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Abstract—This concept allows control of high-performance 
stepper motors with minimal parts count and minimal flight 
software complexity. Although it uses a small number of 
common flight-qualified parts and simple control 
algorithms, it is capable enough to meet demanding system 
requirements. Its programmable nature makes it trivial to 
implement changes to control algorithms both during 
integration & test and in flight. Enhancements such as 
microstepping, half stepping, back-emf compensation, and 
jitter reduction can be tailored to the requirements of a large 
variety of stepper motor based applications including filter 
wheels, focus mechanisms, antenna tracking subsystems, 
pointing and mobility. The hardware design (using an H- 
bridge motor controller IC) was adapted from JPL’s MER 
mission, still operating on Mars. This concept has been fully 
developed and incorporated into the MCS instrument on 
MRO, currently operating in Mars orbit. It has been 
incorporated into the filter wheel mechanism and linear 
stage (focus) mechanism for the AMT instrument. On 
MCS/MRO, two of these circuits control the elevation and 
azimuth of the MCS telescope/radiometer assembly, 
allowing the instrument to continuously monitor the limb of 
the Martian atmosphere. Implementation on MCS/MRO 
resulted in a 4:1 reduction in the volume and mass required 
for the motor driver electronics (100:25 square inches of 
PCB space), producing a very compact instrument. In fact, 
all of the electronics for the MCS instrument are packaged 
within the movable instrument structure. It also saved 
approximately 3 Watts of power. Most importantly, the 
design enabled MCS to meet very its stringent maximum 
allowable torque disturbance requirements. 12 
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1. BACKGROUND 
Spacecraft carry instruments.  Instruments have 
mechanisms.  Controlling these mechanisms without 
affecting either the operation of the instrument or the 
stability of the spacecraft can sometimes be challenging. 

The Mars Climate Sounder (MCS) on the Mars 
Reconnaissance Orbiter (MRO) posed such a challenge.  
While relatively small (9.8 kg), it contains two actuators 
that allow the entire instrument to scan continuously while it 
orbits Mars.  Data collection occurs at two-second intervals, 
is also continuous, and has to be synchronized with actuator 
motion starts and stops.  Stringent requirements were placed 
on the instrument with regard to the amount of torque it 
could impart to the spacecraft. 
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Figure 1 - The MCS instrument, with thermal blanketing, telescope baffles, and covers removed

In figure 1, the MCS instrument is undergoing azimuth 
torque disturbance testing.  The azimuth actuator (bottom) 
rotates the yoke (u-shaped structure).  The yoke holds the 
elevation actuator (right side) that rotates the radiometer 
(rectangular structure). 

2. DESIGN CHALLENGES  
To obtain maximum system performance, it is desirable to 
use the actuators to slew the MCS instrument as fast as 
possible, maintaining our torque margins without violating 
torque disturbance requirements.  Of course, we also want 
to use as little power as possible.  These design challenges 
fall into three broad categories. 

Bulk (DC) torque requirements:  

o The actuators have to be accelerated and 
decelerated at the maximum rates that do not violate the 
spacecraft’s torque requirements. The azimuth maximum 
allowable torque disturbance is 0.04 Nm.  The elevation 
maximum allowable torque disturbance is 0.02 Nm. 

o The maximum allowable rates are different for the 
elevation actuator (which only rotates the 4.2 kg 
radiometer) and the azimuth actuator (which rotates 7.7 kg, 
including the radiometer, yoke, and elevation actuator). 

o The actuator movements are arbitrary, from 1 step 
to 1,390 steps.  The algorithms have to work regardless of 
the number of steps.  

o The actuators have a top speed that is less than the 
speed we could attain in ½ the total travel distance.  If the 
motion is long enough, the actuator has to stop accelerating 
and run at top speed until it is time to decelerate. 

Dynamic (AC) torque requirements: 

o Stepper motors have inherent granularity.  The 
MCS actuators have 30° (12-pole) motors, driving a 3.33:1 
planetary gearbox, followed by an 89.1:1 harmonic drive.  
Each step of the motor produces only a 0.1° movement of 
the instrument.  If driven by conventional means, even this 
seemingly small motion would far exceed the maximum 
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allowable dynamic torque requirement of 0.005 Nm from 0 
to 125 Hz. 

o Microprocessor-driven control circuitry also has 
inherent granularity.  Differing execution times of various 
parts of the control algorithm will introduce additional jitter. 
There is also an absolute boundary to the time resolution 
that can be achieved, based upon the microprocessor clock. 
 MCS has a time resolution of about 1.5 microseconds. 

o If we accelerate through the natural frequency of 
the system (57 Hz), it will cause the system to ‘ring’, 
introducing additional jitter. 

