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Abstract—The Mars Relay Operations Service (MaROS) is 
designed to provide planning and analysis tools in support 
of ongoing Mars Network relay operations. 1 2 Strategic 
relay planning requires coordination between lander and 
orbiter mission ground data system (GDS) teams to 
schedule and execute relay communications passes.   
MaROS centralizes this process, correlating all data relevant 
to relay coordination to provide a cohesive picture of the 
relay state.   
 
Service users interact with the system through thin-layer 
command line and web user interface client applications.  
Users provide and utilize data such as lander view periods 
of orbiters, Deep Space Network (DSN) antenna tracks, and 
reports of relay pass performance.   
 
Users upload and download relevant relay data via formally 
defined and documented file structures including some 
described in Extensible Markup Language (XML).  Clients 
interface with the system via an http-based Representational 
State Transfer (ReST) pattern using Javascript Object 
Notation (JSON) formats.   
 
This paper will provide a general overview of the service 
architecture and detail the software interfaces and 
considerations for interface design.  
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1. INTRODUCTION 
 
Modern Mars surface missions rely primarily upon relay 
orbiters to provide delivery of uplink commands and 
sequences as well as downlink science and engineering data 
products.  The primary driver for the use of orbital relay by 
surface missions is to conserve lander energy.  It takes a 
great deal more energy for a lander to communicate with a 
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Deep Space Network (DSN) antenna than a nearby orbiter, 
energy that can be used for greater movement and science 
activities.  Orbiters do not have the energy constraints of a 
typical lander and furthermore have longer view periods 
with DSN antennas because of the height of their orbits.  
This has led to relay becoming the standard approach for 
communications between earth systems and remote landed 
assets.   The Mars Exploration Rovers (MER) mission in 
particular has made extensive use of orbital relay [1], and 
the Phoenix mission relied entirely upon relay for earth-to-
lander communications [2].   
 
Strategic and tactical relay planning and execution involve 
not only activities on board lander and orbiter spacecraft, 
but require a significant amount of coordination between 
lander and orbiter mission teams.  Relay mission teams must 
manage a number of conflicting wants and needs, including 
the fact that all missions currently or potentially supporting 
relay have their own individual set of science objectives.   
 
Since the start of Mars mission relay, a relay process has 
been put in place to standardize the way relay is managed.  
However, this process involves a number of different steps 
across missions and there is a general lack of data 
accountability across projects.  One primary concern is that 
it can be very difficult to determine the exactly what is 
going on at any given time due to the scattered data across 
various files and systems.   
 
The short-lived Phoenix mission introduced a number of 
elements into the relay picture.  For one, it was the first time 
the Mars Reconnaissance Orbiter (MRO) was used in a 
primary relay role [2].  Additionally, with Phoenix in a polar 
location it had a large number of relay opportunities per day 
with the desired utilization of relay passes changing from 
week to week and even day to day.  
 
In an attempt to better account for this dynamic relay picture 
over the Phoenix mission timeframe a new system called 
Relay Data Engineering (RDE) was introduced [3].  This 
system provided auto-tracking of the total data volume 
received on a pass-by-pass basis and enabled trending of the 
life-of-mission data volume.  However, limitations in the 
overall relay process prevented key capabilities such as 
accurate identification of predicted verses actual downlink 
data volumes.   
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In 2008 work was begun to overhaul the end-to-end relay 
process including the implementation of a new system, the 
Mars Relay Operations Service (MaROS).  The goal of this 
system is to standardize the relay approach across all relay 
assets and provide a centralized data store enabling 
visualization of the current, accurate relay picture.   
 
The first phase of implementation addresses the strategic 
process.  During this phase, all user data management 
transactions are provided via upload and download of relay 
data files to the service.  A web user interface provides 
timelines and correlated charts of overflight data.   
 

2. INFORMATION SPACE AND ARCHITECTURE 
OVERVIEW  

 
Strategic Relay Coordination 
 
The phase 1 strategic coordination process involves the 
upload and download of a set of files to and from MaROS.  
These data required for predictions, calculations and 
decisions concerning the relay process.  The following table 
summarizes the input and output data utilized in the 
strategic coordination process: 
 
File Type Acronym Content 
Light Time File LTF Light times to and from 

Earth and Mars 
Orbiter Sequence 
of Events File 

OSOE DSN Antenna tracks, 
transmission data rates, 
system configuration 
parameters 

Lander Orbital 
Propagation 
Timing Geometry 

LOPTG Geometric pass data 

Overflight 
Summary File 

OSF Correlated report 
summarizing information 
published to MaROS 
(Output) 

Ace Schedule None Staffing schedule for 
flight mission controllers 
(“aces”) 

Orbiter Request 
File 

ORF Lander desirements for 
relay utilization 

Overflight 
Acknowledgement 
File 

OAF Orbiter team agreements. 

