of application 
components. 

Web Access Layer Asynchronous ASC service 
API for web clients via 
AJAX/JSON and servlets.  

Utilities and Libraries Configuration, logging, JMS 
I/F, etc. 

Persistent Data Store Manage relational data 
access and database 
transaction. 

 

The next section describes in greater detail ASC components 
as well as the use of the persistent store.  

3. ACCOUNTABILITY SERVICE CORE (ASC)  
Overview 

The ASC has been under development since 2004 to address 
a JPL multi-mission system need for “common 
accountability” components.  With end-to-end subsystems 
taking advantage of these common components, the 
accountability problem becomes greatly simplified and thus 
less costly and risky.   

The ASC was developed in parallel with a military 
communications network prototype system called SharedNet 
[4].  The SharedNet system looked at providing dependable 
quality-of-service (QOS) communications across 
“undependable” 4 field deployments.  The system needed to 
be adaptable to broad user information model schemas and 
provide communications via simple “CRUD and Subscribe” 
interface.  Key concepts and even core interface components 
were shared from the SharedNet work to the ASC.  In 
particular the hashtable-structured top-level shared object 
class was adapted from the SharedNet version.    

ASC adherence to shared technology standards including 
JPL and others from academia and industry maximizes the 
adaptability of the system.   These include Extensible 
Markup Language (XML) Schema for persistent model 
definitions and Java Messaging Service (JMS) for 
messaging.  

As a framework, the ASC is specified to provide: 
 

• A data repository for accountability data, including 
XML to relational data mapping 

• A unified query and update interface for all 
accountability data 

• Accountability event generation and management 
• Automated reporting 
• Standard Web Service and messaging interfaces 
• An information model defining what is tracked, 

which can be extended for project-specific 
implementations 

• A framework for building custom components and 
adding domain-specific logic 

• Administration and configuration utilities for these 
capabilities 

 
ASC Architecture 

The Accountability Service Core (ASC) subsystem is 
composed of several primary components: 
 

- An external, underlying persistent data store 
 
- A “shared database service” providing a 

transactional Create, Read, Update Delete 
(CRUD) interface to the persistent data store in 
a manner defined by an explicit XSD 
information model, and 

 
- An “event-driven workflow” framework 

enabling configuration-based mapping of JMS 
event messages to the execution of user 
adaptation software components. 

 

4                                                           
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The current ASC implementation uses a relational database 
as a back-end data store.  It supports standard SQL 
statements for table and object transactions.  It is limited to 
tracking hierarchical (“is-a”) relationships across object 
types, but does not directly support associative (“has-a”) 
references.  We look to address this limitation in our 
ongoing work.     
 
Other supporting common libraries and tools include: 
 

- Web I/F in AJAX using JSON 
- Configuration 
- Logging 
- Model management 
- JMS and Simple Object Access Protocol 

(SOAP) interfaces 
 
Ease of adaptation has been a driving ASC goal and 
therefore it offers a minimal interface set that is configurable 
enough for end-user domain needs.  
 
ASC Server 
 
At the heart of the problem of accountability is a basic 
information tracking function. 
 
The ASC server provides an abstraction layer over the 
persistent store for local and remote clients.  Access to the 
ASC is performed via “service” invocations as defined by an 
XML interface.  This interface was originally implemented 
via industry standard WSDL/SOAP [5].  However, early 
pilot efforts determined that the performance using available 
SOAP implementations failed to keep up to throughput 
requirements when dealing with large-volume and high-rate 
transactions.  As JMS was at the time taking hold as a JPL 
standard, a JMS “request/reply” protocol was implemented 
in parallel with the SOAP interface.  While this new JMS 
interface required more code in support of service 
connection management, it demonstrated acceptable 
throughput performance with available JMS providers 
including institutionally supported Fiorano and open source 
ActiveMQ.  
 
Most persistent data management functions are handed off 
to a data store layer.  In particular, persistence transaction 
management (execute/undo) is left to the store layer 
implementation, typically via a relational database. Ideally 
this function is identified by an institutional standard and/or 
supported as an institutional function.   
 
The problem mapping end-user information definition 
models to operational relational database has grown in the 
industry to be called the “object-relational mapping” 
problem [6].  This runtime object-relational mapping 
function remains the problem of the ASC server.   
 
