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Abstract—
We are developing onboard planning and execution
technologies to support the exploration and char-
acterization of geological features by autonomous
rovers. In order to generate high quality mission
plans, an autonomous rover must reason about
the relative importance of the observations it can
perform. In this paper we look at the scientific
criteria of selecting observations that improve the
quality of the area covered by samples. Our approach
makes use of a priori information, if available, and
allows scientists to mark sub-regions of the area
with relative priorities for exploration. We use an
efficient algorithm for prioritizing observations based
on spatial coverage that allows the system to update
observation rankings as new information is gained
during execution.

I. INTRODUCTION

Our goal is to increase the onboard decision-making
capabilities of planetary exploration rovers. Currently, each
morning of the Mars Exploration Rover (MER) mission the
scientists and engineers meet to discuss the observations
they would like the rover to perform. A subset of these
observations are selected that are predicted to fit within the
time and resource (e.g. energy, onboard memory) constraints
of the rover. The engineering team spends the rest of the day
preparing the specific sequences that the rover will perform
to collect these observations and modeling the plan to ensure
it fits within resource constraints.

While the MER mission has been highly successful at
exploring Mars, mission operations are manually intensive
and time consuming. And, in some cases, the sequences that
are uplinked do not always take full advantage of available
opportunities. For example, if the rover receives more solar
array input than expected, it may have energy to preform
more science observations than what was uplinked.

By enabling rovers to perform onboard planning and
scheduling, we anticipate greatly reducing the time and effort
required to perform mission operations while increasing the
science that is acquired. The science and engineering teams
will be able to uplink observation requests that potentially
over-subscribe the rover’s resources. The rover will use
observation priorities and its current assessment of available
resources to make decision about which observations to
perform and when to perform them.
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In order to make effective decisions about which obser-
vations to perform, the rover must reason about science
priorities. In our current work, we are focusing on situations
in which the rover is exploring large geological features such
as craters, channels or a boundary between two different
regions. In these cases, an important factor in assessing
the quality of a plan is how the set of chosen observa-
tions spatially cover the area of interest. Thus, one of the
considerations a rover should make when evaluating which
observations should be included in a plan is how well the
candidate observations will increase the spatial coverage of
the plan.

The overall goal of this technology is to enable the rover
to generate and execute plans that makes an appropriate
balance between detailed study and broad coverage of a
region. In this paper we describe a technique that allows a
rover to evaluate the spatial coverage quality of a plan. It is
also important that the rover consider the cost of acquiring
observations and ensure that the plan respect mission and
resource constraints. For example, some observations may be
more time intensive while others are more power or memory
intensive. The rover should also consider ordering observa-
tions to reduce traverse distance and time. Therefore, we have
integrated the spatial coverage metric into a planning system
that reasons about observations costs along with time and
resource constraints. This enables the rover to generate high-
quality, efficient plans that take into account spatial coverage
quality while respecting mission and resource constraints.

II. EXPLORING GEOLOGICAL FEATURES

We are developing onboard planning and scheduling tech-
nology to enable rovers to more effectively assist scientists
in exploring geological features. Figure 1 shows examples of
geological features on Mars illustrating the types of features
rovers may be directed to explore.

A scientific campaign for exploring a geological feature
will employ a variety of rover instruments for collecting data
about the region. For example, each Mars Exploration Rover
is equipped with remote sensing instruments including high-
resolution panoramic stereo cameras with a variety of fil-
ters (Pancam), navigational (Navcam) and hazard avoidance
(Hazcam) stereo cameras and a Mini Thermal Emissions
Spectrometer (Mini-TES). Each rover also has an arm with
a suite of instruments for close contact measurements: a
microscopic imager (MI), two spectrometers and a rock
abrasion tool (RAT) able to remove a few millimeters of
a rock’s surface.



(a) Channels (MGS MOC Image) (b) Layers (MGS MOC Image) (c) Craters (MRO HiRISE Image)

Fig. 1. Example geological features on Mars.

When humans perform mission planning, there may be a
variety of reasons why a particular observation is selected
in a given plan such as its benefit to different science con-
siderations (geology, atmospheric studies, . . . ). In this paper,
we are focusing on assessing the contribution observations
make to the spatial coverage of a plan.

Of course, the mission planning team must also take
into account the limited set of resources that the rovers
have to perform observations. The rovers are constrained by
limited energy, onboard data storage, downlink opportunities
and bandwidth and time to complete observations. Each
observation places a different set of demands on these
resources. Some are very time consuming, such as long-
term spectrometer integrations, while others are memory
intensive, such as Pancam acquisitions. And some activities
are constrained to occur at certain periods of the day due to
sun angle or temperature.

