

 1

MaROS Strategic Relay Planning and Coordination
Interfaces

Daniel A. Allard
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Drive, Pasadena, CA 91109

818-354-4344
Daniel.allard@jpl.nasa.gov

Abstract—The Mars Relay Operations Service (MaROS) is
designed to provide planning and analysis tools in support
of ongoing Mars Network relay operations. 1 2 Strategic
relay planning requires coordination between lander and
orbiter mission ground data system (GDS) teams to
schedule and execute relay communications passes.
MaROS centralizes this process, correlating all data relevant
to relay coordination to provide a cohesive picture of the
relay state.

Service users interact with the system through thin-layer
command line and web user interface client applications.
Users provide and utilize data such as lander view periods
of orbiters, Deep Space Network (DSN) antenna tracks, and
reports of relay pass performance.

Users upload and download relevant relay data via formally
defined and documented file structures including some
described in Extensible Markup Language (XML). Clients
interface with the system via an http-based Representational
State Transfer (ReST) pattern using Javascript Object
Notation (JSON) formats.

This paper will provide a general overview of the service
architecture and detail the software interfaces and
considerations for interface design.

TABLE OF CONTENTS

1. INTRODUCTION ...1
2. INFORMATION SPACE AND ARCHITECTURE OVERVIEW 2
3. DATA INTERFACES ...4
4. CONCLUSIONS .. 10
REFERENCES .. 11
BIOGRAPHY .. 11

1. INTRODUCTION

Modern Mars surface missions rely primarily upon relay
orbiters to provide delivery of uplink commands and
sequences as well as downlink science and engineering data
products. The primary driver for the use of orbital relay by
surface missions is to conserve lander energy. It takes a
great deal more energy for a lander to communicate with a

1978-1-4244-3888-4/10/$25.00 ©2010 IEEE.
2 IEEEAC paper #1509, Version 1, Updated November 1, 2010

Deep Space Network (DSN) antenna than a nearby orbiter,
energy that can be used for greater movement and science
activities. Orbiters do not have the energy constraints of a
typical lander and furthermore have longer view periods
with DSN antennas because of the height of their orbits.
This has led to relay becoming the standard approach for
communications between earth systems and remote landed
assets. The Mars Exploration Rovers (MER) mission in
particular has made extensive use of orbital relay [1], and
the Phoenix mission relied entirely upon relay for earth-to-
lander communications [2].

Strategic and tactical relay planning and execution involve
not only activities on board lander and orbiter spacecraft,
but require a significant amount of coordination between
lander and orbiter mission teams. Relay mission teams must
manage a number of conflicting wants and needs, including
the fact that all missions currently or potentially supporting
relay have their own individual set of science objectives.

Since the start of Mars mission relay, a relay process has
been put in place to standardize the way relay is managed.
However, this process involves a number of different steps
across missions and there is a general lack of data
accountability across projects. One primary concern is that
it can be very difficult to determine the exactly what is
going on at any given time due to the scattered data across
various files and systems.

The short-lived Phoenix mission introduced a number of
elements into the relay picture. For one, it was the first time
the Mars Reconnaissance Orbiter (MRO) was used in a
primary relay role [2]. Additionally, with Phoenix in a polar
location it had a large number of relay opportunities per day
with the desired utilization of relay passes changing from
week to week and even day to day.

In an attempt to better account for this dynamic relay picture
over the Phoenix mission timeframe a new system called
Relay Data Engineering (RDE) was introduced [3]. This
system provided auto-tracking of the total data volume
received on a pass-by-pass basis and enabled trending of the
life-of-mission data volume. However, limitations in the
overall relay process prevented key capabilities such as
accurate identification of predicted verses actual downlink
data volumes.

 2

In 2008 work was begun to overhaul the end-to-end relay
process including the implementation of a new system, the
Mars Relay Operations Service (MaROS). The goal of this
system is to standardize the relay approach across all relay
assets and provide a centralized data store enabling
visualization of the current, accurate relay picture.

The first phase of implementation addresses the strategic
process. During this phase, all user data management
transactions are provided via upload and download of relay
data files to the service. A web user interface provides
timelines and correlated charts of overflight data.

