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Abstract—To increase safety for future missions landing on 
other planetary or lunar bodies, the Autonomous Landing and 
Hazard Avoidance Technology (ALHAT) program is 
developing an integrated sensor for autonomous surface 
analysis and hazard determination. The ALHAT Hazard 
Detection System (HDS) consists of a Flash LIDAR for 
measuring the topography of the landing site, a gimbal to scan 
across the terrain, and an Inertial Measurement Unit (IMU), 
along with terrain analysis algorithms to identify the landing 
site and the local hazards.  An FPGA and Manycore processor 
system was developed to interface all the devices in the HDS, to 
provide high-resolution timing to accurately measure system 
state, and to run the surface analysis algorithms quickly and 
efficiently.  In this paper, we will describe how we integrated 
COTS components such as an FPGA evaluation board, a 
TILExpress64, and multi-threaded/multi-core aware software 
to build the HDS Compute Element (HDSCE).  The ALHAT 
program is also working with the NASA Morpheus Project and 
has integrated the HDS as a sensor on the Morpheus Lander.  
This paper will also describe how the HDS is integrated with 
the Morpheus lander and the results of the initial test flights 
with the HDS installed. We will also describe future 
improvements to the HDSCE. 
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1. INTRODUCTION 

Studies such as the Exploration Systems Architecture Study 
(ESAS) for future missions to planetary bodies have shown 
that technology must be developed to enable safe and 
precise landing on unknown and unprepared terrain, and in 
various lighting conditions.  The Autonomous Landing and 
Hazard Avoidance Technology (ALHAT) Program has 
worked to develop sensor technology and sensor processing 
algorithms to be able to map terrain and obstacles 
autonomously.  The project goals for ALHAT [1] are to: 
 

1. Develop sensing technology to map terrain and 
hazards in all lighting conditions 

2. Demonstrate computation needed for autonomous 
mapping and safe site selection based on data from 
the sensor in (1) 

3. Demonstrate closed-loop avoidance of hazards 
detected in (2) with integration into the vehicle 
Guidance, Navigation & Control (GN&C) system. 

 
The example mission for this technology is a landing on 
either a polar region or an unlit region of Earth’s moon of a 
3 meter or greater diameter lander, with sensing beginning 
at 750 to 1000 meters slant range distance from the desired 
landing area. 
 
To this end, the ALHAT program conducted several studies 
with numerous field campaigns to determine what the ideal 
sensors, algorithms, and processing capabilities should be 
for a terrain sensing/hazard detection system (HDS) [2-10].  
The current system consists of a 128x128 pixel flash 
LIDAR system developed by the NASA Langley Research 
Center capable of sensing ranges out to 1 kilometer.  The 
LIDAR is mounted on a 2-axis gimbal developed by PVP 
Advanced Electro-Optical Systems. Also included is a 
LN200 IMU, and a compute and interface element.  This 
paper will discuss the architecture and function of the HDS 
Compute Element (HDSCE). 
 

2. HDS COMPUTE ELEMENT HARDWARE 
The HDSCE integrates all the processing, sensing, and 
control in the HDS system.  It takes commands and vehicle 
state from the host vehicle, interfaces and controls sensors 
and gimbals, processes data from all these data sources, and 
provides input to the host vehicle’s GN&C system. It 
consists of three parts.  The first part is a Xilinx FPGA-
based I/O aggregation and time stamping system.  The 
second part is a Tilera Tile64 based manycore processing 
system, and an optional third part is a PC-104-based 
debugging console/logger system for post-flight analysis.  
An overall block diagram of the system is illustrated in 
Figure 1.  The processor board and the FPGA board are 
connected by a 10Gb/s XAUI link, and the external devices 
are connected by either their special I/O or via Ethernet, 
depending on the device. 
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The HDSCE box combines an FPGA board for sensor 
integration and timing, with a manycore computer board for 
processing. The FPGA does system level timing and data 
aggregation and acts as a go-between removing the real time 
requirements from the processor and labeling events with a 
high-resolution timestamp. The processor manages the 
behavior of the system, controls the instruments connected 
to the HDSCE, and services the "heavy lifting" 
computational requirements for analyzing the potential 
landing spots. The box itself is a custom enclosure with 
vibration isolation (Figure 2). 

FPGA I/O and Timing board 
 
In order to both reduce I/O requirements on the processor 
board and to eliminate tight real-time I/O requirements on 
the Operating System running on the processor board, it was 
decided that the FPGA shall both aggregate all I/O and 
annotate all data flowing through the FPGA with a system 
time associated with a measurement event.  To that end, all 
sensor and gimbal interfaces go through the FPGA, and 
each device is required to also provide a discrete event 
signal flag that indicates to the FPGA when the device is 
taking a measurement.   
 