Scorecard None Post-pass statistics 
Overflight 
Performance 
Assessment File 

OPAF Pass predict and actual 
data 

 
Table 1: Relay Coordination Data Files 

 
Each of these files was used in or had an equivalent type in 
the legacy system.  All legacy files were implemented in 

proprietary formats or in some cases only available as Excel 
spreadsheets.  Many of these files were utilized in point-to-
point transactions and in some cases extracted and exposed 
in other downstream files, and in each case required special 
parsers to interpret.   
 
Certain files such as the OSOE and Scorecard were 
provided in structurally “loose” formats that could not be 
reliably parsed.  As part of the overhaul of the relay 
coordination process, most of these legacy files were re-
designed to the Extensible Markup Language (XML) format 
to ensure machine compatibility and enhance overall 
readability and adaptability.  
 
The legacy coordination process involved point-to-point file 
deliveries and email-based notifications over the course of a 
monthly planning cycle.  With the new process, lander and 
orbiter teams provide data files to MaROS, which extracts 
and persists file data and forwards notifications to 
subscribed end-users.  The following diagram describes the 
lifecycle of coordination data from long-range calculations 
through the execution of the overflight and subsequent 
provision of post-pass analysis information: 
 

 
 
 

Figure 1: Overflight Lifecycle 
 
Each data type provides value to the overall process.   
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• Lander geometries are predictions of relay pass 

behavior and are used in the formulation of 
requests.   

• Requests and Acknowledgements represent 
decisions made by lander and orbiter teams.   

• Light time data, orbiter data and ace schedules are 
all referenced when identifying pass latencies.  
Scorecard and post-pass assessments  (OPAF) 
provided lessons learned for use in future decision 
making.   

 
Details of each data type and transaction formats will be 
described as part of the information management discussion. 
 
System Architecture 
 
As a full description of the system architecture is beyond the 
scope of this paper, this section will attempt to summarize 
key relevant architectural components.  

The system is presented as a “service” to end users and end 
user systems.  Users perform a set of transactions with the 
service, either to provide data to or to retrieve data from the 
service.  It is the role of this service to ingest, persist and 
provide access to data, and also to calculate several types of 
derived data and further correlate everything together.   

The architecture style uses a centralized database, where 
external clients publish to and fetch data from a central 
service.  Data from publish transactions is persisted by the 
service for use by follow-up transactions.  Clients interface 
with a “service layer” which in turn utilizes a relational 
DBMS for persistence.  Note that external clients do not 
have direct access to the DBMS, they interact with data only 
through the service layer.  This prevents client dependence 
on specific database structures and naming conventions and 
thus enables the database structures to evolve without 
unduly impacting external systems.   

MaROS server components are deployed to institutionally 
maintained hardware visible to the Jet Propulsion 
Laboratory (JPL) flight operations network.  This hardware 
includes a set of standard software packages and support for 
MySQL databases.  The system provides and load balancing 
and backup functions enabling MaROS to meet key 
operational performance requirements such as a high level 
of accessibility and minimal down times.   

The following diagram depicts the core components of the 
architecture: 

 

Figure 2: Application Architecture 

At the heart of the architecture is the Information Service 
layer that performs all data management business logic 
functions.  These include upload of data for long-term 
persistence and access by clients, download of data for 
client correlation and visualization, calculation of derived 
data types such as latencies and conflicts, and notifications 
to external users.   

Long-term persistence is handled by a relational database 
system.  MaROS utilizes a MySQL as this is fullky 
supported in the deployment environment.   

A transaction layer sits above the service layer, intercepting 
client requests and delivering resulting information.   

Finally, clients interface with this transaction layer.  Two 
types of clients are provided, a rich web user interface built 
with Flash and FLEX, and a thin command line client built 
with Python.   

Much of the data published to the system is provided via 
files. When a file is presented to the system it is parsed and 
the data extracted, reformatted and published to the 
database.  The system maintains a history of file 
transactions in separate tables from the source data.   

File data may be provided any number of times over the 
same time range, and these represent changes to the data set 
rather than just additions.  For example, if a set of requests 
is provided over a time range where requests are already 
present, the new data represents “updates” to the data set as 
opposed to “inserts”.  

Most input files are generated via other software tools (e.g. 
geometric view period calculations), however this is not 
exclusive, as at least the schedule of orbiter “Ace” staffing 
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availability is generated by an operator “by hand” and this is 
expected to be the case for the near future.  All input files 
adhere to a format as specified in a related System Interface 
Specification (SIS).   