2. INFORMATION SPACE AND ARCHITECTURE
OVERVIEW

Strategic Relay Coordination

The phase 1 strategic coordination process involves the
upload and download of a set of files to and from MaROS.
These data required for predictions, calculations and
decisions concerning the relay process. The following table
summarizes the input and output data utilized in the
strategic coordination process:

File Type Acronym Content
Light Time File LTF Light times to and from

Earth and Mars
Orbiter Sequence
of Events File

OSOE DSN Antenna tracks,
transmission data rates,
system configuration
parameters

Lander Orbital
Propagation
Timing Geometry

LOPTG Geometric pass data

Overflight
Summary File

OSF Correlated report
summarizing information
published to MaROS
(Output)

Ace Schedule None Staffing schedule for
flight mission controllers
(“aces”)

Orbiter Request
File

ORF Lander desirements for
relay utilization

Overflight
Acknowledgement
File

OAF Orbiter team agreements.

Scorecard None Post-pass statistics
Overflight
Performance
Assessment File

OPAF Pass predict and actual
data

Table 1: Relay Coordination Data Files

Each of these files was used in or had an equivalent type in
the legacy system. All legacy files were implemented in

proprietary formats or in some cases only available as Excel
spreadsheets. Many of these files were utilized in point-to-
point transactions and in some cases extracted and exposed
in other downstream files, and in each case required special
parsers to interpret.

Certain files such as the OSOE and Scorecard were
provided in structurally “loose” formats that could not be
reliably parsed. As part of the overhaul of the relay
coordination process, most of these legacy files were re-
designed to the Extensible Markup Language (XML) format
to ensure machine compatibility and enhance overall
readability and adaptability.

The legacy coordination process involved point-to-point file
deliveries and email-based notifications over the course of a
monthly planning cycle. With the new process, lander and
orbiter teams provide data files to MaROS, which extracts
and persists file data and forwards notifications to
subscribed end-users. The following diagram describes the
lifecycle of coordination data from long-range calculations
through the execution of the overflight and subsequent
provision of post-pass analysis information:

Figure 1: Overflight Lifecycle

Each data type provides value to the overall process.

 3

• Lander geometries are predictions of relay pass

behavior and are used in the formulation of
requests.

• Requests and Acknowledgements represent
decisions made by lander and orbiter teams.

• Light time data, orbiter data and ace schedules are
all referenced when identifying pass latencies.
Scorecard and post-pass assessments (OPAF)
provided lessons learned for use in future decision
making.

Details of each data type and transaction formats will be
described as part of the information management discussion.

System Architecture

As a full description of the system architecture is beyond the
scope of this paper, this section will attempt to summarize
key relevant architectural components.

The system is presented as a “service” to end users and end
user systems. Users perform a set of transactions with the
service, either to provide data to or to retrieve data from the
service. It is the role of this service to ingest, persist and
provide access to data, and also to calculate several types of
derived data and further correlate everything together.

The architecture style uses a centralized database, where
external clients publish to and fetch data from a central
service. Data from publish transactions is persisted by the
service for use by follow-up transactions. Clients interface
with a “service layer” which in turn utilizes a relational
DBMS for persistence. Note that external clients do not
have direct access to the DBMS, they interact with data only
through the service layer. This prevents client dependence
on specific database structures and naming conventions and
thus enables the database structures to evolve without
unduly impacting external systems.

MaROS server components are deployed to institutionally
maintained hardware visible to the Jet Propulsion
Laboratory (JPL) flight operations network. This hardware
includes a set of standard software packages and support for
MySQL databases. The system provides and load balancing
and backup functions enabling MaROS to meet key
operational performance requirements such as a high level
of accessibility and minimal down times.

The following diagram depicts the core components of the
architecture:

Figure 2: Application Architecture

At the heart of the architecture is the Information Service
layer that performs all data management business logic
functions. These include upload of data for long-term
persistence and access by clients, download of data for
client correlation and visualization, calculation of derived
data types such as latencies and conflicts, and notifications
to external users.

Long-term persistence is handled by a relational database
system. MaROS utilizes a MySQL as this is fullky
supported in the deployment environment.

A transaction layer sits above the service layer, intercepting
client requests and delivering resulting information.

Finally, clients interface with this transaction layer. Two
types of clients are provided, a rich web user interface built
with Flash and FLEX, and a thin command line client built
with Python.

Much of the data published to the system is provided via
files. When a file is presented to the system it is parsed and
the data extracted, reformatted and published to the
database. The system maintains a history of file
transactions in separate tables from the source data.

File data may be provided any number of times over the
same time range, and these represent changes to the data set
rather than just additions. For example, if a set of requests
is provided over a time range where requests are already
present, the new data represents “updates” to the data set as
opposed to “inserts”.

