
 1

Exploring the Use of a Test Automation Framework
Alex Cervantes

Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, CA 91109

818-354-0095
Alex.Z.Cervantes@jpl.nasa.gov

Abstract—It is known that software testers, more often than
not, lack the time needed to fully test the delivered software
product within the time period allotted to them. When
problems in the implementation phase of a development
project occur, it normally causes the software delivery date
to slide. As a result, testers either need to work longer
hours, or supplementary resources need to be added to the
test team in order to meet aggressive test deadlines. One
solution to this problem is to provide testers with a test
automation framework to facilitate the development of
automated test solutions.

The benefits of test automation are undoubtedly seen in big
software projects. The development of automated test cases
requires a lot of effort and time during the first test lifecycle,
but there is a significant amount of time that can be saved
with each repetition. Test automation gives a software tester
the possibility of achieving unattended testing capability.
With end-to-end test automation, a tester can schedule tests
to run autonomously. While tests are running, testers can
utilize the time saved by performing any requisite manual
testing, or developing additional automated test cases to
increase test coverage. Automated testing saves time as it
provides the capability to perform concurrent/parallel
testing. A tester can run multiple tests at the same time,
whereas manual tests only allow for sequential test runs. If
test automation is employed, testing does not have to end
when the workday ends; automated testing can be exercised
24x7.

A test automation framework can provide numerous benefits
to a software tester. A test automation framework provides
the basic set of software tools and services that can aid
testers as they develop automated test cases. With a test
automation framework, software testers can focus on testing
the software product instead of worrying about developing
the infrastructure needed to support their test development
environment. When choosing or developing a test
automation framework, it is important to understand all the
different components of an organization’s software system.
A good test automation framework should be general
enough to apply to all the different components of the
software system to be tested. The framework should also be
easily extensible so the framework can evolve as the
software system evolves. Whether creating one from
scratch or using a commercial product, having a test
automation framework available for test teams to use can
help streamline the process of developing automated test

solutions.12

TABLE OF CONTENTS

1. INTRODUCTION .. 1
2. SYSTEM TEST DESCRIPTION ... 2
3. EXPLORING STAF/STAX ... 3
4. IMPLEMENTATION APPROACH AND DESIGN 4
5. IMPLEMENTATION OBSERVATIONS 5
6. OVERALL IMPRESSION .. 6
7. CONCLUSION .. 7
ACKNOWLEDGEMENT ... 7
REFERENCES.. 8
BIOGRAPHY ... 8

1. INTRODUCTION
In an effort to improve project system level testing practices
within the ground data system(GDS) element at the Jet
Propulsion Laboratory(JPL), a trade study of ways to
improve test automation practices was conducted. One
prospect that was identified as a candidate for improving
current test automation practices is the use of a software test
automation framework. The goal of a software test
automation framework is to provide the infrastructure that a
tester needs in order to facilitate the development of
automated test solutions.

Looking for a candidate to evaluate the usefulness of a test
automation framework was not easy. The framework
evaluation team explored 3 options; developing one in-
house, using a consulting company to recommend a
commercial product, and performing a search on the web for
a commercial product. After evaluating all available
options, the evaluation team chose to use an open source test
framework called Software Test Automation Framework
(STAF). This product was identified as a general test
framework that could fit within the system test environment.
 To evaluate the benefits that STAF advertised, a system
level test involving two JPL software systems was chosen.;
the Mission Data Processing and Control Subsystem(MPCS)
and the Multi-mission Automated Task Invocation
Subsystem(MATIS). These two software products work
together as a system within JPL’s GDS.

The STAF framework provides a collection of general test
services that testers can use to develop their automated test
1
1 “U.S. Government work not protected by U.S. copyright.”
2 IEEEAC paper #1477, Version 1, Updated October 31, 2008

 2

solutions. These services provide software test functions
that are part of the infrastructure testers use to facilitate
automated test case development. STAF also provides the
capability to extend beyond its core set of services by
allowing testers to develop custom services specific to their
testing environment.

The STAF Execution Engine (STAX) is an additional
component of STAF which serves as a programming
language designed for test automation. STAX allows a
tester to develop their test execution workflow. STAX
provides the means by which a tester can distribute test data,
configure the test environment, execute the test, and analyze
the test results. STAX also has an optional GUI which lets a
tester conduct, monitor, and interact with test activities.