Power requirements: 

o The actuators are power hungry and operate almost 
continuously.  They need to use +28V spacecraft bus power 
(solar cells/battery) for the stepper motors rather than MCS 
regulated secondary power.  This avoids the approximate 
75% efficiency penalty of the DC/DC converters used to 
regulate the MCS power.  All the control circuitry (that uses 
MCS regulated secondary power) must be electrically 
isolated from the stepper motor drivers (that use spacecraft 
bus power). 

o Spacecraft bus voltage can vary from +22V to 
+36V.  In reality, it is unlikely that the spacecraft would be 
conducting normal operations (i.e. allowing MCS to move 
its actuators) if the battery voltage were to drop below 26V 
(it would be load shedding to save itself).  Even so, a 26V to 
36V range produces a 2:1 range in voltage required to 
generate the same amount of current (and power and torque) 
in the stepper motor windings.  

o The motor winding resistance varies with 
temperature.  

o As the motor spins, it generates back-emf 
(electromotive force).  The motor acts like a generator, 
producing a bucking voltage that decreases the apparent 
voltage applied to the windings. 

3. FLIGHT HARDWARE  
The original plan was to design constant current drivers for 
the motors, which would always apply the same amount of 
power to the motor windings regardless of operating 
conditions.  This posed a lot of problems in terms of parts 
count, difficulty of isolating the control interface, and 
circuit complexity, and did not properly address the torque 
disturbance requirements.  A much simpler hardware 
solution was to drive the motors with adjustable voltage, 
and design algorithms to adjust the voltage as operating 
conditions changed to maintain a constant current.  A 
microprocessor, a field-programmable gate array (FPGA) 
containing some simple logic, and a few parts for the driver 
circuitry are all that is required. 
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Figure 2 - A block diagram of drive circuitry for one actuator 

The control interface in figure 2 is very simple, requiring 
only five digital control inputs from the FPGA (on the left). 
 Optoisolators are used to isolate MCS (FPGA) power from 
+28V spacecraft (and motor) power.  Brake, PWMAC, and 
PWMBD control the application of current through the A-C 
and B-D windings of the bipolar stepper motor in the 
actuator.  DirAC and DirBD set the direction of current 
through each of the windings.    

For each of the motor winding drivers the control inputs 
work as follows: 

o BRAKE HI and PWM LO: motor winding is 
disconnected from the driver  

o BRAKE LO and PWM LO: motor winding is 
shorted (both ends to +28V)  

o BRAKE LO and PWM HI and DIR LO: current 
flows from C to A (or D to B) 

o BRAKE LO and PWM HI and DIR HI: current 
flows from A to C (or B to D) 

By generating pulse width modulated signals (in the FPGA) 
for the PWM inputs, the average amount of voltage (and 
current) applied to each of the windings can be controlled.  
The direction of current through each winding can also be 
controlled independently. 

The lowest spacecraft bus voltage at which we are required 
to operate is 22V.  The stepper motor winding resistance is 
directly proportional to temperature.  As the motor spins, it 
generates back-emf.  The stepper motor must be selected 
such that 22V applied to the windings at the maximum 
allowable flight temperature while stepping at the maximum 
rate (i.e. the worst case) gives sufficient torque margin. 
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4. FLIGHT SOFTWARE 
 

 

Figure 3 - The microprocessor interface to the FPGA control circuitry 

The interface to flight software (figure 3) is also very 
simple.  The BRAKE, DirAC, and DirBD bits go directly to 
the driver circuitry.  The PWMAC and PWMBD registers 
each produce a 1-bit output, a 64KHz pulse-width-
modulated square wave with a duty cycle of 0/127 to 
127/127.  The direction register contains DirAC and DirBD 
as its two least significant bits.  Together, these are the 
stepper phase, which can be incremented or decremented in 
a grey code sequence to cause movement: 

00, 01, 11, 10, 00, … causes movement in one 
direction 

00, 10, 11, 01, 00, … causes movement in the 
other direction 

The required motor voltage value can be calculated 
knowing the spacecraft bus voltage, stepper motor winding 
temperature, and step rate (which determines the amount of 
back-emf).  Then, by bringing BRAKE LO, and writing this 
calculated value into the PWM registers, we can increment 
or decrement the direction register at a constant step rate (as 
described above) to implement conventional stepping. 