Most input files are generated via other software tools (e.g.
geometric view period calculations), however this is not
exclusive, as at least the schedule of orbiter “Ace” staffing

 4

availability is generated by an operator “by hand” and this is
expected to be the case for the near future. All input files
adhere to a format as specified in a related System Interface
Specification (SIS).

Once data is uploaded and extracted from a file it is
transformed into a set of objects within the server virtual
machine. These objects are transformed into database
records for persistence and to JSON structures for delivery
to client applications such as the web user interface. The
following diagram shows the relations between the different
data structures:

Figure 3: Data Structure Relations

The intermediate Object structures are utilized by all
business logic components dealing with upload, download
and computational logic.

Service Interface

The chosen interface approach to the service is via http
using a ReST (Representational State Transfer) style. With
this style, a set of “resources” are defined that, in the case of
MaROS, represent types of transactions (publish or fetch)
each with an associated set of parameters driving the
transaction. Behind the scenes, service layer applications
written in Java execute transactions and perform
computations.

Service Clients

A web graphical user interface (GUI) and command line
scripts are both provided for end-user interaction with the
system. For the first phase of software development the web
user interface provides timeline based visualization of
system data, summary pages correlating planned versus
actual results and charts of predicted and actual pass
performance. During this phase, all modification of data is
restricted to command line file update transactions.

Both types of clients perform service transactions via ReST.
Command-line clients perform publish transactions and
query a correlated summary file from the service. The web
GUI client performs fetch calls for the “raw” object data
such as sets of orbital view periods, orbital events and
lander-orbiter request conflicts.

Data Interface Formats

MaROS supports a range of formats for data interfaces.
Input interfaces include XML, CSV and some legacy text
formats, while output interfaces include JSON, XML, and
CSV. The following provides an overview of some formats
supported by the system.

Extensible Markup Language (XML)

XML is a flexible, extensible format for creating structured
documents [4]. It sees growing use by mission data systems
to represent a wide range of information types. Most of the
new interfaces generated as part of the MaROS system
engineering development are in XML. XML is very
human-readable from the structuring of the data elements.
The primary value of the XML is the extensibility of the
structure. New elements can be added to existing structures
with very little impact on downstream parsers, as most
parsers will simply ignore unrecognized elements.

Comma Separated Value (CSV)

Comma separated lists of data are a common way to share
information between software systems, largely due to the
relative ease of parsing the structure. By their nature CSV
interface files must be rigidly formatted, as the addition or
removal of a column will always impact producers and
consumers of the file and would certainly require a change
to the SIS.

The CSV format is useful when dealing with tabular data
exported from tools such as Excel. The Ace Schedule is a
specific example, where the actual schedule is managed as
an Excel spreadsheet. It is also desired as an output format,
to import into other spreadsheets and also for quick visual
comparison of data record values, however for that purpose
additional formatting is usually required to forcibly justify
columns and visually align records.

Javascript Object Notation (JSON)

The JSON is a lightweight, structured data format based off
a sub-set of the JavaScript programming language [5]. The
structure brings with it less structural overhead then the
equivalent XML and is useful for interactions between
interfacing software (e.g. GUI) clients and providing
information services. It is similar to the XML in terms of
the ease of extension of the format. JSON parsers and
encoders are available in JSON and Flex.

3. DATA INTERFACES
To understand the drivers for use of different interface
formats we must discuss the different types of information
managed by the system.

 5

The fundamental role of the system is to coordinate
utilization of a pass “overflight”. An overflight occurs
during a range of time when an orbiter is in view from a
lander on the ground, representing a potential
communications opportunity. MaROS information
management is centered on the allocation of these
overflights for use by landers for relay. The actual
determination of what overflights to use depends upon a
number of factors including the total data transmission
capability of the overflight, the amount of time to transmit
or receive data from the overflight (the “latency”) and
whether or not the overflight is in conflict in some way.
Nearly all of the information managed by the system is
related to overflight management.

Information is published and modified at different phases in
the operations cycle. The first phase of system development
supports the Strategic Planning cycle as well as post-pass
performance assessment. The strategic planning cycle runs
from the initial identification of view period opportunities
until the final acknowledgement of orbital requests for use.

Strategic planning data can be provided far in advance of
the actual relay event. Such data may be published weeks,
months, or potentially years in advance, however the
physical nature of the relay environment makes it difficult to
predict certain information with great accuracy. Typically,
strategic planning data is provided as part of a monthly relay
cycle, with most data provided one or more weeks in
advance of the overflight pass.