ASC Service API 
 

As mentioned, ASC provides a transactional “CRUD” API. 
We have found a simple CRUD interface is enough to make 
the full use of our “user-domain persistence models”.    
 
Create: Model-defined objects are “Created” and inserted as 
records into tables.   
 
Read: The “Read” query capability includes the full 
expressiveness of standard SQL to all model-defined 
information types and tables.   
 
Update: Modify object values after the object has been 
created.  While legacy accountability systems typically rely 
on “creating” each data point and not modifying captured 
data our experience is that a user update capability is 
required to enable complex object types such as the RDE 
“Overflight Pass” type [c.f.].   
 
Delete: Remove an object from the store.  
 
Subscribe: ASC requirements have also carried along the 
notion of a “subscribe” capability however it is not currently 
implemented.  To date this has only been implemented via 
an auto-polling use of “read/query”.  The aforementioned 
SharedNet system made great use of a proprietary, priority-
based subscribe to meet information delivery requirements 
in a resource-constrained system, particularly in the area of 
maximizing scant bandwidth resources. 
 
Persistent Data Store 
 
At the base of the architecture supporting this set of servers 
is a central data repository.  This repository is a relational 
database.  The current implementation requires Oracle, 
however the choice of Oracle is not essential to the 
architecture.  Presenting the repository is a set of 
information servers interpreting the relational database by 
way of an information model (an XML schema).  Both 
clients and servers utilize the XML schema to interpret data 
in the database. 
 
ASC Adaptation 
 
Development of a new adaptation of the ASC (i.e. the RDE 
upgrade) begins with the implementation of an information 
model describing shared system data types and supporting 
tables. Much up-front adaptation time is spent engineering 
and developing this model. Provided generic database 
utilities are used to auto-generate database schemas directly 
from the model schema. The Core Information Server loads 
the information model at run-time and manages database 
transactions as defined by the model.  The server itself is 
otherwise “model-independent”, with no specific domain-
based elements.  
 
Specific “domain data ingestion” clients are then developed 
to transform raw data (e.g. queried from GDS telemetry 
databases) into “information object updates” as allowed by 
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the model.  All client-server transactions are handled 
through standard APIs and domain-independent software 
infrastructure.  The only software code that needs to be 
developed provides the specific logic to transform domain 
data into model-based objects, and this is further simplified 
by the object interface provided as part of the core 
infrastructure.  Standalone, “daemon” client applications are 
referred to as “Software Agents”, though the underlying 
client software is the same.  These agents are used to ingest 
data published as messages to the message bus as provided 
by the JMS message bus. 
 
Generally there are two sorts of clients: clients with the 
responsibility of auto-publication of data to the database, 
and clients that present data to the end user.  Specific 
implemented relay data collection clients are described in a 
later section. 
 
ASC Core Model 
 
A primary goal of ASC is that the user defines all aspects of 
shared data persistence.   Thus, the minimum of constraints 
is imposed on end-user persistence models.   
 
To support interoperability across multi-mission 
accountability information models, ASC adaptation model 
extensions include the following constraint: 
 
All highest-level objects extend from an Accountable Item 
type with the following parameters: 
 

- ASC Unique identifier 
o Typically randomized 

- Adaptation Unique Identifier 
- Creation Time 
- Source 

 
The current ASC supports hierarchical relationships among 
information-model defined objects and the mapping of user-
defined data types to the appropriate tables.  Operational 
“information relationship management” (e.g. performing 
operational modification of persistent objects) sits in the 
hands of user workflow as it interacts with the core 
information service.   
 
As of the time of this writing, the extensions for the RDE 
task and other ASC pilots and prototypes have been 
relatively flat and simple table structures as opposed to rich 
object types.  Our experiences starting with early prototypes 
have been that the flat object structure has been easier for 
users to work with as opposed to deep “hierarchical” 
information trees, and so the limitations of the current ASC 
have not, to date, held us back from implementing our key 
user functionality.  This will be discussed further in Section 
4.  
 
ASC Agent Framework 
 

The next ASC problem domain to address is automation.  
Funding and staffing profiles of continued JPL operational 
systems make no space for additional daily operations tasks. 
Ideally, the entire GDS will one day evolve to automate all 
forward and return link data processing functions. Such 
automation brings with it high expectations of operational 
system dependability.   
 