Once data is uploaded and extracted from a file it is 
transformed into a set of objects within the server virtual 
machine.  These objects are transformed into database 
records for persistence and to JSON structures for delivery 
to client applications such as the web user interface.  The 
following diagram shows the relations between the different 
data structures: 

 

Figure 3: Data Structure Relations 

The intermediate Object structures are utilized by all 
business logic components dealing with upload, download 
and computational logic.   

Service Interface 

The chosen interface approach to the service is via http 
using a ReST (Representational State Transfer) style.  With 
this style, a set of “resources” are defined that, in the case of 
MaROS,  represent types of transactions (publish or fetch) 
each with an associated set of parameters driving the 
transaction.  Behind the scenes, service layer applications 
written in Java execute transactions and perform 
computations. 

Service Clients 

A web graphical user interface (GUI) and command line 
scripts are both provided for end-user interaction with the 
system. For the first phase of software development the web 
user interface provides timeline based visualization of 
system data, summary pages correlating planned versus 
actual results and charts of predicted and actual pass 
performance.  During this phase, all modification of data is 
restricted to command line file update transactions.  

Both types of clients perform service transactions via ReST.  
Command-line clients perform publish transactions and 
query a correlated summary file from the service.  The web 
GUI client performs fetch calls for the “raw” object data 
such as sets of orbital view periods, orbital events and 
lander-orbiter request conflicts.  

Data Interface Formats 

MaROS supports a range of formats for data interfaces.  
Input interfaces include XML, CSV and some legacy text 
formats, while output interfaces include JSON, XML, and 
CSV.   The following provides an overview of some formats 
supported by the system.   

Extensible Markup Language (XML) 

XML is a flexible, extensible format for creating structured 
documents [4]. It sees growing use by mission data systems 
to represent a wide range of information types.  Most of the 
new interfaces generated as part of the MaROS system 
engineering development are in XML.  XML is very 
human-readable from the structuring of the data elements.  
The primary value of the XML is the extensibility of the 
structure.  New elements can be added to existing structures 
with very little impact on downstream parsers, as most 
parsers will simply ignore unrecognized elements.       

Comma Separated Value (CSV) 

Comma separated lists of data are a common way to share 
information between software systems, largely due to the 
relative ease of parsing the structure.  By their nature CSV 
interface files must be rigidly formatted, as the addition or 
removal of a column will always impact producers and 
consumers of the file and would certainly require a change 
to the SIS.   

The CSV format is useful when dealing with tabular data 
exported from tools such as Excel.  The Ace Schedule is a 
specific example, where the actual schedule is managed as 
an Excel spreadsheet.  It is also desired as an output format, 
to import into other spreadsheets and also for quick visual 
comparison of data record values, however for that purpose 
additional formatting is usually required to forcibly justify 
columns and visually align records.   

Javascript Object Notation (JSON) 

The JSON is a lightweight, structured data format based off 
a sub-set of the JavaScript programming language [5].  The 
structure brings with it less structural overhead then the 
equivalent XML and is useful for interactions between 
interfacing software (e.g. GUI) clients and providing 
information services.  It is similar to the XML in terms of 
the ease of extension of the format.  JSON parsers and 
encoders are available in JSON and Flex.   

3. DATA INTERFACES  
To understand the drivers for use of different interface 
formats we must discuss the different types of information 
managed by the system.  
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The fundamental role of the system is to coordinate 
utilization of a pass “overflight”.  An overflight occurs 
during a range of time when an orbiter is in view from a 
lander on the ground, representing a potential 
communications opportunity.   MaROS information 
management is centered on the allocation of these 
overflights for use by landers for relay.  The actual 
determination of what overflights to use depends upon a 
number of factors including the total data transmission 
capability of the overflight, the amount of time to transmit 
or receive data from the overflight (the “latency”) and 
whether or not the overflight is in conflict in some way.  
Nearly all of the information managed by the system is 
related to overflight management.   

Information is published and modified at different phases in 
the operations cycle. The first phase of system development 
supports the Strategic Planning cycle as well as post-pass 
performance assessment.  The strategic planning cycle runs 
from the initial identification of view period opportunities 
until the final acknowledgement of orbital requests for use.   

Strategic planning data can be provided far in advance of 
the actual relay event.  Such data may be published weeks, 
months, or potentially years in advance, however the 
physical nature of the relay environment makes it difficult to 
predict certain information with great accuracy.  Typically, 
strategic planning data is provided as part of a monthly relay 
cycle, with most data provided one or more weeks in 
advance of the overflight pass.   