Lander View Periods

Overview

Lander view periods represent the of time span from which
a “celestial entity” is in view in the sky from horizon to
horizon. Celestial entities include objects such as Orbiters,
the Martian Moons and the Earth. Lander navigation teams
typically calculate this information and include additional
geometric data such as the maximum elevation for the pass,
orbital inclination, etc. Lander view period data is typically
generated for two week to one-month time spans and
provided to mission systems via a Lander Orbital
Propagation Timing Geometry (LOPTG) file. Note that,
while lander view period files could potentially be
calculated out for years of orbits, the accuracy of the
calculations decrease over time due to small or in some
cases large changes in the orbital geometry. The Mars
Reconnaissance Orbiter, for example, sits in a low orbit
which is affected by atmospheric drag and is very difficult
to predict over long times. This lander view period data
forms the basis for eventual requests.

Input File Format

The format of an LOPTG file is a legacy CSV-separated
text format with no extra structural framework. The result is

a file of minimal size but which requires special parsers to
interpret, and it is not especially human readable unless the
reader is already highly familiar with the file format. An
update of the file format to XML was considered during the
early engineering of MaROS. However, any updates to this
particular file would impact a number of other software
subsystems including providers of the file and other systems
ingesting the file. It was decided that the cost of these
impacts was outside the scope of the current phase of work,
and so MaROS was implemented with a specialty parser to
support the legacy format.

The following are two example lines of the LOPTG file
content (with newlines added for some legibility):

ORBRISE, 53, 2009-238T21:18:13.733, 2.4550703E+06,

66.183,1.97329E-09, 1.841340932E+02,
1.676537E+03, 3.79607537E+03,
8.85315041E-03, 9.2936663E+01,
5.7220487E+01, -1.02267752E+02,
6.13504877E+01,

ORBMAXELV, 74, 2009-238T21:21:36.224,
 2.4550703E+06, 66.183, 6.9127242060482,
 2.73586681E+02, 1.019251655732523E+03, …

The above information represents time and elevation data
concerning the moment of an orbiter rising at the horizon
and the moment that an orbiter sits at its highest maximum
elevation in the sky during a pass. To understand the
specific meaning of each data parameter, an ingestor of the
file must consult the relevant interface specification
document (the SIS).

Upon publication of this file data to MaROS, the contents
are parsed into Java view period objects and persisted into a
set of tables in the database. The publication of these data
triggers calculations including the identification of planning
warnings and estimation of uplink and downlink latencies.

Web UI Output Format

Once data has been persisted to the database it is available
for download for various purposes. This includes the basic
visualization of data on the web user interface. Data is
provided to the web UI by the MaROS serivice via ReST
invocations in the JSON notational format. As described
earlier, the JSON is a relatively lightweight format with
enough structure to represent complex object types.

Not all of the information extracted from the LOPTG file is
necessary for the visualization of data on the web GUI. For
example, the LOPTG includes lander positional data that is
not required for viewing upon the web timeline display. As
responsiveness of the web GUI is highly desired, the bare
minimum of data is delivered with any ReST call.

The following is a sample JSON structure representing a
Lander View Period:

 6

[

{
 "LanderViewPeriod": {
 "ViewPeriodType":"ORBITER",
 "StartTime":"2009-299T20:31:54",
 "EndTime":"2009-299T20:48:22",
 "MaxElTime":"2009-299T23:40:00",
 "MaxEl":"30.1951",

 "OverflightId":"ODY_MRB_2009_299_04",
 "LanderId":"MRB",
 "OrbiterId":"ODY"
 }
 }
]

Note that the “name-value” pair structuring of this format
makes for a highly readable format, while at the same time
the format incurs minimal additional structure to enable
complex object structures.

Both the Java service and Flash/FLEX client utilize libraries
supporting encoding and decoding of the JSON format.

Light Time Data

Overview

Light time data is a series of data calculations of the time it
takes light to travel to Mars and back at any given moment.
These times change as the distance between Earth and Mars
changes over the course of their orbits. For example, in
2006 when the Earth was closest to Mars the light time was
~300 seconds, while late in 2007 the light time was ~1300
seconds. As with the LOPTG, light time data is provided in
a legacy file format. Light time data is utilized by the web
GUI and is an important parameter in forward link and
return link latency calculations.