For example, ongoing funding profiles have precluded 
“24/7” reliability system with full backup capabilities.  In 
response, we implemented additional data re-collection 
functions to minimize occasional data collection downtimes 
providing a level of robustness.   
 
During the early era of ASC implementation, the “agent” 
pattern was growing into use [7].  This pattern was enabled 
largely by the emergence of messaging as a common and 
successful system interface pattern.  
 
Industry and academic use of agents can be very broad in 
functional scope (e.g. inference agents).  However, we 
needed to stay focused on providing an automated system 
from within a “stove-piped” software system alongside of a 
quickly evolving shared information vocabulary.  This was 
especially apparent through the first three Phoenix ORTs, 
where the RDE database schema grew from 80 to 94 pass 
statistics and 3 to 5 tables.   
 
The ASC framework attempts to take a “minimalist” 
approach to adaptation interfaces, however it must provide a 
broad range of potential user adaptations and deployments.  
The current framework provides an XML interface to event-
triggered user workflow.  For the RDE task, most adaptation 
configuration items deal with data collection timing issues 
and data re-collection functions. 
 
The ASC provides automation via event-driven execution of 
user workflow.  It takes advantage of messaging services to 
drive event reaction logic.   
 
Some components of the user workflow interface include: 

• Execution from onMessage() 
• Inheritance from abstract AgentComponent 

o Java Logging 
o XML configuration 
o DSMS message bus I/F 

 
Through ASC prototypes and pilots we have found set of 
components have been effective at providing for highly 
adaptive automation mechanisms such as seen in the RDE.   
 
ASC Subsystem Connectors 
 
The following lists key ASC subsystem architectural 
connectors: 
 

• The ASC CRUD-based service API provides a 
primary software component connector.  
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• Messaging provides a primary application 

connector.   
 

• Events act as “triggering” connectors.  
 
 
Subsystem Constraints 
 
The primary constraint of the ASC system on end-user 
adaptations is requiring inheritance of the top-level 
accountable object type.   
 
The primary constraint on the ASC is the requirement that 
user information definition and user workflow be fully 
configurable and adaptable as part of an adaptation effort. 
 
ASC Conclusions 
 
The software architecture and implemented functionality 
have provided at least the following benefits: 
 

• Decoupled component implementation reduces 
code-base impact, thereby reducing the impact of 
implementing to unexpected requirements.   

 
• The simple operational interface, supporting 

remote service calls for database transactions, 
enables complete ignorance on the part of clients as 
to the nature and implementation of the underlying 
persistent store.  It enables very low system 
integration costs. 

 
• The model abstraction to persistent data allows 

end-user applications to deal with objects as 
objects as opposed to just tables. It supports a 
widely used table view as well, as most mission 
data are typically handled as tables rather than 
objects.   

 
• The model abstraction also enables tools to auto-

generate relational database schemas including data 
types and mapping to tables.  This makes for low-
cost schema updates and thus improves the overall 
ability of the system to evolve.  

 
• The approach is highly amenable to automated 

regression testing as each path in the automated 
collection process can be auto-tested separately. 

 
The current ASC implementation has some key limitations 
from state-of-the-art at the time of original design and 
development in 2003.  A primary limitation is a locked-in 
Oracle interface.  This conflicts with a number of MGSS 
users requesting compliance with MySQL. Ongoing work 
looks ahead to take advantage of the rapidly advancing 
state-of-the art addressing basic “object-relational” 

functionality to address this concern as well as others, 
including support of relational, in addition to hierarchical, 
associations.   
  
The next section describes in more detail the process of 
adaptation of this framework for the RDE upgrade.    
 
 
 
 

4. RELAY ACCOUNTABILITY ADAPTATION  
Overview 

The primary goals of the RDE system include:  

• Automating collection of key end-to-end relay 
parameters with a minimum of human intervention 
and 

• Providing web access to life-of-Phoenix-mission 
relay database, supporting planning, analysis, and 
tactical functions 

The adaptation of ASC for relay accountability faced a 
number of ongoing challenges toward meeting system goals, 
including:  

- Maintaining an accurate picture of relay status 
(e.g. provide “relay situational awareness”) in 
a highly dynamic operational environment, 

- Dealing with rapidly evolving data interfaces 
across a broad spectrum of the end-to-end 
relay process from the start of relay ORTs 
through surface operations,  

- Automating data collection within the bounds 
of the secure flight network, while still 
providing data accessibility outside of flight, 
and 

- Delivering a dependable “relay data service” 
with a low level of funding and staffing.   

