

1065

1

Controlling Precision Stepper Motors in Flight
using (Almost) No Parts

David Randall
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Drive

Pasadena, California 91109-8099
(818) 393-4370

dpr@jpl.nasa.gov

Abstract—This concept allows control of high-performance
stepper motors with minimal parts count and minimal flight
software complexity. Although it uses a small number of
common flight-qualified parts and simple control
algorithms, it is capable enough to meet demanding system
requirements. Its programmable nature makes it trivial to
implement changes to control algorithms both during
integration & test and in flight. Enhancements such as
microstepping, half stepping, back-emf compensation, and
jitter reduction can be tailored to the requirements of a large
variety of stepper motor based applications including filter
wheels, focus mechanisms, antenna tracking subsystems,
pointing and mobility. The hardware design (using an H-
bridge motor controller IC) was adapted from JPL’s MER
mission, still operating on Mars. This concept has been fully
developed and incorporated into the MCS instrument on
MRO, currently operating in Mars orbit. It has been
incorporated into the filter wheel mechanism and linear
stage (focus) mechanism for the AMT instrument. On
MCS/MRO, two of these circuits control the elevation and
azimuth of the MCS telescope/radiometer assembly,
allowing the instrument to continuously monitor the limb of
the Martian atmosphere. Implementation on MCS/MRO
resulted in a 4:1 reduction in the volume and mass required
for the motor driver electronics (100:25 square inches of
PCB space), producing a very compact instrument. In fact,
all of the electronics for the MCS instrument are packaged
within the movable instrument structure. It also saved
approximately 3 Watts of power. Most importantly, the
design enabled MCS to meet very its stringent maximum
allowable torque disturbance requirements. 12

1 978-1-4244-3888-4/10/$25.00 ©2010 IEEE
2 IEEEAC paper #1065, version 2, updated Friday, November 13, 2009

TABLE OF CONTENTS

1. BACKGROUND .. 1
2. DESIGN CHALLENGES.. 2
3. FLIGHT HARDWARE .. 3
4. FLIGHT SOFTWARE.. 5
5. ACCELERATION ... 5
6. MICROSTEPPING.. 6
7. IMPROVING PERFORMANCE .. 8
8. PROGRAMMING THE SYSTEM.. 9
9. CONCLUSION.. 10
ACKNOWLEDGEMENTS.. 10
REFERENCES.. 10
BIOGRAPHY ... 10

1. BACKGROUND
Spacecraft carry instruments. Instruments have
mechanisms. Controlling these mechanisms without
affecting either the operation of the instrument or the
stability of the spacecraft can sometimes be challenging.

The Mars Climate Sounder (MCS) on the Mars
Reconnaissance Orbiter (MRO) posed such a challenge.
While relatively small (9.8 kg), it contains two actuators
that allow the entire instrument to scan continuously while it
orbits Mars. Data collection occurs at two-second intervals,
is also continuous, and has to be synchronized with actuator
motion starts and stops. Stringent requirements were placed
on the instrument with regard to the amount of torque it
could impart to the spacecraft.

1065

2

Figure 1 - The MCS instrument, with thermal blanketing, telescope baffles, and covers removed

In figure 1, the MCS instrument is undergoing azimuth
torque disturbance testing. The azimuth actuator (bottom)
rotates the yoke (u-shaped structure). The yoke holds the
elevation actuator (right side) that rotates the radiometer
(rectangular structure).

2. DESIGN CHALLENGES
To obtain maximum system performance, it is desirable to
use the actuators to slew the MCS instrument as fast as
possible, maintaining our torque margins without violating
torque disturbance requirements. Of course, we also want
to use as little power as possible. These design challenges
fall into three broad categories.

Bulk (DC) torque requirements:

o The actuators have to be accelerated and
decelerated at the maximum rates that do not violate the
spacecraft’s torque requirements. The azimuth maximum
allowable torque disturbance is 0.04 Nm. The elevation
maximum allowable torque disturbance is 0.02 Nm.

o The maximum allowable rates are different for the
elevation actuator (which only rotates the 4.2 kg
radiometer) and the azimuth actuator (which rotates 7.7 kg,
including the radiometer, yoke, and elevation actuator).

o The actuator movements are arbitrary, from 1 step
to 1,390 steps. The algorithms have to work regardless of
the number of steps.

o The actuators have a top speed that is less than the
speed we could attain in ½ the total travel distance. If the
motion is long enough, the actuator has to stop accelerating
and run at top speed until it is time to decelerate.