The motor current can also be monitored real-time, using 
the current sense output available on the motor driver.  
Using a comparator, a 1-bit status can be generated (motor 
current too low/too high).  This can be used to adjust the 
PWM motor voltage values in real-time, if enough 
processing power is available.  This approach was explored, 
but not used, on MCS (other than to report this status in 
telemetry). 

This circuitry and simple control algorithm minimizes the 
power used by the stepper motors by using unregulated 
spacecraft bus power to drive the motor windings, and by 
adjusting the motor voltage via PWM to always supply the 
correct calculated motor current and maintain the minimum 
required torque.  However, as stated above, stepping the 
actuators in this manner would severely violate the 
maximum allowable torque disturbance requirements of the 
MCS instrument.  Fortunately, the system has a 
microprocessor, and we can use its capability to implement 
enhancements to this basic scheme. 

5. ACCELERATION 
The step rate does not have to be constant.  Acceleration can 
be implemented by continuously decreasing the time 
interval between changes to the direction register. 
 

Table 1 - Acceleration 
 

 
 
Table 1 shows the elapsed time at each step while 
accelerating the elevation actuator at 42°/sec/sec to a top 
speed of 26.3°/sec (at step 83). 
 
Acceleration is implemented in flight software (FSW) by 
programming time delays into a hardware timer that causes 
an interrupt.  When the interrupt occurs, pre-calculated 
values for motor voltage and direction are output to the 
motor, the time delay (until the next interrupt) is 
programmed into the timer, and new voltage and direction 
values are calculated (for the next interrupt). 
Because back-emf is directly proportional to motor speed, 
acceleration complicates the calculation of the required 
motor voltage (PWM) values.  Back-emf at each step during 
acceleration will be different, so the PWM values have to be 
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adjusted at each step to change the voltage and maintain a 
constant current through the motor windings. 
We also need to decelerate the actuator smoothly, and we 
need to support an arbitrary number of steps.  This is 
accomplished by breaking each actuator movement into 
three parts.  We use the time delays, moving down through 
the table, for the first part, acceleration.  We continue this 
until we have reached either the midpoint of the movement 
or step 83 (where we reach the top speed of the actuator).  
For short movements (less than or equal to 166 steps), we 
begin decelerating immediately.  For long movements 
(greater then 166 steps), we run at top speed until it’s time 
to begin decelerating (83 steps before the end of the 
movement).  In either case, we decelerate by moving back 
up the table (starting where we left off after acceleration) 
until the movement is complete.  The last step is always the 
same length as the first step. 

6. MICROSTEPPING 
But, as the saying goes, “Watch out for that first step!”  
Using the acceleration table, that first step is 69 ms long.  
Unfortunately, because we have a lot of torque margin in 
the system, all of the physical motion occurs in the first few 
milliseconds.  The actuator accelerates and decelerates very 
quickly, and we just wait around at 0 velocity until it’s time 
for the next step.   

Using acceleration alone, we still violate the dynamic torque 
requirement at the beginning and end of each actuator 
movement, when the step period  (1/step rate) is large.  
Once we accelerate to where the step period decreases to a 
few milliseconds things smooth out, because the physical 
movement closely matches the commanded movement 
(which is theoretically perfect).  We need to break the slow 
steps at the beginning and end of each actuator movement 
into microsteps, so that the physical movement always 
closely matches the commanded movement.  

A stepper motor can be made to operate smoothly like a 
brushless DC motor simply by applying analog cosine and 
sine waves to its windings.  We can use our built-in ability 
to control motor voltage (and current) to do just that.  We 
apply ¼ of a cosine wave (in discrete microsteps) to 
decrease the voltage (from the calculated value to 0) in the 
currently energized motor winding at a controlled rate, 
while simultaneously applying ¼ of a sine wave to increase 
the voltage (from 0 to the calculated value) in the other 
winding.  By doing this, the motor armature will smoothly 
move the 30° from one pole to the next (rather than 
snapping to there in a few milliseconds), and the instrument 
(at the other end of the gearbox) will smoothly rotate 0.1°. 