Lander View Periods 

Overview 

Lander view periods represent the of time span from which 
a “celestial entity” is in view in the sky from horizon to 
horizon.  Celestial entities include objects such as Orbiters, 
the Martian Moons and the Earth. Lander navigation teams 
typically calculate this information and include additional 
geometric data such as the maximum elevation for the pass, 
orbital inclination, etc.   Lander view period data is typically 
generated for two week to one-month time spans and 
provided to mission systems via a Lander Orbital 
Propagation Timing Geometry (LOPTG) file. Note that, 
while lander view period files could potentially be 
calculated out for years of orbits, the accuracy of the 
calculations decrease over time due to small or in some 
cases large changes in the orbital geometry.  The Mars 
Reconnaissance Orbiter, for example, sits in a low orbit 
which is affected by atmospheric drag and is very difficult 
to predict over long times.   This lander view period data 
forms the basis for eventual requests.   

Input File Format 

The format of an LOPTG file is a legacy CSV-separated 
text format with no extra structural framework.  The result is 

a file of minimal size but which requires special parsers to 
interpret, and it is not especially human readable unless the 
reader is already highly familiar with the file format.  An 
update of the file format to XML was considered during the 
early engineering of MaROS.  However, any updates to this 
particular file would impact a number of other software 
subsystems including providers of the file and other systems 
ingesting the file.  It was decided that the cost of these 
impacts was outside the scope of the current phase of work, 
and so MaROS was implemented with a specialty parser to 
support the legacy format.  
 
The following are two example lines of the LOPTG file 
content (with newlines added for some legibility): 
 
ORBRISE, 53, 2009-238T21:18:13.733,    2.4550703E+06,  

66.183,1.97329E-09,    1.841340932E+02, 
1.676537E+03, 3.79607537E+03, 
8.85315041E-03, 9.2936663E+01, 
5.7220487E+01, -1.02267752E+02, 
6.13504877E+01, 

ORBMAXELV,     74, 2009-238T21:21:36.224, 
     2.4550703E+06, 66.183, 6.9127242060482, 
     2.73586681E+02,    1.019251655732523E+03, … 
 
The above information represents time and elevation data 
concerning the moment of an orbiter rising at the horizon 
and the moment that an orbiter sits at its highest maximum 
elevation in the sky during a pass.  To understand the 
specific meaning of each data parameter, an ingestor of the 
file must consult the relevant interface specification 
document (the SIS).   
 
Upon publication of this file data to MaROS, the contents 
are parsed into Java view period objects and persisted into a 
set of tables in the database.  The publication of these data 
triggers calculations including the identification of planning 
warnings and estimation of uplink and downlink latencies.    
 
Web UI Output Format 
 
Once data has been persisted to the database it is available 
for download for various purposes.  This includes the basic 
visualization of data on the web user interface.    Data is 
provided to the web UI by the MaROS serivice via ReST 
invocations in the JSON notational format.  As described 
earlier, the JSON is a relatively lightweight format with 
enough structure to represent complex object types.   
 
Not all of the information extracted from the LOPTG file is 
necessary for the visualization of data on the web GUI.  For 
example, the LOPTG includes lander positional data that is 
not required for viewing upon the web timeline display.  As 
responsiveness of the web GUI is highly desired, the bare 
minimum of data is delivered with any ReST call.   
 
The following is a sample JSON structure representing a 
Lander View Period:   
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[ 

{ 
                "LanderViewPeriod": { 
                        "ViewPeriodType":"ORBITER", 
                        "StartTime":"2009-299T20:31:54", 
                        "EndTime":"2009-299T20:48:22", 
                        "MaxElTime":"2009-299T23:40:00", 
                        "MaxEl":"30.1951", 

          "OverflightId":"ODY_MRB_2009_299_04", 
                        "LanderId":"MRB", 
                        "OrbiterId":"ODY" 
                } 
        } 
] 

Note that the “name-value” pair structuring of this format 
makes for a highly readable format, while at the same time 
the format incurs minimal additional structure to enable 
complex object structures.    

Both the Java service and Flash/FLEX client utilize libraries 
supporting encoding and decoding of the JSON format.     

Light Time Data 

Overview 

Light time data is a series of data calculations of the time it 
takes light to travel to Mars and back at any given moment. 
These times change as the distance between Earth and Mars 
changes over the course of their orbits.  For example, in 
2006 when the Earth was closest to Mars the light time was 
~300 seconds, while late in 2007 the light time was ~1300 
seconds. As with the LOPTG, light time data is provided in 
a legacy file format.  Light time data is utilized by the web 
GUI and is an important parameter in forward link and 
return link latency calculations.   

Input Format 

The following snippet shows the format of the data of the 
light time file: 

Applicable Time        DOWN-LEG   UP-LEG    
06-069/00:00:00        713.904            713.763    
06-069/06:00:00        715.142            715.000    
06-069/12:00:00        716.379            716.237    
06-069/18:00:00        717.616            717.474    
06-070/00:00:00        718.852            718.710    
 
The “Up-Leg” time is the light time from Earth to Mars, and 
the “Down-Leg” is the time from Mars to Earth.  As with 
the LOPTG, a specialty parser was implemented to interpret 
the data.   