This paper discusses the evaluation team’s observations of
utilizing STAF and STAX to support the implementation of
an automated system level test between MPCS and MATIS.
Described in this document is:
(1) An overview of the MPCS and MATIS software

systems

(2) A description of STAF and STAX

(3) An explanation of the approach and design of the
system test

(4) A description of the test implementation

(5) The overall impression perceived by the evaluation
team

(6) What is needed to incorporate STAF into JPL’s GDS
system test environment

2. SYSTEM TEST DESCRIPTION
The system test that was chosen to evaluate the effectiveness
of using STAF within the GDS system test domain consists
of two software systems named MPCS and MATIS. The
goal of this test was to validate the interface between these
two software products. The communications interface
between MPCS and MATIS is done over the network
through the Java Message Service (JMS) bus. (See Figure
1.)

Fig. 1. System Test Overview

MPCS is a collection of programs that provide functions
such as frame processing, data product creation, telemetry
viewing, and additional GDS functions. The specific piece
of software used in this test is called chill_down, which is
the MPCS Downlink Data Processor. For this system test,
chill_down was configured to take a raw packet file as its
input, and process it to create raw data products. For each
raw data product that MPCS generates, an XML message
containing metadata about the data product is sent to the
JMS bus. Any client listening to the topic that chill_down is
publishing to will receive these messages. For this test, the
client configured to listen to the chill_down topic is MATIS.

MATIS is a distributed data processing framework for the
automated generation of instrument products. It is a
workflow manager that executes programs in a specific
order and under specific conditions. MATIS was installed
in the testbed on a machine running the Solaris 9 operating
system. Running MATIS requires that a MySQL database is
configured and running, followed by three command line
programs that must be executed in sequential order. These
programs are the controller, persistent store, and the service
factory. The version of MATIS that was tested used XML
messages on the JMS message bus as the specific condition
for triggering the execution of a specific program. In this
case MATIS listened to the JMS topic that chill_down was
publishing to. When the MATIS message listener receives
the XML product message on the JMS bus, MATIS
performs the following steps:
(1) Parses the XML message to determine what type of

product was produced.

(2) Determines which program to execute based on the
product type.

(3) Executes the program with the XML message as a
program argument.

The end of the test is reached when all the programs invoked
by MATIS have completed their execution.

 3

3. EXPLORING STAF/STAX
The STAF test framework consists of 3 major components:
STAF services, the STAF daemon, and the STAF API.
STAF also has an optional component called STAX, which
can be installed as an external service to STAF. STAX is a
programming language that was designed for the purpose of
testing. STAF and STAX provide general test capabilities
to facilitate the development of end-to-end automated tests.

STAF Services - The core functionality of STAF is in its
services. STAF services are a set of general functions that
testers can use to facilitate the process of creating automated
test cases. STAF services can be compared to built-in
objects that are found in most modern programming
languages such as C++ and JAVA. Built-in objects provide
common methods that programmers can utilize to develop
software applications. For example, the JAVA
programming language contains built-in object libraries such
as Swing for developing GUIs, a string object for parsing
and manipulating strings, and a math object for performing
basic mathematical computations. Object libraries such as
these make up the infrastructure that software engineers
depend on to develop their software applications. Without
this infrastructure, development time for software projects
would be prolonged.

STAF services follow the same concept as built-in software
objects, but are focused specifically for testers developing
automated test cases. Examples from the available set of
STAF services which testers may find useful are the LOG
service, VAR service, and the QUEUE service. The LOG
service provides set of standard log operations that allow a
tester to write data to a log file, query from a log file, and
delete entries from a log file. The VAR service gives the
tester the capability to manage variable pools within the test
environment. This service gives testers the capability to set,
get, and delete variables that can be seen by machines
connected to the test environment. The QUEUE service can
be used to simplify inter-process communication. For
example, a tester can use the STAF QUEUE service to
design a process workflow where process B only starts when
a certain condition in process A transpires. This can be
accomplished by running process A and sending its output to
the STAF queue. Process B can be setup to listen to the
specified queue for a specific output from process A.
Detection of the output would then trigger process B to
execute. These three services are examples from the STAF
service set that can aid testers when developing automated
test cases.