Input Format

The following snippet shows the format of the data of the
light time file:

Applicable Time DOWN-LEG UP-LEG
06-069/00:00:00 713.904 713.763
06-069/06:00:00 715.142 715.000
06-069/12:00:00 716.379 716.237
06-069/18:00:00 717.616 717.474
06-070/00:00:00 718.852 718.710

The “Up-Leg” time is the light time from Earth to Mars, and
the “Down-Leg” is the time from Mars to Earth. As with
the LOPTG, a specialty parser was implemented to interpret
the data.

Unlike lander view periods, light time data calculations
rarely change over time and so a typical light time file may
contain years’ worth of data.

Ace Schedule

Overview

The ace schedule is a table of the work shifts of the staffing
of relay aces. An ace must be on duty to provide relay
services for all nominal relay uplink operations. Ace
schedule data is used by the web GUI as a part of the overall
visualization of data by time, but is also incorporated into
latency calculations as the “nominal” forward link latency
(i.e. the time before a pass that an uplink product must be
provided) includes the identification of a time that an Ace
staffer is on duty.

Input Format

These schedules are managed via Excel spreadsheets. For
this reason it is most convenient for these files to be
provided in comma separated value (CSV) format instead of
XML, as Excel can be readily exported into CSV without
requiring any further processing.

The following example shows the format of the input file:

CCSD3ZF0000100000001NJPL3KSOL015$$MARK$$
MISSION_NAME = MARS_RECONNAISSANCE_ORBITER;
SPACECRAFT_NAME = MARS_RECONNAISSANCE_ORBITER;
DATA_SET_ID = ACE_SCHEDULE;
FILE_NAME = Ace_schedule_Mar08_12.ace;
APPLICABLE_START_TIME = 2009-060T00:00:00;
APPLICABLE_STOP_TIME = 2009-074T00:00:00;
PRODUCT_CREATION_TIME = 2009-037T22:55:57;
CCSD3RE00000$$MARK$$NJPL3IF0M01300000001
$$EOH
2009-060T17:00:00; 0T02:00:00; normal;Ace On-
Console ; 303-971-xxxx or 303-971-xxxx
2009-060T21:00:00; 02:00:00 ; normal ;
unassigned;303-971-xxxx or 303-971-xxxx
2009-061T17:00:00 ; 0T03:00:00; normal; Bubba
Smythe or Bertha Smith; 818-354-xxxx
2009-062T17:00:00; 14T00:00:00; on-call; John Doe;
818-354-xxxx
$$EOF

While this format is relatively easy to produce and ingest, it
is not as extensible and lacks the “declarative clarity” of the
XML.

Orbiter Events

Overview

The Orbiter team provides the Orbiter Events file to the
MaROS system. This file consists of a set of different types
of “events” used for a variety of purposes by the MaROS
system and end users of the system. These events include:

 7

- Time windows of Deep Space Network (DSN)
uplink and downlink antenna to orbiter track,

- Data rates and efficiency of data transfer at any
point in time,

- Orbit number changes over time,

- “Non-relay” periods where, for one reason or
another, the orbiter will not be capable of
performing relay for the lander regardless of the
view period opportunity.

Orbiter event data is used for a variety of purposes by
MaROS, including latency and conflict calculations.

Legacy Orbiter Events files were of a “loose”, unstructured
format that were difficult to parse and interpret.
Furthermore, new types of events are envisioned so an
extensible format was desired. For these reasons XML was
chosen to replace the legacy format.

Input Format

The following example shows some of the different data in
the file:

<OrbitNumber StartTime = "2009-260T04:20:15.161">
 <Orbit>34417</Orbit>
</OrbitNumber>

<DSNDownlink StartTime = "2009-260T04:18:47.025">
 <Duration>0T00:23:49.447</Duration>
</DSNDownlink>

<DataRate StartTime = "2009-260T09:52:23.327">
 <Rate>39816</Rate>
 <Efficiency>0.129825</Efficiency>
</DataRate>

As shown, each of the different event types listed in the file
has different data elements and different numbers of
elements. Only one parameter is common across all event
types, the start time of the event. Because this value is
common (and required) for all entries, it is included as an
attribute of the event rather than an element, with all of the
other supporting data provided as elements.

Late in the first phase, additional relay system parameters
were identified for inclusion in the Orbiter Event File
supporting latency and conflict calculations. These new
data types were added to the file format with minimal
impact upon the file ingestion logic, largely due to the
extensibility of the XML, where updating other formats
such as CSV would have been more problematic.