Adaptation Implementation Approach 

The RDE tool was developed with an “adapted” Agile 
methodology [8].  As with a common Agile approach, early 
development involved simple prototypes with frequent user 
demonstrations.  However, hard mission deadlines and 
quality requirements meant that the quick-turnaround 
approach would have to come to an end.   
 
We started the RDE adaptation by implementing a simple 
information model schema describing a set of parameters 
making up an “overflight pass” object type.  After presenting 
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this model to the multi-mission relay operations team, we 
implemented “prototype” data collection applications.  
These included a “planning publisher” application and a first 
cut at an automated pass performance data volume collector 
as an extension of the ASC Agent Framework.  We also 
implemented a basic web query interface and performed a 
series of user demonstrations and multi-mission relay 
planning meetings, enabling us to adopt user feedback at an 
early stage.   

As Phoenix Operational Readiness Tests (ORTs) 
approached, we adopted a more formal development and 
delivery process.  This included a complete delivery prior to 
EDL and surface operations, and a final Phoenix delivery in 
October 2008 was completed incorporating updates 
resulting from operational issues and user feedback.   

With each ORT, new functionality was added and 
automation improved. In particular, the “Overflight Review” 
web view was a focus of daily relay test meetings and at 
times evolved on a daily basis to keep up with user needs.   
 
The following sections describe the various components 
adapted for RDE.      

The Relay Data Model 

The first component of the RDE tool to be developed was 
the information model schema.  The model is defined in the 
XML Schema Definition Language (XSD) [1].  The model 
schema defines all the information that is “tracked” by the 
system. It defines the persistent object types as well as the 
relational tables that store objects. This model schema is the 
primary input of the ASC server application.   
 
The focus of the RDE model is the relay overflight and 
associated information. The heart of the RDE model has 
always been the relay pass, otherwise known as the 
“overflight pass” type.  During early development of the 
model, a couple of different overflight representation 
options were analyzed. In one approach, the overflight was 
described as a hierarchical set of classes, with “Odyssey 
overflights” and “MRO overflights” extending an abstract 
overflight class.  However, the addition of this hierarchical 
layering complicated the data publishing mechanisms and 
eventual user interface.  End users expressed greater comfort 
with seeing all possible available fields in a single view.  
The simplest way to achieve this was to consolidate all of 
the tracked data fields in a single object type, an Overflight 
object.  This overflight inherits from a simple, abstract 
Accountable Item class.   
 
With next-generation missions such as MSL, we expect to 
further extend the Relay Engineering model and develop 
new clients to ingest new types of information and from 
different sources.  
 
Pass Identification 

One key concern of pass data tracking is the identification of 
the overflight.  Fortunately certain pass parameters can be 
combined into a natural unique identifier.  Passes are 
identified by the combination of the following parameters: 
  

• Relay (or “hailing) asset, such as any relay orbiter 
• User (or “responding”) asset, such as any surface 

asset 
• Day of year 
• Pass number (1 to X) 
• Year 

 
These parameters combine into a unique natural identifier 
for each pass that is useful in pass visualization views as 
well a means for publishing applications to perform live pass 
object updates.  This same natural identifier is used in each 
of the input sources.  The rest of this paper will refer to this 
composite identifier as the “relay pass identifier”.   
 
Automated Relay Data Collection 
 
A primary driving goal of the RDE is that overflight data be 
published without end-user intervention.   
 
A primary challenge to the development of the RDE has 
been a lack of established interfaces.  A large amount of 
required information is present in spreadsheets, email 
“reports”, and other text file byproducts.   Several of these 
sources underwent nearly continuous format changes from 
one operational readiness test to the next, up until early 
Phoenix operations.   
 
To provide the data to meet this model, data ingestion 
clients (planning and performance) were developed.  Note 
that the total client development time for this initial upgrade 
took less than one month, once we had a solid model in 
place.  
 