Unlike lander view periods, light time data calculations 
rarely change over time and so a typical light time file may 
contain years’ worth of data.   

Ace Schedule 

Overview 

The ace schedule is a table of the work shifts of the staffing 
of relay aces.  An ace must be on duty to provide relay 
services for all nominal relay uplink operations.  Ace 
schedule data is used by the web GUI as a part of the overall 
visualization of data by time, but is also incorporated into 
latency calculations as the “nominal” forward link latency 
(i.e. the time before a pass that an uplink product must be 
provided) includes the identification of a time that an Ace 
staffer is on duty.   

Input Format 

These schedules are managed via Excel spreadsheets.  For 
this reason it is most convenient for these files to be 
provided in comma separated value (CSV) format instead of 
XML, as Excel can be readily exported into CSV without 
requiring any further processing.     

The following example shows the format of the input file: 

CCSD3ZF0000100000001NJPL3KSOL015$$MARK$$ 
MISSION_NAME = MARS_RECONNAISSANCE_ORBITER; 
SPACECRAFT_NAME = MARS_RECONNAISSANCE_ORBITER; 
DATA_SET_ID = ACE_SCHEDULE; 
FILE_NAME = Ace_schedule_Mar08_12.ace; 
APPLICABLE_START_TIME = 2009-060T00:00:00; 
APPLICABLE_STOP_TIME = 2009-074T00:00:00; 
PRODUCT_CREATION_TIME = 2009-037T22:55:57; 
CCSD3RE00000$$MARK$$NJPL3IF0M01300000001 
$$EOH 
2009-060T17:00:00; 0T02:00:00; normal;Ace On-
Console ; 303-971-xxxx or 303-971-xxxx 
2009-060T21:00:00; 02:00:00  ; normal ;     
unassigned;303-971-xxxx or 303-971-xxxx 
2009-061T17:00:00 ; 0T03:00:00; normal; Bubba 
Smythe or Bertha Smith;   818-354-xxxx 
2009-062T17:00:00; 14T00:00:00; on-call; John Doe; 
818-354-xxxx 
$$EOF 
 

While this format is relatively easy to produce and ingest, it 
is not as extensible and lacks the “declarative clarity” of the 
XML.   

Orbiter Events 

Overview 

The Orbiter team provides the Orbiter Events file to the 
MaROS system.  This file consists of a set of different types 
of “events” used for a variety of purposes by the MaROS 
system and end users of the system.  These events include: 



 
 

 7 

- Time windows of Deep Space Network (DSN) 
uplink and downlink antenna to orbiter track, 

- Data rates and efficiency of data transfer at any 
point in time, 

- Orbit number changes over time, 

- “Non-relay” periods where, for one reason or 
another, the orbiter will not be capable of 
performing relay for the lander regardless of the 
view period opportunity. 

 
Orbiter event data is used for a variety of purposes by 
MaROS, including latency and conflict calculations.   
 
Legacy Orbiter Events files were of a “loose”, unstructured 
format that were difficult to parse and interpret.  
Furthermore, new types of events are envisioned so an 
extensible format was desired.  For these reasons XML was 
chosen to replace the legacy format.  
 
Input Format 
 
The following example shows some of the different data in 
the file: 
 
<OrbitNumber StartTime = "2009-260T04:20:15.161"> 
     <Orbit>34417</Orbit> 
</OrbitNumber> 
 
<DSNDownlink StartTime = "2009-260T04:18:47.025"> 
     <Duration>0T00:23:49.447</Duration> 
</DSNDownlink> 
 
<DataRate StartTime = "2009-260T09:52:23.327"> 
     <Rate>39816</Rate> 
     <Efficiency>0.129825</Efficiency> 
</DataRate> 
 
As shown, each of the different event types listed in the file 
has different data elements and different numbers of 
elements.  Only one parameter is common across all event 
types, the start time of the event.  Because this value is 
common (and required) for all entries, it is included as an 
attribute of the event rather than an element, with all of the 
other supporting data provided as elements.   
 
Late in the first phase, additional relay system parameters 
were identified for inclusion in the Orbiter Event File 
supporting latency and conflict calculations.  These new 
data types were added to the file format with minimal 
impact upon the file ingestion logic, largely due to the 
extensibility of the XML, where updating other formats 
such as CSV would have been more problematic.   
 
As with View Period data, the Orbital Events are provided 
to the web GUI via a JSON structure similar to the Lander 

View Period structure, as is all of the rest of the ingested 
system data.   
 