Dynamic (AC) torque requirements:

o Stepper motors have inherent granularity. The
MCS actuators have 30° (12-pole) motors, driving a 3.33:1
planetary gearbox, followed by an 89.1:1 harmonic drive.
Each step of the motor produces only a 0.1° movement of
the instrument. If driven by conventional means, even this
seemingly small motion would far exceed the maximum

1065

3

allowable dynamic torque requirement of 0.005 Nm from 0
to 125 Hz.

o Microprocessor-driven control circuitry also has
inherent granularity. Differing execution times of various
parts of the control algorithm will introduce additional jitter.
There is also an absolute boundary to the time resolution
that can be achieved, based upon the microprocessor clock.
 MCS has a time resolution of about 1.5 microseconds.

o If we accelerate through the natural frequency of
the system (57 Hz), it will cause the system to ‘ring’,
introducing additional jitter.

Power requirements:

o The actuators are power hungry and operate almost
continuously. They need to use +28V spacecraft bus power
(solar cells/battery) for the stepper motors rather than MCS
regulated secondary power. This avoids the approximate
75% efficiency penalty of the DC/DC converters used to
regulate the MCS power. All the control circuitry (that uses
MCS regulated secondary power) must be electrically
isolated from the stepper motor drivers (that use spacecraft
bus power).

o Spacecraft bus voltage can vary from +22V to
+36V. In reality, it is unlikely that the spacecraft would be
conducting normal operations (i.e. allowing MCS to move
its actuators) if the battery voltage were to drop below 26V
(it would be load shedding to save itself). Even so, a 26V to
36V range produces a 2:1 range in voltage required to
generate the same amount of current (and power and torque)
in the stepper motor windings.

o The motor winding resistance varies with
temperature.

o As the motor spins, it generates back-emf
(electromotive force). The motor acts like a generator,
producing a bucking voltage that decreases the apparent
voltage applied to the windings.

3. FLIGHT HARDWARE
The original plan was to design constant current drivers for
the motors, which would always apply the same amount of
power to the motor windings regardless of operating
conditions. This posed a lot of problems in terms of parts
count, difficulty of isolating the control interface, and
circuit complexity, and did not properly address the torque
disturbance requirements. A much simpler hardware
solution was to drive the motors with adjustable voltage,
and design algorithms to adjust the voltage as operating
conditions changed to maintain a constant current. A
microprocessor, a field-programmable gate array (FPGA)
containing some simple logic, and a few parts for the driver
circuitry are all that is required.

1065

4

Figure 2 - A block diagram of drive circuitry for one actuator

The control interface in figure 2 is very simple, requiring
only five digital control inputs from the FPGA (on the left).
 Optoisolators are used to isolate MCS (FPGA) power from
+28V spacecraft (and motor) power. Brake, PWMAC, and
PWMBD control the application of current through the A-C
and B-D windings of the bipolar stepper motor in the
actuator. DirAC and DirBD set the direction of current
through each of the windings.

For each of the motor winding drivers the control inputs
work as follows:

o BRAKE HI and PWM LO: motor winding is
disconnected from the driver

o BRAKE LO and PWM LO: motor winding is
shorted (both ends to +28V)

o BRAKE LO and PWM HI and DIR LO: current
flows from C to A (or D to B)

o BRAKE LO and PWM HI and DIR HI: current
flows from A to C (or B to D)

By generating pulse width modulated signals (in the FPGA)
for the PWM inputs, the average amount of voltage (and
current) applied to each of the windings can be controlled.
The direction of current through each winding can also be
controlled independently.

The lowest spacecraft bus voltage at which we are required
to operate is 22V. The stepper motor winding resistance is
directly proportional to temperature. As the motor spins, it
generates back-emf. The stepper motor must be selected
such that 22V applied to the windings at the maximum
allowable flight temperature while stepping at the maximum
rate (i.e. the worst case) gives sufficient torque margin.

1065

5

4. FLIGHT SOFTWARE

Figure 3 - The microprocessor interface to the FPGA control circuitry

The interface to flight software (figure 3) is also very
simple. The BRAKE, DirAC, and DirBD bits go directly to
the driver circuitry. The PWMAC and PWMBD registers
each produce a 1-bit output, a 64KHz pulse-width-
modulated square wave with a duty cycle of 0/127 to
127/127. The direction register contains DirAC and DirBD
as its two least significant bits. Together, these are the
stepper phase, which can be incremented or decremented in
a grey code sequence to cause movement:

00, 01, 11, 10, 00, … causes movement in one
direction

00, 10, 11, 01, 00, … causes movement in the
other direction

The required motor voltage value can be calculated
knowing the spacecraft bus voltage, stepper motor winding
temperature, and step rate (which determines the amount of
back-emf). Then, by bringing BRAKE LO, and writing this
calculated value into the PWM registers, we can increment
or decrement the direction register at a constant step rate (as
described above) to implement conventional stepping.