As with View Period data, the Orbital Events are provided
to the web GUI via a JSON structure similar to the Lander

View Period structure, as is all of the rest of the ingested
system data.

Overflight Summary File – Geometric Data

Overview

The Overflight Summary File (OSF) is introduced with the
MaROS system to replace certain legacy relay planning
products. The contents of the file represent the “state” of
the relay process over a requested period of time. The file
includes data correlated from multiple input sources as well
as calculated values. A variety of filters can be applied
upon generation of this file including filters on specific
landers and orbiters and filtering out passes that do not meet
a minimum duration or minimum maximum elevation.

Both the content and use of the OSF change over the course
of the planning lifecycle. Typically, the OSF is first
requested after the LOPTG, Orbiter Events, Light Time and
Ace Schedule files have been published. At this point the
OSF will contain basic geometric view period data and
timing data such as the orbit number at the start time of the
pass and any pass latencies calculated from view period and
orbiter event data.

Output Format

The following shows the output of one summary element
within the OSF at this point:

<OverflightSummary
 OverflightID = "ODY_MRA_2009_274_04"
 SecondaryID = "ODY"
 OrbiterRiseTime = "2009-274T20:49:05.495"
 OverflightDuration = "0T00:15:28.076"
 MaxElevation = "22.2326757448093"
 ConflictType = "none">
 <OverflightTiming
 OverflightID = "ODY_MRA_2009_274_04"
 RequestType = "geometry">
 <Orbit>34595</Orbit>
 <LMST>2043T00:00:00</LMST>
 <FirstBitTime>
 2009-275T00:13:39
 </FirstBitTime>
 </OverflightTiming>
</OverflightSummary>

From this set of core geometric data, the lander team
identifies a set of passes desired for relay utilization and
generates an “Orbiter Request File (ORF) for submission to
the system.

The OSF format will be revisited at later points in this
discussion.

Orbiter Requests

 8

Overview

When a lander team decides that an overflight should be
used as a communications pass it is presented as a “request”.
Typically these requests are derived from view period
geometries, adjusted by a small amount of time from the
start and end time of the pass. Requests include additional
information such as positional data (roll, yaw and pitch),
“pass-through” relay parameters and priority of the pass.
Three types of requests can be provided to the system:
tentative, proposed and “formal” requests. These different
types of requests allow for different types of negotiation
processes between lander and orbiter teams; for example,
orbiter A may require a proposal-and-acceptance process,
while orbiter B may simply accept formal requests up front.

In the first phase of deployment, orbiter requests are
produced as part of scripted ground data system processes as
opposed to direct selection via a user interface or exported
from another file type (e.g. Excel).

Input Format

The following is an example of a simple request, as it would
appear within an ORF:

<OrbiterRequest
 OverflightID = “ODY_MRA_2009_274_04”
 RequestType = “request”>
 <RequestCategory>contingency</RequestCategory>
 <HailStartTime>2008-274T20:49:05</HailStartTime>
 <HailDuration>00:10:00</HailDuration>
 <LinkType>return</LinkType>
 <ForwardRate>8</ForwardRate>
 <ReturnRate>128</ReturnRate>
</OrbiterRequest>

The content of the request may vary in terms of what
elements are provided. A valid request may only contain
basic timing parameters such the start time for the orbiter to
hail the lander and the type of the request. Another valid
request may contain any of up to nineteen total parameters
including data rates, response times, pass through
parameters, etc. Again the extensibility of the XML is quite
valuable in the handling of the variable number of
parameters.

Eventually the lander team decides upon a set of passes for
request and submits the ORF to the system. The submission
of this file triggers the calculation of new latencies and
conflicts associated with the requests in the file and triggers
notifications (in the first phase via email) to the other user
teams that a new set of requests is available.

In response to this notification, the orbiter team requests a
version of the OSF with the requests included to further
process into an eventual acknowledgement.

Overflight Summary File – Requests Submitted

Overview

Once requests have been submitted, the content of a
downloaded OSF will now include this new request
information as well as any latencies or conflicts that were
generated in response to the ORF submission.