For RDE, there are two sorts of “reactive” clients that run as 
full-time processes to provide automated data publication:   

 
• A Message Reactor that provides an interface to a 

legacy file management system called DOM 
(Distributed Object Manager), and 

 
• An ASC “Agent” application built that schedules 

relay events, publishes event messages, and 
performs automated data volume lookup. 

 
The DOM was utilized for two primary reasons.  First, the 
DOM is widely used by JPL mission systems and its 
interface is available to all operational machines with a 
standard multi-mission software deployment.  Second, and 
perhaps more importantly, the DOM is capable of 
publishing messages when files of any type are published to 
the file store.  These messages may be filtered by file type 
and other supported metadata.  This allows for the creation 
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of “message reactor” applications that can automatically 
trigger further processing when a file is published simply by 
reading the correct message off of a shared message bus. 
  
In the architecture of the RDE, a message reactor 
application reacts to one of several possible file types 
published to DOM by executing a new application, the 
purpose of which is to extract the newly published file out of 
the file repository, parse the relevant accountability data out 
of the file and publish the new data to the RDE database.   
 
The Assembled RDE Upgrade System 
 
Figure 2 shows how runtime automation and web servers 
were assembled operationally: 

 
 
 
 
As can be seen, much of the data are being provided through 
the DOM and message reactor interface.   
 
The RDE Overflight Record Lifecycle  
 
The following section discusses the lifecycle of the 
“overflight record” and what data sources provide updates at 
what point in the process.   
 

Pass Planning 
 
The RDE “overflight pass” record is first created when a 
planning file is published with a set of passes not currently 
present in the database.  
 
Pass planning information includes: 
 

• Geometric pass 
• Requested passes  
• Elevation angle 
• Planned data rates 

 
The long-range link planning process includes the creation 

the APGEN file that contains all pass schedules. The 
APGEN file is typically published more than once, with an 
initial version that contains all geometric opportunities, and 
further updates identifying those opportunities for which a 
relay service is requested. When a planning file is published 
that contains records already present in the database, each 
existing record is updated with any changes from the new 
file.  This is typically to update each geometric pass with the 
requested times and pass durations.   

 
There are a number of concerns when selecting a pass for 
use.  Limited lander energy resources drive the need for 
selecting passes with the best telecommunications 

Figure 2 – Assembled RDE Upgrade System 
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performance.  The maximum elevation angle of the pass is a 
primary consideration when choosing a pass for use. When a 
relay orbiter is in view near the horizon, link performance 
can be poor due to the large off-boresight angles of the 
lander and orbiter antennas, the long slant range between 
orbiter and lander, and potential multipath effects off of the 
Mars surface and/or lander deck.  As the orbiter rises, the 
signal improves until it reaches the maximum elevation, and 
then degrades the orbiter again approaches the horizon. The 
orbital elevation for a “quality” signal is typically greater 
than 5-10 degrees. Also, the higher the maximum orbtier 
elevation angle for a given , the longer the overflight and the 
greater the possible total volume of data that can be 
transmitted.  Therefore, overflight passes with a high 
maximum elevation are typically selected over passes with a 
low maximum elevation.  
 
Planning files and updates are typically published every one 
or two weeks.  
 
Pass Latency Predictions 
 
One parameter the RDE is required to track is the end-of-
pass “latency”, that is, the time the relay products for a given 
pass are expected to arrive at the lander’s GDS.  On its own, 
the end-of-pass latency might be considered a secondary 
parameter in comparison with pass planning and 
performance.   For relay missions that provide a “trigger” 
mechanism to indicate product completion such as MRO via 
the CCSDS File Delivery Protocol (CFDP), this a parameter 
is not of high value, as the “trigger” from the publication of 
the relay file product provides a means to identify that the 
complete data product has been delivered.   
 
For non-CFDP relay there is a significantly greater challenge 
to timely relay data collection. The primary non-CFDP relay 
asset in use is Odyssey, which has delivered more data than 
any other relay orbiter.  Because no external event trigger to 
drive the data collection, the best that Odyssey can provide 
is a prediction of the time that all data should be available to 
the ground system GDS Telemetry Data Service (TDS) 
based upon orbital geometry, data rate, etc. Nominally, this 
predict (plus some margin) should be enough to reliably 
trigger data collection in a timely manner soon after the data 
are made available. However, additional latencies are not 
rare and data may be received at later times, so that partial 
or no data may be retrieved at the time of the end of pass 
predict. To mitigate this, it is necessary to re-request data at 
a later time than the pass. 
 