The motor current can also be monitored real-time, using
the current sense output available on the motor driver.
Using a comparator, a 1-bit status can be generated (motor
current too low/too high). This can be used to adjust the
PWM motor voltage values in real-time, if enough
processing power is available. This approach was explored,
but not used, on MCS (other than to report this status in
telemetry).

This circuitry and simple control algorithm minimizes the
power used by the stepper motors by using unregulated
spacecraft bus power to drive the motor windings, and by
adjusting the motor voltage via PWM to always supply the
correct calculated motor current and maintain the minimum
required torque. However, as stated above, stepping the
actuators in this manner would severely violate the
maximum allowable torque disturbance requirements of the
MCS instrument. Fortunately, the system has a
microprocessor, and we can use its capability to implement
enhancements to this basic scheme.

5. ACCELERATION
The step rate does not have to be constant. Acceleration can
be implemented by continuously decreasing the time
interval between changes to the direction register.

Table 1 - Acceleration

Table 1 shows the elapsed time at each step while
accelerating the elevation actuator at 42°/sec/sec to a top
speed of 26.3°/sec (at step 83).

Acceleration is implemented in flight software (FSW) by
programming time delays into a hardware timer that causes
an interrupt. When the interrupt occurs, pre-calculated
values for motor voltage and direction are output to the
motor, the time delay (until the next interrupt) is
programmed into the timer, and new voltage and direction
values are calculated (for the next interrupt).
Because back-emf is directly proportional to motor speed,
acceleration complicates the calculation of the required
motor voltage (PWM) values. Back-emf at each step during
acceleration will be different, so the PWM values have to be

1065

6

adjusted at each step to change the voltage and maintain a
constant current through the motor windings.
We also need to decelerate the actuator smoothly, and we
need to support an arbitrary number of steps. This is
accomplished by breaking each actuator movement into
three parts. We use the time delays, moving down through
the table, for the first part, acceleration. We continue this
until we have reached either the midpoint of the movement
or step 83 (where we reach the top speed of the actuator).
For short movements (less than or equal to 166 steps), we
begin decelerating immediately. For long movements
(greater then 166 steps), we run at top speed until it’s time
to begin decelerating (83 steps before the end of the
movement). In either case, we decelerate by moving back
up the table (starting where we left off after acceleration)
until the movement is complete. The last step is always the
same length as the first step.

6. MICROSTEPPING
But, as the saying goes, “Watch out for that first step!”
Using the acceleration table, that first step is 69 ms long.
Unfortunately, because we have a lot of torque margin in
the system, all of the physical motion occurs in the first few
milliseconds. The actuator accelerates and decelerates very
quickly, and we just wait around at 0 velocity until it’s time
for the next step.

Using acceleration alone, we still violate the dynamic torque
requirement at the beginning and end of each actuator
movement, when the step period (1/step rate) is large.
Once we accelerate to where the step period decreases to a
few milliseconds things smooth out, because the physical
movement closely matches the commanded movement
(which is theoretically perfect). We need to break the slow
steps at the beginning and end of each actuator movement
into microsteps, so that the physical movement always
closely matches the commanded movement.

A stepper motor can be made to operate smoothly like a
brushless DC motor simply by applying analog cosine and
sine waves to its windings. We can use our built-in ability
to control motor voltage (and current) to do just that. We
apply ¼ of a cosine wave (in discrete microsteps) to
decrease the voltage (from the calculated value to 0) in the
currently energized motor winding at a controlled rate,
while simultaneously applying ¼ of a sine wave to increase
the voltage (from 0 to the calculated value) in the other
winding. By doing this, the motor armature will smoothly
move the 30° from one pole to the next (rather than
snapping to there in a few milliseconds), and the instrument
(at the other end of the gearbox) will smoothly rotate 0.1°.