STAF allows testers to extend its built-in services by
providing a template for developing custom services. STAF
allows testers and developers to create custom services that
can be “plugged” into the STAF framework as an external
service for use by the rest of the test team. This is important

because the default set of STAF services are meant to
support general testing. If the testing environment requires
specific functionality, testers can develop their own STAF
service in C, JAVA, or Perl. STAF provides a custom
service template for each language that testers can use to get
started. For example, if the majority of software that is being
tested uses the JMS technology, a custom service that listens
to a JMS topic, publishes to a JMS topic, or executes a
process when a specific message is seen on the JMS bus can
be developed using the JAVA STAF template. Custom
services installed into the framework are external services
that reside outside the core of STAF. This architecture
allows for the installation of newer versions of STAF
without worrying about merging your previous installation
of STAF with the new one. It is as simple as copying your
external services into the new installation of STAF.

STAF Daemon – The STAF daemon allows for the
distribution of STAF services to STAF enabled machines on
a network. The daemon is a process that runs on each
machine waiting for a STAF service request from a local or
remote host. When the daemon receives a request, it parses
the STAF string to and performs the request on the local
host it is running on. This capability allows testers to
manage test processes running on heterogeneous machines
in the test environment. (See Figure 2.)

Fig. 2. Test environment communication through STAF
daemon

STAF API – The STAF API is the development interface to
the STAF services. It supports the development of test cases
in popular programming languages such as shell, perl,
python, C++, Java, and others. The variety of language
support allows testers to write their tests in the language they
are comfortable with. You can have one tester programming
in perl, another tester programming in python, and both can
have full access to all the STAF services.

STAF also has an optional component called STAX, which
is a programming language designed specifically for testing.
 The STAX programming language is comprised of three
technologies; XML, Python, and STAF. Testers can

 4

program “STAX jobs” that perform functions such as
distributing test data, configuring the test, and executing test
cases. STAX also provides a GUI tool which allows a
testers to visually monitor and interact with their STAX
jobs.

STAX

STAX provides the major features found in modern
programming languages that are useful for writing test
programs. These features include the use of variables,
functions, conditions statements, loops, and others. Python
is integrated with STAX giving powerful programming
control to the tester. The ability to use Python gives testers
great flexibility because of the numerous built-in libraries
that come with Python, and the open source libraries that are
available on the Internet.

STAX contains a number of key functionalities that are
specific to testing. One key feature is the ability to
concurrently distribute a STAF service onto multiple test
machines. For example, lets say a tester wants to run a
STAF service to execute a command which records system
performance data on 100 test machines. You can use perl
and the STAF API to do this by looping through a list of
machines and executing the performance capture software
on each machine in the list. However, there will be a latency
time difference between each execution because the iteration
through the list is done in sequence. This can cause the start
time of the recorded data on the last item the list to be
significantly later than the start time of the first item in the
list. In this type of situation, it may be more beneficial to
use STAX’s parallel iteration functionality to loop through a
list of machines and execute the performance capture
software on the test machines at approximately the same
time.

Another STAX function that is useful in managing processes
distributed across multiple machines is the “block” wrapper.
 Blocks give testers the capability to manage and control
groups of test processes. Working off the previous example,
lets say a tester wraps the process calls running on the 100
machines calls into a block. When it is time to kill those
processes, you can write a single line of code to terminate
the block, and all the processes running on the 100 machines
will die. Other useful functions are the hold and release
capabilities. These can be effective for managing process
flow in a STAX job, or when you want to manage process
execution through the STAX GUI. Two other valuable
STAX wrappers are the test case wrapper, which helps a
tester visualize testcase pass/fail status on the STAX GUI,
and a timer wrapper, which is used for timing process
execution times.

The STAX GUI tool gives the test conductor useful
functions that facilitate the management, interaction, and
visualization of STAX jobs. Management functions include
the ability to load, validate, and run STAX jobs through the

GUI. A tester can interact with STAX jobs by passing
parameter values to the job before it is submitted for
execution. This is similar to passing an argument to a
command line program. Testers can also interact with tasks
within the STAX job, such as terminating, holding, or
releasing blocks. Visualization capabilities allow the test
conductor to see all STAX jobs running, and the state of
each STAX job. For more detail on a STAX job, the tester
may open a STAX job to see the status of test case results,
logs, messages, etc. STAX jobs can be executed as well on
the command line, but the GUI is a good way to see a
snapshot of the state of all tests.