The RDE design utilizes this pass predict to drive an 
automated lookup process using the “ASC agent” 
component. 

 
The Odyssey latency predictions have been distributed via 
email as an XML spreadsheet.  To support the RDE tool, the 
Odyssey planning team agreed to publish a CSV (comma 
separated value) text version of the XML spreadsheet to the 

DOM file store.  Upon publication, this file is parsed and the 
latency values are published via the ASC service API 
“update” function to the RDE database, using the natural 
pass identifier as an index.   
 
Pass Volume Predicts 
 
The ability to compare predicted versus actual data volume 
is an important function of the RDE. Such comparisons 
require the ingestion of predicted volumes for each pass. 
However comparisons are not as straightforward as merely 
picking the right predict for each pass. Each pass has a 
number of predicted values for the volume. These predicts 
depend upon a number of concerns such as data rate, 
elevation mask, elevation angle, and the remote antenna 
used for transmission (Helix or Monopole). These concerns 
change over the course of the tactical cycle, sometimes more 
than once, and so the final "correct" predict may not be the 
same as the original "planned" predict.  
 
The source of Phoenix predicts is a file called the 
“Integrated Overflight Summary”, another Microsoft Excel 
spreadsheet type.  This spreadsheet contains a table of 
predicts for each pass with values taking into account 
forward and return rates, remote antenna used, etc.   
 
We devised a means of exporting these predicts to a CSV 
file and publishing a table of those values to the RDE 
database, associating the set of predicts for each pass.  To 
present an accurate predict, the web interface presents 
predicts that align with the latest set of relating pass 
parameters (e.g. final forward and return rates for the link).   
 
The identification of an accurate predict from post-pass 
parameters turned out to be one of the bigger challenges of 
the RDE upgrade task.  Some open issues remain in this area 
to be addressed in ongoing work, such as the identification 
of the actual utilized antenna out of lander GDS telemetry.   
  
 
Pass Performance 
 
There are a number of sources for post-past performance.  
The primary tracked value is the transmitted pass volume. 
Both forward and return link volumes are tracked closely.  
These data are required for all current analysis views.   
 
Other pass-related collected information includes end of 
pass times, average transmitter power levels, and frame and 
packet counts.  
 
Pass performance data is collected from a variety of sources, 
including: 

• Query of “raw” telemetry database frames 
• Parsed from data product log files 
• Relay ACE text file report “scorecard” 
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We implemented to the broadly used JPL Telemetry Data 
System to calculate “raw” total telemetry volumes from 
Relay and User GDS databases.  This was the only 
mechanism available to calculate data volumes out of the 
Odyssey data flow.    
 
Unlike Odyssey, the MRO mission uses CFDP to distribute 
relay data.  With MRO/CFDP, a local JPL process provides 
an XML file containing pass information.  The total pass 
volume is identified in a field in this file, as well as final 
Pass Start and End times.  
 
The Relay “Scorecard” was provided through the 
aforementioned DOM interface and included relay 
calculated data volume, frame and packet counts, and 
additional average, minimum, and maximum AGC values.  
 
Web Views 
 
A major portion of development work involved the 
construction of a set of web views supporting strategic and 
tactical use.  To support these views we implemented an 
extension of the ASC CRUD API in JavaScript Object 
Notation (JSON) as part of the Asynchronous Java and 
XML (AJAX) style [9].  This provides an interface between 
client JavaScript and an ASC servlet running within a 
Tomcat application.  The AJAX “asynchronous XML” 
pattern provides for a highly responsive XML interface.   
 
Other web components include: 
 

• HTML to provide frames, etc., 
• CSS Style sheets, and 
• JavaScript. 

 
The following five views were released as part of the final 
Phoenix-era RDE delivery: 
 

• Overflight Review, 
• Export Volumes, 
• General Query, 
• Drop Dead Uplink Times, and 
• Overflight Report. 

 
Overflight Review 
 
The purpose of this view is to present a “quick summary” of 
pass performance.  This includes an indication of predicted 
vs. actual values.  This view was used daily during early 
ORTs to identify and track pass anomalies and reporting 
discrepancies.  Often enough the view was valuable as a 
“double-check” of data collected by various operational 
teams and the RDE software itself.   It might be considered 
the most “mature” of the available views. We expect MSL 
will benefit from this view.   
 