Microstepping solves another problem. The natural
frequency of the system is 57 Hz. We want to keep the rate
of commanded movements well above that (greater than
200 Hz) to avoid causing resonance, so the period between
commanded movements should always be less than 5 ms.
Microstepping allows this regardless of the step period. On
the other hand, the MCS microprocessor is slow. The
practical lower limit of command period is about 1 ms, due
to the overhead in the interrupt service routine. The only
way to keep the command rate within this narrow range
while implementing the full range of acceleration is to
microstep.

1065

7

Table 2 - Microstepping

Table 2 shows just the first six steps of elevation actuator
movement using acceleration and microstepping. By
specifying the acceleration, top speed, initial voltage, back-
emf constant, and spacecraft bus voltage, the table is
generated automatically.

The first half of the first step (blue) is divided into 12
microsteps. The time between these microsteps is held
constant and the distance of each microstep (the voltage
values applied PWM1 and PWM2) implement the
acceleration. The first movement the actuator makes is a
whopping 0.0012°. After 12 microsteps (½ step), the
motor armature is positioned halfway between the two
motor poles, 49 ms have elapsed, the actuator has moved
0.05°, and its velocity is about 2°/sec.

After step 0.5 the distance between microsteps is held
constant, and acceleration is implemented by decreasing the
time interval between microsteps. When that time interval
approaches 1 ms, the number of microsteps per step is
decreased to keep the time intervals between 1 and 5 ms.
Steps 0.5 through 2.5 use 12 microsteps/step (green). The
number of microsteps per step decreases to 8 at step 2.5
(yellow), to 6 at step 5 (beige), to 4 at step 10, and to 2 at
step 20 (where it remains). At step 20, 309 ms have
elapsed, the actuator has moved 2°, and its velocity is up to
about 13°/sec. The actuator reaches maximum velocity at
step 83 (elapsed time 629 ms, distance 8.3°, velocity
26.3°/sec). This will only happen during actuator
movements greater than or equal to 16.6°. For movements
less than 16.6°, we start decelerating before reaching the
end of the table.

Note that the number of microsteps per step is always even.
 This is so we can reverse direction through the table at a
half-step boundary, to begin deceleration even when the
number of steps in the actuator movement is odd. Note
also that the actual PWM1 and PWM2 voltage values are
assigned to either the PWMAC register or the PWMBD
register, depending on the current motor phase.

Two other control features are included in the actuator table
generator. A detent percentage was implemented that will
move the microsteps adjacent to the integral step boundaries
further away (earlier or later) from those points in time. An
offset was incorporated that can be added to all the PWM1
and PWM2 values that are non-zero. These features were
explored in an attempt to remove the small amount of jitter
that occurs at the step boundaries, related to the detent
torque built into the motor. Neither of these features made a
significant impact on torque disturbance. They were set to
0 when the final versions of the MCS actuator tables were
generated.

Commanding the actuator to move one single step is very
different when microstepping is used. Instead of issuing
one commanded movement (snapping the actuator to the
next phase) and waiting 69 ms, it now requires 24
commanded microsteps (12 to accelerate to step 0.5, 12 to
decelerate to step 1) and 98ms to complete that single step.

1065

8

Figure 4 - Calculated MCS PWM1 and PWM2 values

Figure 4 is a chart of calculated MCS PWM1 and PWM2 voltage values v.s. time. You can see the number of microsteps per
step decreasing from 24 to 2 (at step 20), and the applied voltage increasing (to compensate for back-emf).

Figure 5 - Oscilloscope photos

The oscilloscope photos in figure 5 show the actual motor current applied to the MCS elevation actuator. Compare the photo
on the left to the chart above. Note that, although the applied voltage increases with the number of steps, the measured
current (bottom trace) remains constant. On the right is a 7-step elevation actuator movement, showing both acceleration and
deceleration.

In the MCS flight software (FSW), the time between
microsteps is determined by a hardware counter that causes
an interrupt. In the interrupt service routine (ISR), it’s
important to always have a constant time (number of
machine cycles) to when the hardware registers are loaded
with values to implement the next microstep, and to when
the timer is initialized for the next timing interval.
Otherwise, the control algorithm will introduce additional
jitter into the system. It is also important to subtract the
number of machine cycles between the occurrence of the
interrupt and the writing of the next time interval into the
timer, from the value of the next time interval written. This
is so we don’t inadvertently add the overhead of the ISR to
each time interval.

7. IMPROVING PERFORMANCE
So now we should have a smooth, jitterless system that
meets all requirements. Unfortunately, it is a digital system
and things are quantized, which still introduces error that
causes jitter… enough jitter so that we still don’t meet our
maximum allowable dynamic torque requirement.