Fig. 3. STAF and STAX used in the test environment

4. IMPLEMENTATION APPROACH AND DESIGN
The purpose of the system test between MPCS and MATIS
was to evaluate the use of STAF as a test automation
framework for JPL GDS system level test teams. For this
reason, the approach for this evaluation was not to force the
use of the STAF framework wherever possible, but instead
to use STAF only where it made sense. The list below
describes the steps taken to automate this system test.
(1) Create procedures for the system test

(2) Test the procedure by running the test by hand

(3) Translate the procedures into pseudocode

(4) Obtain a general overview of all available STAF
services

(5) Analyze the pseudocode and use STAF services where
it makes sense

Implementation of the pseudocode was done using STAX,
Perl with the STAF API, and Python without the STAF API.
 This approach gave the evaluation team a good
understanding of the framework so they could later discuss
the benefits and difficulties they encountered. Between the
three methods the primary focus was given to the STAX
implementation because of its test-centric capabilities.
Implementation for all three approaches was performed on a
Mac.

The goal of the evaluation team was to automate most of the

 5

pseudocode with the goal of having the test fully automated.
After looking at the STAF services available, they found
that it was possible to automate the entire test and not need
the interaction of a tester to do manual testing. The
automated test design consisted of the following:
(1) Delivering configuration files from the test conductor

machine to the MPCS and MATIS machines.

(2) Creating a temporary directory on the test machines for
test results collection.

(3) Starting up the MySQL database (Needed by MATIS).

(4) Starting up MATIS processes.

(5) Starting chill_down with the input file to initiate the
test.

(6) Timing the test.

(7) Shutting down MATIS processes and MYSQL upon
completion of the test.

(8) Analyzing the test data collected on the MPCS and
MATIS test machines.

(9) Publishing the test results on the tests results database
website.

Fig. 4. Test Automation Workflow

5. IMPLEMENTATION OBSERVATIONS
The implementation of the automated system test was quick
with the exception of the time it took get over the STAF and
STAX learning curve. Just like any other piece of software,
time is needed to learn how to install, configure, and use
STAF and STAX.

Using STAF

Configuring and installing STAF on the test machines was
clear-cut. STAF was up and running on all the test machines
within a few hours, and sample STAF service calls were
tested shortly after on the unix terminal as a shell command.

 The syntax for calling STAF services is well documented in
the STAF user’s guide and easy to understand. In addition
to this, each STAF service provides a built in “help” option
that describes how to use the service. This is similar to a
man page for unix commands.

Using STAX

Configuring and installing STAX as an external service to
STAF was also explicit. Like STAF, STAX also has a
comprehensive user’s manual that explains in detail STAX’s
usage. Within one hour, STAX was installed on OSX
running on a Mac laptop. The STAX GUI worked on the
first try, and a sample STAX job XML file was loaded and
executed through the GUI.

Learning and getting used to the STAX programming
language took some getting used to. It took one week before
the evaluation team became comfortable with writing STAX
code. The idea of writing a program in XML was awkward
at first for the evalutation team. Some of the frustrations
that were perceived included:
(1) A lot of code is needed to do simple things. This is

mostly due to the nature of XML.

(2) Editing XML code can be frustrating because of the
constant necessity to adjust the indentation of XML
code so that it is easy to read.

(3) Quoting in STAX be confusing and convoluted at
times, especially when wrapping complex python
quoted strings inside XML specific quoting syntax.

(4) The utilization of Python with the XML syntax takes
some getting used to. For example, arrays are declared
in Python syntax, but iterating through the array
requires STAX specific syntax. Getting used to this
takes some time, but becomes natural over time.

(5) Since syntax is in XML, you cannot nest comments
which can be a hassle when debugging programs.

Some of these frustrations could have been relieved with the
use of a text editor specific for XML, but the evaluation
team did not have one and used regular text editors.
Although it took some time for the evaluation team to adapt
to using STAX to write the test case, the end result was
positive.

Using STAF and STAX to implement the automated
testcase showcased the benefits of using a test automation
framework. The biggest benefit was that there was no need
to develop test infrastructure to support the implementation
of the automated test. There seemed to be a STAF service or
STAX capability to facilitate the development of every part
of the test. The major features that simplified the test
development include:

 6

(1) STAF daemon – provided the capability to distribute
STAF services between test machines. This made it
possible to run everything from the test conductor
machine (Mac).

(2) File System (FS) STAF service – This service was
used to distribute configuration files and collect test
results to and from the MPCS and MATIS test
machines.

(3) Process STAF service – This service allowed
processes such as MySQL, the MATIS components,
and MPCS to be initiated from the test conductor
machine, but run like it was started from the resident
host machine.