 

 
 
 

Figure 4 – Overflight Review 
 
 
As shown, this view contains a large number of “filtering” 
functions as well as other types of modifying functions. 
 
Table 3 describes each of the view control options: 
 

Table 3 – Overflight Review View Control Options 

 
View 

Control 
Description Default 

Days Range Filter passes in view to a time 
range from < Text Entry Field 
1 > days ago to < Text Entry 
Field 2 >.  This provides a 
“moving window” of recent 
passes.  

3 days 
prior to 2 
days hence 

SOL/DOY Filter passes by SOL or Day 
of Year (DOY).   

None 

Show # 
Records 

Limit the query of number of 
passes displayed.   

100 

UA Filter by User Asset. All 
RA  Filter by Relay Asset. All 
Requested Display “requested” passes.  

This includes all passes with a 
non-null value in the 
requested field in the APGEN 
pass plans, as well as any 
utilized pass (RA volume > 
0).   

True 

Utilized Displays any pass with an RA 
volume > 0. 

True 

SOL Time of 
Day 

Filter passes by local (i.e. 
Mars) time of day. 

False 

Compare 
Threshold 

Percentage difference allowed 
between predicted and actual 
values to trigger visual 
discrepancy (c.f. “Comparing 
Predict vs. Actual”). 

40% 

Remove RS Remove the Reed-Solomon True 



 12 

Overhead encoding overhead from the 
displayed RA Volume values. 
 Final value = value * 233 / 
255.  

Query Re-query data from database. N/A 
Auto-Query Auto-query the data in view 

according to the time delay 
selected from the adjacent 
pull-down menu (in seconds). 

 

Export Export the data in view to csv 
format (c.f. “Export”). 

N/A 

Report Run a JasperSoft report of the 
selected pass (c.f. “Report by 
Pass”).   

N/A 

 
 
Export Volumes 
 
As mentioned earlier, a primary purpose of this tool is to 
provide life-of-mission performance data.  Over the course 
of the early mission, the export function on the “Overflight 
Review” was used for this purpose. After approximately two 
months of data had been collected the review page became 
unresponsively slow to load all the required data.  This was 
largely due to the amount of Javascript on the Review page. 
 So an additional page was added with the purpose of quick 
export to csv.     
 
General Query 
 
Another important use of the RDE tool is ad-hoc analysis.  
To meet this need, we provided a general-purpose query 
display.  This includes selection of any set of fields as well 
any number of SQL “where” clauses.  Only the SQL “add” 
of where clauses are currently supported, “or” is not.   
 

 
 

Figure 3 – General Query View 
 
Drop Dead Uplink Times 
 
Pass plans include a time value called the “Drop Dead 
Uplink Time”.  These times represents the latest possible 
time that a User GDS team can submit a forward link 
product to a Relay GDS team and have it delivered via the 
indicated link.   
 

 
 

Figure 4 – Drop Dead Uplink View 
 
The provided view is not necessarily a great deal better than 
the current set of pass spreadsheets for those who are used to 
them. However, new functions such as a “countdown alarm” 
should improve its utility.   
 
Overflight Report 
 
Any tabular record in the Review and General Query 
displays can be selected and viewed as a report.  The report 
view shows all fields for the overflight record in question.  
Underlying this view is the JasperReport software.  
 

 
 

Figure 5 – Example Report 
 
Other Views 
 
Not all of our initial views made the final cut.  Key 
remaining views include a “Latest Pass” statistics view (like 
the Overflight Report) with an auto-update of recent passes 
utilized.  
 
Use of Web Technologies 

The web development effort involved a long learning curve 
for some of the RDE Upgrade development team.   

HTML 
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We used HyperText Markup Language (HTML) to layout 
the web framework and page structures. 

AJAX/JSON  

The AJAX (asynchronous JavaScript and XML) pattern was 
introduced to support a responsive web GUI.  An 
implementation of JSON (JavaScript Object Notation) 
provides the data service interface from the web client to a 
tomcat-maintained servlet. We have run into very few issues 
with this technology. [9][10][11][12]. 