With respect to spatial coverage, some observations have
a wide field of view, such as Navcams, while others, such
as Mini-TES and Pancam have a narrow field of view. The
instruments also vary in the quality of their coverage with
respect to the distance of an observation target from the
rover. Terrain features may obstruct the areas covered by an
observation. Finally, for a given geological feature, scientists
may be more interested in certain sub-regions of that feature
than in others. Thus, observations should also be evaluated
based on the relative importance of the area for which they
provide coverage.

III. CASPER CONTINUOUS PLANNING AND
OPTIMIZATION FRAMEWORK

Our objective is to enable onboard planning software to
reason about the scientific quality of a plan so that it can
make more informed decisions about which observations
to perform. This will enable the ground team to uplink a
larger set of observations and let the rover dynamically select
among them based on the scientific and engineering merit of
the resulting plan and the rover’s assessment of available
resources. During execution, the rover will modify the plan
based on the current estimate of its resources.

Our approach is implemented within the CASPER sys-
tem [1], [2]. CASPER employs a continuous planning tech-
nique where the planner continually evaluates the current

plan and modifies it when necessary based on new state and
resource information. Rather than consider planning a batch
process, where planning is performed once for a certain time
period and set of goals, the planner has a current goal set, a
current rover state, and state projections into the future for
that plan. At any time an incremental update to the goals or
current state may update the current plan. This update may
be an unexpected event (such as a new science target) or a
current reading for a particular resource level (such as battery
charge). The planner is then responsible for maintaining a
plan consistent with the most current information.

A plan consists of a set of grounded (i.e., time-tagged)
activities that represent different rover actions and behaviors.
Rover state in CASPER is modeled by a set of plan timelines,
which contain information on states, such as rover position,
and resources, such as energy. Timelines are calculated
by reasoning about activity effects and represent the past,
current and expected state of the rover over time. As time
progresses, the actual state of the rover drifts from the state
expected by the timelines, reflecting changes in the world. If
an update results in a problem, such as an activity consuming
more memory than expected and thereby over-subscribing
RAM, CASPER re-plans, using iterative repair [3], to address
conflicts.

CASPER includes an optimization framework for rea-
soning about soft constraints such as reducing the distance
traversed by the rover and increasing the value of science
data collected. User-defined preferences are used to compute
plan quality based on how well the plan satisfies these
constraints. Optimization proceeds similar to iterative repair.
For each preference, an optimization heuristic generates
modifications that could potentially improve the plan score.

Figure 2 provides a high level description of the control
algorithm used for the rover application of CASPER. The
algorithm takes as input a set of goals with associated
science priorities and a set of time and resource constraints.
CASPER’s optimization framework supports a wide-range of
user-defined preferences. For the purpose of this paper, we
focus only on a spatial coverage preference which will be
explained in the next section.. The main loop of the algorithm
interleaves iterative repair and iterative optimization to search
for a conflict-free plan of high quality. The loop begins by
processing any updates on state and resource timelines or on



activity status. It then enters a loop in which it attempts
to improve the plan by repairing conflicts or performing
optimization steps.

Input
A set of science observations (oversubscribed)
Time & resource constraints

Repeat:
Process updates from Executive
Optimize for n iterations

If no conflicts, satisfy observation
with largest spatial coverage contri-
bution

Else, resolve conflicts
if delete, delete observation with
smallest spatial coverage contribu-
tion

Commit and/or Rescind activities
If idle, attempt to move up future activities

Fig. 2. CASPER control algorithm for rover domain.

If there are no conflicts, CASPER attempts to improve
the plan by satisfying an observation, in this case, the
observation with the largest spatial coverage contribution.
If there are conflicts, it will perform an iteration of repair,
selecting one of the available repair methods (e.g. move an
activity, add an activity, . . . ). If deletion of an observation is
selected, it will select the observation providing the smallest
spatial coverage contribution.

Note that satisfying an observation will likely introduce
conflicts as this is where CASPER will evaluate the resource
and temporal requirements of an observation. CASPER will
use subsequent iterations to try to resolve these conflicts.
For example, if the rover is not currently at the appropriate
location to take an observation, this will introduce a state
conflict which CASPER will attempt to resolve. One option
for fixing this conflict is to add an activity that can move the
rover from one location to another, i.e. a traverse activity.
This is also where CASPER selects an ordering of obser-
vations in an attempt to minimize traverse distance. We use
a simple traveling salesman heuristic to pick start times for
activities to reduce traverse distance.

Figure 3 illustrates the “lifetime” of observations in the
system. New observations are placed in a requested bin.
When an observation is selected to be satisfied, it moves
from requested to pending in which it awaits execution. In
the meantime, it may be deleted to resolve conflicts in the
plan, in which case it moves back to requested. As it nears
time for a pending observation to be executed, it is committed
and sent to an executive process for execution. If a problem
occurs in the plan before the actual execution time of the
activity, the planner has the ability to request a rescind of
the observation from the executive. If the executive is able
to honor the rescind request, it is as if the observation had
been deleted from the plan and it returns to the requested
bin.