(4) STAF logging service – Took care of managing test
log operations.

(5) STAF global variables – Allowed all the test machines
to define and share a common variable set for easy
communication between the machines.

(6) STAF HTTP service – This was used to autonomously
publish a test report to the test results database.

(7) STAX GUI – This feature was very helpful to visualize
the test processes on a single page on the GUI.

(8) Testcase STAX wrapper – This wrapper allows the
tester to define individual test cases with a STAX job.
The visualization of the pass/fail status is shown on the
GUI for convenience.

(9) Embedded Python support – This was used analyze the
test results and create the test report.

Using Perl and the STAF API

Using Perl with the STAF API to access STAF services
certainly simplified the development of the test case. The
STAX visualization features and wrappers were missed, but
not necessary to automate the test case.

Without a test automation framework, a lot of infrastructure
code would need to be developed before test case
development could start. For example, In place of the
daemon, methods to carry out the remote execution of tasks
would need to be created using technologies such as Secure
Shell(SSH) and remote procedure calls(RPC).
Development time for this would most likely prolong the
overall development time of the test case because the
infrastructure software, like all software, would have to be
tested on its own. Given this, testers would be testing
software that is used to test their software, causing the
inefficient use of a testers time. This exact inefficiency was
experienced when implementing the test case in Python
without the use of a test automation framework.

Using Python as a test automation framework

To better study the use of a test automation framework as a
means of improving testing practices, a case study involving
the implementation of the same task without STAF had to be
exercised. This was accomplished by using only the Python
programming language to replicate what was previously
done with STAF. This task proved that infrastructure
development can occupy a large amount of a tester’s time.
The inefficiency of developing everything from scratch was
observed early on, so the full completion of this task was
never reached. The amount of time and work it took to
replicate STAF’s abilities of distributing tasks and threading
processes resulted in the early realization of the benefits of
using a test automation framework.

6. OVERALL IMPRESSION
The overall impression of test automations frameworks,
specifically STAF/STAX, was positive. The evaluation team
felt that having a test automation framework could benefit
GDS system-level testers. The GDS is a complex system
comprised of a heterogonous mix of operating systems and
programming languages thus making system-level test
automation difficult. It is also common that members within
a test team have different skill sets and methods when it
comes to testing. There are test automation power users
who try to automate everything, manual testers, and a testers
who dabble in both. Within the group that does practice test
automation, it is usually the case that all the testers do not
use the same programming language to do their test
automation development. Because of these factors, STAF’s
flexibility to support numerous operating systems and
programming languages was the driving factor for
recommending the STAF test automation framework to GDS
system-level testers.

STAF’s modularity and expandability is another important
facet of the framework. Software systems, over its lifetime,
expand and evolve. When this happens it is important that
test functionalities provided by the framework can grow just
as software capabilities grow. The modular structure of
STAF and STAX both provide templates that testers can use
to extend the functionality of the framework.

STAF’s and STAX’s general capabilities were mostly useful
and easy to use. Overall, the general consensus was that
STAF and STAX made complex testing tasks simple. The
evaluation team tested most of the STAF/STAX capabilities
that were not used in the MPCS/MATIS system-level test,
and most of them seemed like it could simplify the different
areas of system-level testing.

The fact that STAF is open source is both good and bad.
The biggest benefit is that the testers don’t have to worry
about maintenance of the framework, which can be costly if
it were done in-house. On the flip side, if bugs are found in
the framework, you are at the mercy of the framework

 7

developers to have them fixed. In the worst case scenario,
the test team could be heavily invested in the framework
only to have the support for the project stop. When
evaluating the possibility of this occurring, it is important to
look at the size of the open source community behind the
project, and the development history of the open source
project. In this case, STAF has a striving community, and
has been in active development since 2001 with routine
updates to the software.

Although STAF/STAX could work well within the JPL
system-level testing environment, it may not be suitable for
all software testing scenarios. There is definite overhead
associated with utilizing a test framework. Testers must
invest a considerable amount of time to learn how to use and
adapt to using a test automation framework. Also, since test
automation is a development project, testers need a
considerable amount of knowledge in the area of software
engineering. For these reasons, a test automation framework
may not be suitable for small software projects with small
team of developers and testers. In this case, the use of
simple scripting may be more efficient than utilizing a test
framework. A test automation framework is best suited for
large and long term projects where the cost of the overhead
associated with framework is relatively small when
compared to the cost of the software project.