Microstepping solves another problem.  The natural 
frequency of the system is 57 Hz.  We want to keep the rate 
of commanded movements well above that (greater than 
200 Hz) to avoid causing resonance, so the period between 
commanded movements should always be less than 5 ms.  
Microstepping allows this regardless of the step period.  On 
the other hand, the MCS microprocessor is slow.  The 
practical lower limit of command period is about 1 ms, due 
to the overhead in the interrupt service routine.  The only 
way to keep the command rate within this narrow range 
while implementing the full range of acceleration is to 
microstep. 
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Table 2 - Microstepping 

 

Table 2 shows just the first six steps of elevation actuator 
movement using acceleration and microstepping.  By 
specifying the acceleration, top speed, initial voltage, back-
emf constant, and spacecraft bus voltage, the table is 
generated automatically. 

The first half of the first step (blue) is divided into 12 
microsteps.  The time between these microsteps is held  
constant and the distance of each microstep (the voltage 
values applied PWM1 and PWM2) implement the 
acceleration.  The first movement the actuator makes is a 
whopping 0.0012°.  After 12 microsteps (½  step), the 
motor armature is positioned halfway between the two 
motor poles, 49 ms have elapsed, the actuator has moved 
0.05°, and its velocity is about 2°/sec. 

After step 0.5 the distance between microsteps is held 
constant, and acceleration is implemented by decreasing the 
time interval between microsteps.  When that time interval 
approaches 1 ms, the number of microsteps per step is 
decreased to keep the time intervals between 1 and 5 ms. 
Steps 0.5 through 2.5 use 12 microsteps/step (green).  The 
number of microsteps per step decreases to 8 at step 2.5 
(yellow), to 6 at step 5 (beige), to 4 at step 10, and to 2 at 
step 20 (where it remains).  At step 20, 309 ms have 
elapsed, the actuator has moved 2°, and its velocity is up to 
about 13°/sec.  The actuator reaches maximum velocity at 
step 83 (elapsed time 629 ms, distance 8.3°, velocity 
26.3°/sec).  This will only happen during actuator 
movements greater than or equal to 16.6°.  For movements 
less than 16.6°, we start decelerating before reaching the 
end of the table.   

Note that the number of microsteps per step is always even. 
 This is so we can reverse direction through the table at a 
half-step boundary, to begin deceleration even when the 
number of steps in the actuator movement is odd.   Note 
also that the actual PWM1 and PWM2 voltage values are 
assigned to either the PWMAC register or the PWMBD 
register, depending on the current motor phase. 

Two other control features are included in the actuator table 
generator.  A detent percentage was implemented that will 
move the microsteps adjacent to the integral step boundaries 
further away (earlier or later) from those points in time.  An 
offset was incorporated that can be added to all the PWM1 
and PWM2 values that are non-zero.  These features were 
explored in an attempt to remove the small amount of jitter 
that occurs at the step boundaries, related to the detent 
torque built into the motor.  Neither of these features made a 
significant impact on torque disturbance.  They were set to 
0 when the final versions of the MCS actuator tables were 
generated. 

Commanding the actuator to move one single step is very 
different when microstepping is used.  Instead of issuing 
one commanded movement (snapping the actuator to the 
next phase) and waiting 69 ms, it now requires 24 
commanded microsteps (12 to accelerate to step 0.5, 12 to 
decelerate to step 1) and 98ms to complete that single step. 
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Figure 4 - Calculated MCS PWM1 and PWM2 values 
 
Figure 4 is a chart of calculated MCS PWM1 and PWM2 voltage values v.s. time.  You can see the number of microsteps per 
step decreasing from 24 to 2 (at step 20), and the applied voltage increasing (to compensate for back-emf). 

 

 
 

Figure 5 - Oscilloscope photos 
 
The oscilloscope photos in figure 5 show the actual motor current applied to the MCS elevation actuator.  Compare the photo 
on the left to the chart above. Note that, although the applied voltage increases with the number of steps, the measured 
current (bottom trace) remains constant.  On the right is a 7-step elevation actuator movement, showing both acceleration and 
deceleration. 
 