The I/O is system bi-directional and is managed by the 
FPGA.  Each device has its own dedicated data handler, 
with the gimbal and LIDAR each getting a dedicated 
Ethernet Interface, and the IMU getting a custom I/O 

controller and data pre-processor.  All data flowing through 
the FPGA is tagged, annotated with system time (explained 
below) and is multiplexed/demultiplexed and shipped 
to/from the HDSCE processor via a 10 Gb/s XAUI link.  
The system time is managed by the FPGA and consists of 
two counters: 
 
1) A whole number of seconds counter, incremented by a 1-
Pulse-Per-Second (PPS) signal from the Host vehicle.  This 
is essentially a PPS counter.  At boot, this counter starts 
counting from zero, and waits for time messages from the 
host vehicle (HV) forwarded from the HDSCE processor. 
When HDS gets valid time messages from HV, this counter 
is set to the HV whole number of seconds.  Once set, this 
counter continues to increment with PPS, and error flags are 
thrown if time messages stop agreeing with the current 
whole number of seconds value.   

2) A subsecond counter counting at 100 MHz, reset by the 
rising edge of the external PPS.  This counter nominally 
counts from zero to 100 million.  This counter is not settable 
by anything from the outside world other than the PPS 
signal acting as reset.  At the rising edge of the PPS, the 
current count gets copied to a “denominator” register and 
the subsecond counter starts counting again at zero.  This 
denominator field is basically a register of the number of 
counts that the previous PPS interval saw. This allows the 
HDSCE to compensate for FGPA clock oscillator drift over 
time and report a correct fractional time. 
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Figure 1 – Overall HDSCE Block Diagram and interface with external devices 
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The software is organized as a combination of task-parallel 
and data-parallel applications and its responsibilities and 
modules are spread amongst the available cores on the 
Tile64.  The managers communicate amongst themselves 
via “messages” delivered via POSIX message queues. There 
are currently eight “managers,” or executables, in the 
system. They are described as follows: 
 
The Algorithm Manager handles CPU-intensive data 
processing algorithms for Hazard Detection, Hazard-
Relative Navigation, and gimbal mosaic planning.  
Algorithms are being coded to run in parallel on several 
cores. Although this manager was initially coded as a 
single-threaded application to ease the development of the 
overall system behavior, this task is currently being coded 
as a hybrid single-threaded state machine controlling a 
separate Tilera parallel application for CPU-bound 
algorithms. 

The Annotator interpolates recent gimbal and navigation 
poses into a single pose relating the sensor and map 
coordinate systems.  Such a combined pose is associated 
with each range image. 

The Data Manager underlies the entire Compute Element. 
Any messages generated by the system are routed via the 
Data Manager.  The data manager distributes all messages 
according to a pre-compiled subscription list.  Since all 
messages pass through the Data Manager, the Data Manager 
automatically forwards telemetry from all modules to the 
DLC if logging is enabled.  This manager is a multi-
threaded application in order to reduce message routing 
latency.  The link between Data Manager and the DLC is 
bidirectional, allowing developers to “replay” log files 
through the HDS software for development and debugging. 

The HDS Executive (abbreviated ‘Exec’) is the overall 
manager of the Compute Element.  It accepts high-level 
commands from the Host Vehicle via UDP/IP Ethernet 
Messages and returns data such as a list of safe landing 
sites’ coordinates, and tracking observations useful to the 
Host’s navigation function.  It also accepts commands from 
the console.  Commands from whatever source are handled 
by issuing sub-commands to other managers, in some cases 
directly and in others from a state machine.   

The Gimbal Manager controls the gimbal device by 
sending low-level commands, and by reading and analyzing 
status messages from the device.  There are three pointing 
commands:  (1) point the gimbal/sensor boresight relative to 
the vehicle body; (2) track a point on the ground; (3) 
execute a mosaic where the boresight is swept in a back-
and-forth pattern covering a rectangular area on the ground.  
The Gimbal Manager requires knowledge of the current 
vehicle state (position, attitude) from the Nav Manager so it 
can compute pointing angles.  The Gimbal Manager 
routinely provides a coordinate-transformation ‘pose’ to the 
Data Manager that describes the orientation of the LIDAR 
boresight relative to the HDS IMU.  

The LIDAR Manager commands the LIDAR to power up, 
stand by, or collect data.  It reads status messages from the 
LIDAR device. When running, The LIDAR Manager 
assembles individual LIDAR data packets into complete 
range images. 