Output Format

The following example shows the OSF updated with the
new data present:

<OverflightSummary
 OverflightID = "ODY_MRA_2009_274_02"
 …
 ConflictType = "request">
 …
 <OrbiterRequest
 OverflightID = “ODY_MRA_2009_274_04”
 RequestType = “request”>
 <RequestCategory>contingency</RequestCategory>
 <HailStartTime>2008-274T20:49:05</HailStartTime>
 <HailDuration>00:10:00</HailDuration>
 <LinkType>return</LinkType>
 <ForwardRate>8</ForwardRate>
 <ReturnRate>128</ReturnRate>
</OrbiterRequest>
 <OverflightTiming
 OverflightID = "ODY_MRA_2009_274_02"
 RequestType = "request">
 <Orbit>34588</Orbit>
 <LMST>2042</LMST>
 <FirstBitTime>
 2009-274T10:23:48
 </FirstBitTime>
 <LastBitTime>
 2009-274T10:23:48
 </LastBitTime>
 </OverflightTiming>
 <OverflightConflict
 OverflightID = "ODY_MRA_2009_274_02">
<ConflictDescription>
 Overflight Conflict UNACKNOWLEDGED_REQUEST:
lander MRA request for orbiter ODY has not been
acknowledged from 2009-274T08:10:13 to 2009-
274T08:24:49</ConflictDescription>
 </OverflightConflict>
</OverflightSummary>

Note that the format of the elements of the request data is
essentially the same as the format of the corresponding
request file and eventual acknowledgement file. This

 9

enables external scripting processes to generate ORF and
acknowledgement files in a relatively straightforward
manner from the original OSF.

As mentioned, this new OSF contains additional data that
was not present in any of the input files, specifically the
calculated latencies (the First Bit and Last Bit downlink
times) and the identified conflicts. In this case, the conflict
identified is that the request has not yet been acknowledged
by the orbiter team, and therefore is not actually scheduled
for relay.

The orbiter team processes this OSF file containing the
lander requests. In turn, the orbiter team generates a new
file of acknowledgements to the orbiter requests.

Overflight Acknowledgements

Overview

Overflight acknowledgements represent the “ok or not ok”
from the orbiter team as to whether or not a set of requests is
going to be implemented. Acknowledgements are published
via an Overflight Acknowledgement File (OAF). The
format is fundamentally the same as that for the Overflight
Requests, with a small amount of difference in the total set
of elements that can be provided.

Input Format

The following is an example of a record from within an
acknowledgement file produced in response to a request in
the OSF:

<OverflightAcknowledgement
 OverflightID = “ODY_MRA_2009_274_04”
 ackType = “implemented”>
 <HailStartTime>2008-274T20:49:05</HailStartTime>
 <HailDuration>00:10:00</HailDuration>
 <LinkType>return</LinkType>
 <ForwardRate>8</ForwardRate>
 <ReturnRate>128</ReturnRate>
</ OverflightAcknowledgement >

In this case, the acknowledged values are the same as the
requested values, meaning that the orbiter team has accepted
the request “as is” for implementation as a relay pass.

When the acknowledgement file is published to the system
conflicts are re-calculated and end-user systems are notified
of the new acknowledgements as well as any new conflicts
that might be generated in response to the requests and acks
data not matching.

Overflight Summary File - Acknowledgements Submitted

Overview

Once the OAF has been published with passes listed as
“implemented” the long-term relay process is essentially
complete.

Output Format

A summary of the process state can be downloaded as an
OSF as the following shows:

<OverflightSummary
 OverflightID = "ODY_MRA_2009_274_02"
 …
 ConflictType = "none">
 …
 <OrbiterRequest
 OverflightID = “ODY_MRA_2009_274_04”
 RequestType = “request”>
 <RequestCategory>contingency</RequestCategory>
 <HailStartTime>2008-274T20:49:05</HailStartTime>
 <HailDuration>00:10:00</HailDuration>
 <LinkType>return</LinkType>
 <ForwardRate>8</ForwardRate>
 <ReturnRate>128</ReturnRate>
</OrbiterRequest>
<OverflightAcknowledgement
 OverflightID = “ODY_MRA_2009_274_04”
 ackType = “implemented”>
 <HailStartTime>2008-274T20:49:05</HailStartTime>
 <HailDuration>00:10:00</HailDuration>
 <LinkType>return</LinkType>
 <ForwardRate>8</ForwardRate>
 <ReturnRate>128</ReturnRate>
</ OverflightAcknowledgement >
</OverflightSummary>

Now that an acknowledgement has been submitted in
response to the request and the parameter values match,
there is no longer a related conflict in the system and so
there is no longer a conflict included as part of the OSF
data.

Post Pass Assessment

After an overflight occurs, lander and orbiter teams generate
assessments of the pass performance for provision to the
MaROS system. There are two types of files that are
generated: a “scorecard” snapshot of key pass performance
values and “overflight performance assessment files”
containing time-ordered data of a variety of information
types.