In the MCS flight software (FSW), the time between 
microsteps is determined by a hardware counter that causes 
an interrupt.  In the interrupt service routine (ISR), it’s 
important to always have a constant time (number of 
machine cycles) to when the hardware registers are loaded 
with values to implement the next microstep, and to when 
the timer is initialized for the next timing interval.  
Otherwise, the control algorithm will introduce additional 
jitter into the system.  It is also important to subtract the 
number of machine cycles between the occurrence of the 
interrupt and the writing of the next time interval into the 
timer, from the value of the next time interval written.  This 
is so we don’t inadvertently add the overhead of the ISR to 
each time interval. 

7. IMPROVING PERFORMANCE 
So now we should have a smooth, jitterless system that 
meets all requirements.  Unfortunately, it is a digital system 
and things are quantized, which still introduces error that 
causes jitter… enough jitter so that we still don’t meet our 
maximum allowable dynamic torque requirement. 

The problem is in the PWM generators.  We can’t increase 
the voltage resolution to more than 7 bits (0/127 to 127/127 
of spacecraft bus voltage), due to frequency constraints on 
the driver (at the high end) and the motor (at the low end).  
Also, a large part of that 7-bit resolution is used to 
compensate for spacecraft bus voltage and back-emf.  The 
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truth is, our digital cosine and sine waves at low velocities 
have a lot of distortion (about 3%). 

However, we do have a lot of unused time resolution, 
especially at low velocities near the beginning and end of 
the actuator movement, which we can use to compensate for 
this.  By adjusting the time intervals between the 
microsteps, we can move the discrete points of the digital  

cosine and sine waves (which have error in the vertical,  
voltage direction) horizontally (in the time direction) to 
place them back on the theoretical cosine and sine curves.  
Our resolution in the time domain is about 0.1%.  This 
technique yields a marked improvement in jitter at low 
velocities, and finally allows the system to meet all torque 
disturbance requirements. 

 

 
Figure 6 – Distance, velocity, acceleration, back-emf, and frequency during acceleration 

 
In figure 6 (after an artifact at the first microstep), we can see that the acceleration stays constant (with some residual jitter) 
at 42°/sec/sec until step 83, and that the command frequency always remains above 200 Hz. 
 

8. PROGRAMMING THE SYSTEM 
Bear in mind that, for MCS, all the ornate calculations 
described above are done on the ground.  Two acceleration 
tables are generated (one for elevation, one for azimuth) to 
be used by the MCS flight software.  Each entry in these 
tables is a PWM1 value, a PWM2 value, and the time delay 
(in machine cycles) for that microstep.  The MCS FSW 
routine is simple and table-driven.  The only real-time in-
flight decisions are how to assign PWM1 and PWM2 to 
PWMAC and PWMBD based on the beginning motor 
phase, and how to navigate the table based on the number of 
steps desired in the actuator movement. 
In practice, the stepper motor winding temperature is not 
used in the calculation of the MCS actuator voltages (this 
would require real-time in-flight calculations).  The decision 
was made to ignore the winding temperature.  Because the 
winding resistance is directly proportional to temperature, 
this has the advantage of automatically increasing the torque 
when the actuator (and its bearings, gears, and grease) is 
cold.  The MRO spacecraft bus voltage is very predictable.  
This is set as a constant when calculating the actuator 
tables.  Should the bus voltage change significantly during 
the mission, new tables could be generated and uploaded to 
compensate for the change.  
 

MCS had an anomaly while orbiting Mars.  After many 
months of error-free operation (since initial power on), the 
elevation actuator reported three (recoverable) position 
errors, which caused the instrument to safe.  The most 
probable cause was a piece of debris in the planetary 
gearbox that caused the actuator to stall temporarily and slip 
4 steps.  The anomaly was intermittent, but persistent…  it 
would disappear for weeks but, when it occurred, errors 
were spaced at angular distances corresponding to the 
number of teeth in one of the planetary gears. 
Because of the completely programmable nature of this 
controller architecture, it was a simple matter to generate 
and upload new actuator tables that increase the torque 
applied to the actuators.   Several different tables were 
uploaded and used in the investigation of the anomaly.  
MCS is now operating reliably, using tables with slightly 
increased torque and a different back-emf constant that 
further increases the torque at slower velocities where it 
seems (by experience) to be needed most. 
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9. CONCLUSION 
This controller architecture has been used on several flight 
projects since MCS with similar, outstanding results.  
Although it uses a small number of common flight-qualified 
parts and simple control algorithms, it is capable enough to 
meet demanding system requirements.  Its programmable 
nature makes it trivial to implement changes to control 
algorithms both during integration & test and in flight.   
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