The Nav Manager propagates an initial navigation state 
using the HDS IMU.  The navigation state is bootstrapped 
to the Host Vehicle's navigation state at the Host Vehicle's 
rate of 50 Hz. During mosaicking, the bootstrapping is 
suspended via a command by Exec, during which the 
navigation state is propagated using only the HDS IMU 
data. The navigation state is sent to the Gimbal Manager and 
Annotator (for annotating LIDAR images), Mosaic planner, 
and to Exec (to monitor range to target).  The Nav Manager 
sends out the navigation state at the HDS IMU rate of 400 
Hz. 

The XAUI Manager manages the interface between the 
Tile64 and FPGA.  It is a multi-threaded application and 
uses the low-level Tilera API to ensure the lowest latency of 
message delivery to and from the Data Manager as possible. 
All data to and from external HDS devices flows through 
the XAUI manager. 

XAUI 
Manager

Data 
Manager

LIDAR 
Manager

Gimbal 
Manager

Annotator

NAV 
Manager

Host 
Vehicle

Data 
Logger 

Console

Algorithm 
Manager

POSIX Queue External Ethernet Internal Manager External Device

Exec

Figure 3: Software Block Diagram 

 
4. MORPHEUS INTEGRATION  

In order to test the performance of the HDS hardware and 
software, a flight with a realistic planetary landing trajectory 
is needed in order to present a high-fidelity scenario to 
evaluate against.  The Morpheus Lander built by NASA’s 
Johnson Space Center (JSC) was chosen as a testbed 
platform capable of flying a typical lunar landing profile.  
The Morpheus lander is a Liquid Oxygen/Methane-fueled 
vehicle capable of vertical landings and takeoffs [12]. 
 
The ALHAT program worked with the Project Morpheus 
team to integrate the HDS as an instrument on the lander. 
The entire ALHAT HDS system was mounted on the 
vehicle and basic interface checks were performed in the 
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laboratory.  Static gimbal pointing knowledge and 
performance error was measured to be well within 0.15 
degrees over intermediate and long distances. An illustration 
of the HDS mounted on Morpheus can be seen in Figure 4. 

 
Figure 4: The ALHAT Hazard Detection System was physically 

integrated onto the Morpheus vehicle for static pointing tests and 
dynamic tether tests at JSC in May/June 2012. 

 
A series of short tethered flights was performed during late 
spring and early summer of 2012 to evaluate dynamic 
performance of the Morpheus/ALHAT system and to ensure 
that the Morpheus/HDS system operated properly.  Four test 
flights were conducted with high levels of success.  A 
sample video illustrating the ALHAT HDS operating can be 
found in the Morpheus Tether Test 17 video [13], courtesy 
of the Morpheus Project. 
 
Operation was as expected, however dynamic pointing 
performance did not meet the desired error budget.  The 
issue has been identified and is being corrected at this 
writing.  
 
At the end of the campaign, ALHAT and Morpheus were 
deintegrated for further development work on both 
platforms.  As of this writing, integration of additional HDS 
capabilities into the combined ALHAT/Morpheus system is 
currently under development. Future flights will include 
observation and processing of a pre-constructed hazard field 
built at the Shuttle Landing Facility at the NASA Kennedy 
Space Center to evaluate HDS algorithm performance for 
selecting safe sites, and providing navigation input to the 
host vehicle. 
 

5. SUMMARY  
The combination of a manycore processor with an FPGA 
allowed great flexibility and ease of development for the 
HDSCE.  This architecture combines the strengths of two 
architectures: the high-performance timing, I/O, and 
interface ability and processing of an FPGA, with the high-
performance computing, flexibility, and programmability of 
a general-purpose manycore processor. This combination of 
an FPGA with a manycore processor, with both components 

being concurrently used for processing, has yet to be done 
for space applications.  

This architecture is also useful for embedded robotic 
applications such as rovers. The FPGA/manycore 
combination allows the end user to place tasks on either the 
FPGA or the manycore processor, based on the strengths 
and weaknesses of each component. 

The flexibility of the manycore processor running Linux 
allowed the development of a hybrid task and data parallel 
system. The large number of cores allowed each “manager” 
to be able to run on its own core without needed to compete 
for processor time. 

The addition of the FPGA allowed not only I/O flexibility, 
but its high resolution timer removed many real-time 
requirements from the processor, allowing the system to 
know with very high fidelity when events occurred in the 
real world. 

This integrated manycore/FPGA system is demonstrating to 
be a good fit for the HDSCE and ALHAT. We are looking 
for opportunities to integrate our current COTS solution into 
a custom single board computer/system in order to save 
weight, power, and integration effort. 

Future, more focused papers will be presented discussing 
individual software component operation, performance, 
strengths, and weaknesses of the algorithms, computation, 
and their fit with the architecture described in this paper. 
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