Overflight Summary File – Geometric Data 

Overview 

The Overflight Summary File (OSF) is introduced with the 
MaROS system to replace certain legacy relay planning 
products.  The contents of the file represent the “state” of 
the relay process over a requested period of time.  The file 
includes data correlated from multiple input sources as well 
as calculated values.  A variety of filters can be applied 
upon generation of this file including filters on specific 
landers and orbiters and filtering out passes that do not meet 
a minimum duration or minimum maximum elevation. 

Both the content and use of the OSF change over the course 
of the planning lifecycle.  Typically, the OSF is first 
requested after the LOPTG, Orbiter Events, Light Time and 
Ace Schedule files have been published.  At this point the 
OSF will contain basic geometric view period data and 
timing data such as the orbit number at the start time of the 
pass and any pass latencies calculated from view period and 
orbiter event data.   

Output Format 

The following shows the output of one summary element 
within the OSF at this point: 

<OverflightSummary 
        OverflightID = "ODY_MRA_2009_274_04" 
        SecondaryID = "ODY" 
        OrbiterRiseTime = "2009-274T20:49:05.495" 
        OverflightDuration = "0T00:15:28.076" 
        MaxElevation = "22.2326757448093" 
        ConflictType = "none"> 
        <OverflightTiming 
                OverflightID  = "ODY_MRA_2009_274_04" 
                RequestType =  "geometry"> 
                <Orbit>34595</Orbit> 
                <LMST>2043T00:00:00</LMST> 
                <FirstBitTime> 
                     2009-275T00:13:39 
               </FirstBitTime> 
        </OverflightTiming> 
</OverflightSummary> 
 
From this set of core geometric data, the lander team 
identifies a set of passes desired for relay utilization and 
generates an “Orbiter Request File (ORF) for submission to 
the system.    

The OSF format will be revisited at later points in this 
discussion. 

Orbiter Requests 
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Overview 

 

When a lander team decides that an overflight should be 
used as a communications pass it is presented as a “request”.  
Typically these requests are derived from view period 
geometries, adjusted by a small amount of time from the 
start and end time of the pass.  Requests include additional 
information such as positional data (roll, yaw and pitch), 
“pass-through” relay parameters and priority of the pass.  
Three types of requests can be provided to the system: 
tentative, proposed and “formal” requests.  These different 
types of requests allow for different types of negotiation 
processes between lander and orbiter teams; for example, 
orbiter A may require a proposal-and-acceptance process, 
while orbiter B may simply accept formal requests up front.    

In the first phase of deployment, orbiter requests are 
produced as part of scripted ground data system processes as 
opposed to direct selection via a user interface or exported 
from another file type (e.g. Excel).  

Input Format 

The following is an example of a simple request, as it would 
appear within an ORF: 

<OrbiterRequest 
    OverflightID = “ODY_MRA_2009_274_04” 
    RequestType = “request”> 
  <RequestCategory>contingency</RequestCategory> 
  <HailStartTime>2008-274T20:49:05</HailStartTime> 
  <HailDuration>00:10:00</HailDuration> 
  <LinkType>return</LinkType> 
  <ForwardRate>8</ForwardRate> 
  <ReturnRate>128</ReturnRate> 
</OrbiterRequest> 
 
The content of the request may vary in terms of what 
elements are provided. A valid request may only contain 
basic timing parameters such the start time for the orbiter to 
hail the lander and the type of the request.  Another valid 
request may contain any of up to nineteen total parameters 
including data rates, response times, pass through 
parameters, etc.  Again the extensibility of the XML is quite 
valuable in the handling of the variable number of 
parameters.  
 
Eventually the lander team decides upon a set of passes for 
request and submits the ORF to the system.  The submission 
of this file triggers the calculation of new latencies and 
conflicts associated with the requests in the file and triggers 
notifications (in the first phase via email) to the other user 
teams that a new set of requests is available.  
 

In response to this notification, the orbiter team requests a 
version of the OSF with the requests included to further 
process into an eventual acknowledgement.    
 
Overflight Summary File – Requests Submitted 
 
Overview 
 
Once requests have been submitted, the content of a 
downloaded OSF will now include this new request 
information as well as any latencies or conflicts that were 
generated in response to the ORF submission.   
 