CSS 

Cascading Style Sheets (CSS) provide a straightforward way 
to manage web page styles. The language is well supported 
through the open-source FireBug Editor. [13][14] 

JavaScript 

We used JavaScript to provide a rich interactive web 
interface, however our experience with JavaScript was not 
entirely favorable.   The JavaScript (JS) “brute force” 
approach to APIs including widgets led to our implementing 
more JS code than we might otherwise have.  We found the 
“typeless” language occasionally caused confusion.  We did 
find that it could be “made to provide” a rich web interface, 
though probably a heavier interface than it needs to be.  One 
real positive for JS is the huge volume of sample code 
available on the Internet, saving time when dealing with the 
many implementation problems that spring up. 

JasperReport   

We used a toolkit called JasperReport to build a database 
report we could execute from our web interface.  A 
JasperReport is edited using the iReport tool. When the 
report is opened, the JasperSoft library is executed which 
updates each field from the database and presents the 
updated report.   

The next section describes some of the “analysis views” that 
can be generated from data in the RDE store.   

5. RELAY ACCOUNTABILITY ANALYSIS  
From the start of the Phoenix mission through the current 
day the RDE tool has been used primarily to extract pass 
statistics for reporting.  The key primary tracked statistic is 
the total volume of data delivered by each relay spacecraft. 
Typically the “Export Volumes” web view is used for a 
“quick” export of these data, though the “General Query” 
view can also be used for this purpose.  Raw tabular data are 
exported in Comma Separated Value (CSV) format and then 
normally imported into an Excel spreadsheet for charting.   

Figure 6 shows the total volume over time from the start of 
Phoenix mission (Sol 0) to Sol 120, about a month past the 
end of prime mission: 
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Figure 6 – Cumulative Return Link Volume 

Figure 7 shows the same data values, but charted to show the 
total data volume transmitted per Sol: 
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Figure 7 – Data Volume By Sol 
 

On Figure 6 and Figure 7, the Phoenix Data Volume (DV) 
shown represents actual telemetry data and science product 
delivered.  The Fill DV on both figures represents “fill” 
frames that are transmitted when a relay link is open but no 
actual lander data is available to transmit.  This chart shows 
that the Odyssey mission has carried the most part of 
Phoenix relay data over MRO.  The low MRO volumes at 
the very early end of the chart are due to early MRO 
communications issues with Phoenix that were not resolved 
until later in the mission.  The volume discrepancies are 
clearly visible from both charts.   

Figure 8 shows the data volumes for the 128K overflights as 
a function of Mars LMST (Local Mean Solar Time): 
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Figure 8 – Data Volume By Sol 

Figure 9 shows a comparison of data volume predicts vs. 
pass performance values: 

 

Figure 9 – Volume Predicts vs. Performance 

6. CONCLUSIONS  
For ASC, the next step is to achieve a level of database 
independence.  We look to take advantage of emerging best 
practices technologies and patterns (e.g. Hibernate) [3] to 
upgrade our core server function to database independence, 
and our Agent Framework to take advantage of a workflow 
execution function or language such as the Business Process 
execution Language (BPEL) [2]. 

RDE is planned for update with the Mars Science 
Laboratory (MSL) mission.  This will include any required 
updates to the planning inputs (MSL will utilize a wider 
range of relay parameters, including higher data rates, 
multiple frequency channels, and possibly new modulation 
and coding schemes and adaptive data rate functionality) 
and a likely major change in the handling of predicts.   

One significant additional RDE improvement proposed is to 
develop a web-based tactical interface supporting pass 
utilization requests and tactical updates.  Currently, all 
tactical relay coordination is accomplished via email and 
phone.  This process could be greatly improved with the 
upgrade to of a web-based system.  However, if adopted, 
this upgrade would have a large impact on the current 
operational tactical process and thus must be carefully 
engineered across a broad user base.   
 
Overall we found we were able to accomplish our primary 
relay accountability goals using our chosen architecture.   
The ASC server held up as a useful way to manage object-
relational transactions over a distributed network, and our 
event-driven client mechanisms were assembled in a 
straightforward manner using the existing ASC Agent 
Framework as well as the DOM message reactor function.  
Our ability to accomplish this broad integration at a 
consistently low level of funding tells us that these 
technologies and patterns are worth pursuing as part of 
further accountability prototype, pilot, and deployment 
activities. 
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