The next section provides details on how the spatial
coverage quality of a plan is computed and how observations
are selected to improve this score.

Fig. 3. The lifetime of an observation.

IV. SPATIAL COVERAGE PREFERENCE

Figure 4 provides an example region of terrain that we
want a rover to explore and along with an example set of
observations that are under consideration for the plan.

Fig. 4. Digital elevation map of an example terrain to be explored along
with a set of observations to perform.

With limited available resources, it is unlikely that the
rover will be able to perform all of these observations.
As discussed previously, there are many considerations for
determining which subset of observations should be included
in a plan. The objective of this work is to develop a
preference to encourage spatial coverage to be one of the
considerations during plan generation and modification.

In this section we describe our approach to representing
and reasoning about the spatial coverage quality of a plan.
We begin by describing how we represent a priori informa-
tion about the terrain to be explored along with scientists’
priorities indicating the relative importance of various sub-
regions. We then describe how we model the coverage quality
afforded by a given observation. These observation models
are used to track the spatial coverage quality of the plan,
taking into account those observations that have already been
executed and those that are scheduled to execute in the
future. When resources and plan space is available, all of
this information is then used to select which observations to
add to the plan in an attempt to optimize the spatial coverage
of the plan. Conversely, when resources are over-subscribed
and observations must be shed, this information is used to
select an observation that will make the smallest impact on
the spatial coverage of the plan if it were removed.









an observation (compute the overlay matrix in Section IV-
B) and the time it takes to compute the spatial coverage
contribution of an observation relative to a coverage matrix.
We recorded the times for an observation represented with
different resolutions, from high resolution (0.1m per pixel)
to coarse resolution (1m per pixel). As can be seen, the time
required decreases rapidly when the resolution becomes more
coarse.

Figure 11 (b) shows the time it takes to rank a set of
observations at different resolutions. Again, the time required
decreases rapidly when the resolution decreases. Finally,
Figure 11 (c) shows the impact resolution has on the quality
of the ranking. Each data point is an average over 10
randomly generated problem sets of 10 observations each.
We ranked the observations at several resolution levels with
the highest being 0.1m per pixel and lowest 8m per pixel. For
each run, we correlated the ranking of an observation set with
the ranking that was produced for that same observation set at
the highest resolution. The results show that we achieve high
correlation even when the resolution gets very coarse. Thus,
the algorithm can perform efficiently at coarse resolutions
while still providing high quality rankings.

We have also performed runs of the integrated planning
system using a high-fidelity rover simulator [5]. In future
work we will evaluate the overall performance of the inte-
grated system.

VI. RELATED WORK

The spatial coverage problem we are solving is similar to
the Art Gallery Problem [6] from computational geometry.
However efficient solutions to the the 2D Art Gallery Prob-
lem do not scale well to 3D. The ROPE (Rank and Overlap
Elimination) system selects locations for video cameras for
visual surveillance of large 3D open spaces [7]. ROPE uses
a greedy algorithm similar to the one used in this paper.
However, ROPE does not model the quality of coverage (e.g.
observations from a distance may not be as good as close-up
observations) nor does it consider the cost of observations.

Dhillon and Chakrabarty present an approach for selecting
locations for placing sensors in terrain to provide efficient
coverage and surveillance [8]. The objective is to place
sensors to provide a given probability that targets will be
detected at a given set of grid points. The algorithm takes into
account the probability that a target will be detected. This is
analogous to our objective of increasing coverage quality of
a geographical area. Both approaches allow users to specify
priorities on the areas that are covered. Our approach differs
in that it does not assume uniform cost for observations but
instead uses the planner to assess the cost of performing
an observation. Also, when applied to the spatial coverage
problem that we are addressing this approach would be too
space and time intensive.

The swath coverage problem for orbital satellites is similar
to the spatial coverage problem addressed in this paper [9],
[10]. While these systems reason about observations costs,
planning for surface operations involves distinct types of

constraints, choice points and observations modeling. How-
ever, our approach does use a similar greedy algorithm for
selection observations as used in ASTER [10].

VII. CONCLUSIONS

We have presented a set of algorithms that enable a rover
to compute the spatial coverage quality of a plan and to
rank candidate observations by how well they are expected
to improve coverage quality. Using this technique, a rover
is better able to assist in the exploration of geological
features by generating high quality operations sequences that
take into account spatial coverage along with other science
considerations. We have currently implemented and tested
these algorithms in stand-alone mode as well as integrated
into an execution system with a high-fidelity rover simulator.
In future work, we will focus on evaluations of the integrated
system and on techniques for combining multiple preferences
functions so that the system can more effectively trade-
off science and engineering objectives when generating and
executing plans.
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