Output Format 
 
The following example shows the OSF updated with the 
new data present: 
 
<OverflightSummary 
        OverflightID = "ODY_MRA_2009_274_02" 
        … 
        ConflictType = "request"> 
        … 
    <OrbiterRequest 
      OverflightID = “ODY_MRA_2009_274_04” 
      RequestType = “request”> 
      <RequestCategory>contingency</RequestCategory> 
      <HailStartTime>2008-274T20:49:05</HailStartTime> 
      <HailDuration>00:10:00</HailDuration> 
      <LinkType>return</LinkType> 
      <ForwardRate>8</ForwardRate> 
     <ReturnRate>128</ReturnRate> 
</OrbiterRequest> 
        <OverflightTiming 
                OverflightID  = "ODY_MRA_2009_274_02" 
                RequestType =  "request"> 
                <Orbit>34588</Orbit> 
                <LMST>2042</LMST> 
                <FirstBitTime> 
                        2009-274T10:23:48 
               </FirstBitTime> 
                <LastBitTime> 
                        2009-274T10:23:48 
                </LastBitTime> 
        </OverflightTiming> 
        <OverflightConflict 
                OverflightID = "ODY_MRA_2009_274_02"> 
<ConflictDescription> 
    Overflight Conflict UNACKNOWLEDGED_REQUEST: 
lander MRA request for orbiter ODY has not been 
acknowledged from 2009-274T08:10:13 to 2009-
274T08:24:49</ConflictDescription> 
        </OverflightConflict> 
</OverflightSummary> 
 
Note that the format of the elements of the request data is 
essentially the same as the format of the corresponding 
request file and eventual acknowledgement file.  This 
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enables external scripting processes to generate ORF and 
acknowledgement files in a relatively straightforward 
manner from the original OSF.    
 
As mentioned, this new OSF contains additional data that 
was not present in any of the input files, specifically the 
calculated latencies (the First Bit and Last Bit downlink 
times) and the identified conflicts.   In this case, the conflict 
identified is that the request has not yet been acknowledged 
by the orbiter team, and therefore is not actually scheduled 
for relay.   
 
The orbiter team processes this OSF file containing the 
lander requests.  In turn, the orbiter team generates a new 
file of acknowledgements to the orbiter requests.  
 
Overflight Acknowledgements 
 
Overview 

Overflight acknowledgements represent the “ok or not ok” 
from the orbiter team as to whether or not a set of requests is 
going to be implemented.  Acknowledgements are published 
via an Overflight Acknowledgement File (OAF). The 
format is fundamentally the same as that for the Overflight 
Requests, with a small amount of difference in the total set 
of elements that can be provided.  

Input Format 

The following is an example of a record from within an 
acknowledgement file produced in response to a request in 
the OSF: 
 
<OverflightAcknowledgement 
    OverflightID = “ODY_MRA_2009_274_04” 
    ackType = “implemented”> 
 <HailStartTime>2008-274T20:49:05</HailStartTime> 
  <HailDuration>00:10:00</HailDuration> 
  <LinkType>return</LinkType> 
  <ForwardRate>8</ForwardRate> 
  <ReturnRate>128</ReturnRate> 
</ OverflightAcknowledgement > 
 
In this case, the acknowledged values are the same as the 
requested values, meaning that the orbiter team has accepted 
the request “as is” for implementation as a relay pass.   
 
When the acknowledgement file is published to the system 
conflicts are re-calculated and end-user systems are notified 
of the new acknowledgements as well as any new conflicts 
that might be generated in response to the requests and acks 
data not matching. 
 
Overflight Summary File - Acknowledgements Submitted 
 
Overview 
 

Once the OAF has been published with passes listed as 
“implemented” the long-term relay process is essentially 
complete.   
 
Output Format 
 
A summary of the process state can be downloaded as an 
OSF as the following shows:  
 
<OverflightSummary 
        OverflightID = "ODY_MRA_2009_274_02" 
        … 
        ConflictType = "none"> 
        … 
    <OrbiterRequest 
      OverflightID = “ODY_MRA_2009_274_04” 
      RequestType = “request”> 
      <RequestCategory>contingency</RequestCategory> 
      <HailStartTime>2008-274T20:49:05</HailStartTime> 
      <HailDuration>00:10:00</HailDuration> 
      <LinkType>return</LinkType> 
      <ForwardRate>8</ForwardRate> 
     <ReturnRate>128</ReturnRate> 
</OrbiterRequest> 
<OverflightAcknowledgement 
    OverflightID = “ODY_MRA_2009_274_04” 
    ackType = “implemented”> 
 <HailStartTime>2008-274T20:49:05</HailStartTime> 
  <HailDuration>00:10:00</HailDuration> 
  <LinkType>return</LinkType> 
  <ForwardRate>8</ForwardRate> 
  <ReturnRate>128</ReturnRate> 
</ OverflightAcknowledgement > 
</OverflightSummary> 
 
Now that an acknowledgement has been submitted in 
response to the request and the parameter values match, 
there is no longer a related conflict in the system and so 
there is no longer a conflict included as part of the OSF 
data.   
 
Post Pass Assessment 

After an overflight occurs, lander and orbiter teams generate 
assessments of the pass performance for provision to the 
MaROS system.  There are two types of files that are 
generated: a “scorecard” snapshot of key pass performance 
values and “overflight performance assessment files” 
containing time-ordered data of a variety of information 
types. 