The problem is in the PWM generators. We can’t increase
the voltage resolution to more than 7 bits (0/127 to 127/127
of spacecraft bus voltage), due to frequency constraints on
the driver (at the high end) and the motor (at the low end).
Also, a large part of that 7-bit resolution is used to
compensate for spacecraft bus voltage and back-emf. The

1065

9

truth is, our digital cosine and sine waves at low velocities
have a lot of distortion (about 3%).

However, we do have a lot of unused time resolution,
especially at low velocities near the beginning and end of
the actuator movement, which we can use to compensate for
this. By adjusting the time intervals between the
microsteps, we can move the discrete points of the digital

cosine and sine waves (which have error in the vertical,
voltage direction) horizontally (in the time direction) to
place them back on the theoretical cosine and sine curves.
Our resolution in the time domain is about 0.1%. This
technique yields a marked improvement in jitter at low
velocities, and finally allows the system to meet all torque
disturbance requirements.

Figure 6 – Distance, velocity, acceleration, back-emf, and frequency during acceleration

In figure 6 (after an artifact at the first microstep), we can see that the acceleration stays constant (with some residual jitter)
at 42°/sec/sec until step 83, and that the command frequency always remains above 200 Hz.

8. PROGRAMMING THE SYSTEM
Bear in mind that, for MCS, all the ornate calculations
described above are done on the ground. Two acceleration
tables are generated (one for elevation, one for azimuth) to
be used by the MCS flight software. Each entry in these
tables is a PWM1 value, a PWM2 value, and the time delay
(in machine cycles) for that microstep. The MCS FSW
routine is simple and table-driven. The only real-time in-
flight decisions are how to assign PWM1 and PWM2 to
PWMAC and PWMBD based on the beginning motor
phase, and how to navigate the table based on the number of
steps desired in the actuator movement.
In practice, the stepper motor winding temperature is not
used in the calculation of the MCS actuator voltages (this
would require real-time in-flight calculations). The decision
was made to ignore the winding temperature. Because the
winding resistance is directly proportional to temperature,
this has the advantage of automatically increasing the torque
when the actuator (and its bearings, gears, and grease) is
cold. The MRO spacecraft bus voltage is very predictable.
This is set as a constant when calculating the actuator
tables. Should the bus voltage change significantly during
the mission, new tables could be generated and uploaded to
compensate for the change.

MCS had an anomaly while orbiting Mars. After many
months of error-free operation (since initial power on), the
elevation actuator reported three (recoverable) position
errors, which caused the instrument to safe. The most
probable cause was a piece of debris in the planetary
gearbox that caused the actuator to stall temporarily and slip
4 steps. The anomaly was intermittent, but persistent… it
would disappear for weeks but, when it occurred, errors
were spaced at angular distances corresponding to the
number of teeth in one of the planetary gears.
Because of the completely programmable nature of this
controller architecture, it was a simple matter to generate
and upload new actuator tables that increase the torque
applied to the actuators. Several different tables were
uploaded and used in the investigation of the anomaly.
MCS is now operating reliably, using tables with slightly
increased torque and a different back-emf constant that
further increases the torque at slower velocities where it
seems (by experience) to be needed most.

1065

10

9. CONCLUSION
This controller architecture has been used on several flight
projects since MCS with similar, outstanding results.
Although it uses a small number of common flight-qualified
parts and simple control algorithms, it is capable enough to
meet demanding system requirements. Its programmable
nature makes it trivial to implement changes to control
algorithms both during integration & test and in flight.

ACKNOWLEDGEMENTS
The research described in this paper was carried out by the
Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics
and Space Administration.

Alan Mazer is a Principal Software Engineer at JPL. Alan
coded and was responsible for MCS flight software.

David Hykes is a Senior Electronics Engineer at JPL.
David provided the hardware design for the MCS motor
drivers.

REFERENCES
[1] MRO/MCS Web site

http://mars.jpl.nasa.gov/mro/mission/sc_instru_mcs.html/

[2] Aerospace Conference Web site http://www.aeroconf.org/

BIOGRAPHY
David Randall is a Principal
Electronics Engineer, working for
Caltech at JPL, NASA’s Jet
Propulsion Laboratory. David is
responsible for the design and
delivery of flight electronics for
instrument systems. He was the
Project Element Manager for MCS
electronics, and has recently
delivered flight electronics for the

CheMin (chemistry and mineralogy) instrument on the Mars
Science Laboratory (MSL) rover, scheduled for launch in
2011.