Implementing STAF/STAX into the GDS system test team

Before committing to using the STAF test automation
framework, a few important tasks need to be addressed. The
first task is to have the entire test team try out the STAF
framework. To facilitate this process, it is a good idea to
have a “STAF maintainer” that can teach and assist the test
team as they learn to use the framework. It is important for
the maintainer to be attentive to the test team’s suggestions
and complaints because those will be the initial drivers for
custom STAF service development. The coordination of
custom service development is another job of the maintainer.
 The maintainer should work with developers to encourage
them to write custom services to meet the needs of testers.
As custom services are developed, it is the maintainer’s job
to install the custom service into the framework for
immediate use by the testers. Having a dedicated STAF
maintainer available can be very useful in the early stages of
adopting STAF as the team’s test automation framework.

Fig. 5. Role of the STAF/STAX maintainer

7. CONCLUSION
As technology continues to grow and become more
complex, software testers will be faced with tougher
challenges to fully test the software product within the time
given to them. To keep up with this trend, testers must
consistently look for ways to improve their testing practices.
 A test automation framework is a tool that can help a tester
efficiently develop end-to-end automated test solutions.
Utilizing a test automation framework is be a big investment
up front, but it can lead to a net cost savings in the future.
Determining which test automation framework to use is not
a trivial process. So before your organization decides to
commit to using a test automation framework, it would be
wise to first explore its use within your testing environment
to ensure that it is suitable to your software testing needs.

ACKNOWLEDGEMENT
The work described in this paper was carried out at the Jet
Propulsion Laboratory, California Institute of Technology,
under a contract with the National Aeronautics and Space
Administration.

 8

REFERENCES
[1] Software Testing Automation Framework(STAF)

Website http://staf.sourceforge.net

[2] “STAF V3 User’s Guide,” Software Testing Automation
Framework (STAF) Website
http://staf.sourceforge.net/current/STAFUG.htm, Feb 26,
2008.

[3] “STAX Service User’s Guide,” Software Testing
Automation Framework(STAF) Website
http://staf.sourceforge.net/current/STAX/staxug.html, Sep.
26, 2008

[4] “STAF Service Developer’s Guide,” Software Testing
Automation Framework (STAF) Website
http://staf.sourceforge.net/current/STAFUG.htm, Dec. 14,
2007

[5] “STAX Extensions Developer’s Guide,” Software Testing
Automation Framework (STAF) Website
http://staf.sourceforge.net/current/STAFUG.htm, Oct. 3,
2007

[6] Andrew W. Bingham, “Mars Science Laboratory MS
Functional Design Document (FDD), JPL Docushare, Feb.
7, 2008

[7] Jake Engleman, “Exploring a Test Automation
Framework: Using STAF/STAX to Perform a System-
Level Test of MPCS and Matis”, File transfer from author,
Aug. 5, 2008

[8] Jake Engleman and Alex Cervantes, “Exploring a Test
Automation Framework”, Group Presentation at JPL, Sep.
4, 2008

[9] Cecilia Cheng, Rajesh Patel, Elias Sayfi, and Hyun Lee,
“Multi-mission Automated Instrument Product Generation
Implemented Capabilities”, File transfer from author, Oct.
21, 2008

[10] “Java 2 Platform Standard Edition 5.0 API
Specification”, Sun Microsystems Website
http://java.sun.com/j2se/1.5.0/docs/api

[11] IBM Software Group, “Hands-on Automation with
STAF/STAX”, Software Testing Automation Framework
(STAF) Website http://staf.sourceforge.net/education

[12] Alex Cervantes, “Test Automation Proposal”, Group
presentation, Jun. 18, 2007

BIOGRAPHY

Alex Cervantes, Project Integration, Test, & Deployment
Engineer, Jet Propulsion Laboratory, Pasadena, California.

Alex is currently working on MSL project as an Integration,
Test, and Deployment engineer as part of the GDS team.
He is also working on integrating the STAF test automation
framework into the Project Integration, Test, &
Development group at JPL. He received his B.S. in
Computer Science from UC Riverside in 2002.

http://staf.sourceforge.net/current/STAFUG.htm
http://staf.sourceforge.net/current/STAX/staxug.html
http://staf.sourceforge.net/current/STAFUG.htm
http://staf.sourceforge.net/current/STAFUG.htm
http://java.sun.com/j2se/1.5.0/docs/api
http://staf.sourceforge.net/education

 9