Scorecard  

Overview 

The scorecard is essentially a snapshot of key meta-data 
information concerning the behavior of the pass.  These 
include the total volume of data uplinked or downlinked, 
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minimum, maximum and average transmitter power levels 
and total number of frame and packets sent.   

Input Format 

The following is a small sample of of the contents of a 
scorecard: 

<ScorecardEntry OverflightID =  
                        “MRO_MRB_2008_071_02”> 
 <SessionAttributes> 
                    <SessionStartTime> 

2009-071T09:27:55.208 
                    </SessionStartTime> 

    <SessionEndTime> 
2009-071T09:32:55.208 
</SessionEndTime> 

<LinkType>both</LinkType> 
<ForwardRate>8</ForwardRate> 
<ReturnRate>128</ReturnRate> 

</SessionAttributes> 
<LinkConditions> 

            <AntennaType>helix</AntennaType> 
      <LanderPitch>0.25</LanderPitch> 
      <LanderYaw>137.6</LanderYaw> 

             …. 

With the information from the scorecard, the actual state of 
the pass may be compared with the planned or predicted 
states.  It is typically the first place that mission teams look 
when issues are found with the performance of a pass.   

It is envisioned that new data types might be added to the 
scorecard in the future and so again the XML is a useful 
format.   

Overflight Performance Assessment File 

Overview 

Other forms of pass assessment may be provided via an 
Overflight Performance Assessment File (OPAF).  This file 
contains sets of data representing both predictions and 
actual calculations and measurements (“profiles”) of a 
variety of different pass parameters.  These include 
information such as the overflight elevation and transmitter 
power as a function of time.  The primary use of this 
information is plotting these curves together to analyze 
trends and identify issues.   

Input File Format 

The file format is designed such that new types of profiles 
could be added at any point, with the only restriction that 
key fields are included such as the overflight ID, profile 
name, the type, units and the time-ordered values. 

The following is an example snippet from an OPAF: 

<Profile  
    OverflightID = “MRO_MRB_2008_067_01” 
    ProfileName = “Bytes Received During Overflight” 
    ProfileType = “reported” 
    ProfileUnits = “Bytes” > 
       <ProfileEntry  
           Time = “2008-067T12:32:21”>0</ProfileEntry> 
       <ProfileEntry  
          Time = “2008-067T12:33:21”>100</ProfileEntry> 
    … 

With the overflight ID and profile definition parameters 
being both common and required for each profile, they are 
included as attributes of the block.    

4. CONCLUSIONS  
 

MaROS Interfaces 

The MaROS system supports a variety of file formats for 
the ingestion and retrieval of relay planning and post-pass 
assessment data.  In the first phase of development, utilized 
file formats include:  

• XML was chosen for most new data file formats 
including Orbiter Events, Orbiter Requests and 
Overflight Acknowledgements.  These interfaces 
were updated several times over the course of the 
first phase of development with relatively minimal 
impact upon existing software components.  

• CSV was implemented for a single input (the Ace 
Schedule) due to the “hands-on” spreadsheet 
driven nature of the data management.  The Ace 
Schedule relatively inexpensive to implement and 
did not change significantly beyond the initial 
implementation.   

• JSON was used for description of all data delivered 
to the web user interface.  The lightweight structure 
enabled a high level of data throughput from the 
server to the GUI client and good responsiveness 
from the point of view of the web user interface.   

• Legacy formats were maintained where the impact 
of change on providing systems was considered too 
costly, i.e. the LOPTG and Light Time files.   

Lessons Learned 

The extensibility of the XML is the primary driver for its 
broad use with external customers, though the widespread 
availability of supporting tools and libraries is an important 
factor.  Ease of adaptation was certainly a factor in the first 
phase of development during early prototyping against 
rapidly changing SISs as well as some from later 
requirement changes. In one case late in phase in the phase a 
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set of additional data types were added with minimal no 
impact to existing file structure (the Orbital Events File) and 
inflicted minimal impact on development, mostly from the 
addition of new representational Java types.   

Future Work 

The MaROS system manages a range of XML schema 
defined information that is likely to provide value to other 
external users besides the immediate set of mission 
customers, and is also likely to see evolutionary changes 
through the course of the Mars Science Laboratory and 
other future missions involved in relay.  For these reasons it 
may be worthwhile to migrate the adaptation of XML 
system interfaces to an XML registry built for that purpose.    

Also it would be valuable to re-consider upgrading legacy 
file formats such as the LOPTG and Light Time File to the 
XML format, so that they could more readily evolve in the 
manner of the Orbiter Events file.       

Final Words 

The extensibility of system software interfaces will continue 
to be important in the face of the continuous evolutions of 
the Mars Network relay coordination information space.   
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