Scorecard

Overview

The scorecard is essentially a snapshot of key meta-data
information concerning the behavior of the pass. These
include the total volume of data uplinked or downlinked,

 10

minimum, maximum and average transmitter power levels
and total number of frame and packets sent.

Input Format

The following is a small sample of of the contents of a
scorecard:

<ScorecardEntry OverflightID =
 “MRO_MRB_2008_071_02”>
 <SessionAttributes>
 <SessionStartTime>

2009-071T09:27:55.208
 </SessionStartTime>

 <SessionEndTime>
2009-071T09:32:55.208
</SessionEndTime>

<LinkType>both</LinkType>
<ForwardRate>8</ForwardRate>
<ReturnRate>128</ReturnRate>

</SessionAttributes>
<LinkConditions>

 <AntennaType>helix</AntennaType>
 <LanderPitch>0.25</LanderPitch>
 <LanderYaw>137.6</LanderYaw>

 ….

With the information from the scorecard, the actual state of
the pass may be compared with the planned or predicted
states. It is typically the first place that mission teams look
when issues are found with the performance of a pass.

It is envisioned that new data types might be added to the
scorecard in the future and so again the XML is a useful
format.

Overflight Performance Assessment File

Overview

Other forms of pass assessment may be provided via an
Overflight Performance Assessment File (OPAF). This file
contains sets of data representing both predictions and
actual calculations and measurements (“profiles”) of a
variety of different pass parameters. These include
information such as the overflight elevation and transmitter
power as a function of time. The primary use of this
information is plotting these curves together to analyze
trends and identify issues.

Input File Format

The file format is designed such that new types of profiles
could be added at any point, with the only restriction that
key fields are included such as the overflight ID, profile
name, the type, units and the time-ordered values.

The following is an example snippet from an OPAF:

<Profile
 OverflightID = “MRO_MRB_2008_067_01”
 ProfileName = “Bytes Received During Overflight”
 ProfileType = “reported”
 ProfileUnits = “Bytes” >
 <ProfileEntry
 Time = “2008-067T12:32:21”>0</ProfileEntry>
 <ProfileEntry
 Time = “2008-067T12:33:21”>100</ProfileEntry>
 …

With the overflight ID and profile definition parameters
being both common and required for each profile, they are
included as attributes of the block.

4. CONCLUSIONS

MaROS Interfaces

The MaROS system supports a variety of file formats for
the ingestion and retrieval of relay planning and post-pass
assessment data. In the first phase of development, utilized
file formats include:

• XML was chosen for most new data file formats
including Orbiter Events, Orbiter Requests and
Overflight Acknowledgements. These interfaces
were updated several times over the course of the
first phase of development with relatively minimal
impact upon existing software components.

• CSV was implemented for a single input (the Ace
Schedule) due to the “hands-on” spreadsheet
driven nature of the data management. The Ace
Schedule relatively inexpensive to implement and
did not change significantly beyond the initial
implementation.

• JSON was used for description of all data delivered
to the web user interface. The lightweight structure
enabled a high level of data throughput from the
server to the GUI client and good responsiveness
from the point of view of the web user interface.

• Legacy formats were maintained where the impact
of change on providing systems was considered too
costly, i.e. the LOPTG and Light Time files.

Lessons Learned

The extensibility of the XML is the primary driver for its
broad use with external customers, though the widespread
availability of supporting tools and libraries is an important
factor. Ease of adaptation was certainly a factor in the first
phase of development during early prototyping against
rapidly changing SISs as well as some from later
requirement changes. In one case late in phase in the phase a

 11

set of additional data types were added with minimal no
impact to existing file structure (the Orbital Events File) and
inflicted minimal impact on development, mostly from the
addition of new representational Java types.

Future Work

The MaROS system manages a range of XML schema
defined information that is likely to provide value to other
external users besides the immediate set of mission
customers, and is also likely to see evolutionary changes
through the course of the Mars Science Laboratory and
other future missions involved in relay. For these reasons it
may be worthwhile to migrate the adaptation of XML
system interfaces to an XML registry built for that purpose.

Also it would be valuable to re-consider upgrading legacy
file formats such as the LOPTG and Light Time File to the
XML format, so that they could more readily evolve in the
manner of the Orbiter Events file.

Final Words

The extensibility of system software interfaces will continue
to be important in the face of the continuous evolutions of
the Mars Network relay coordination information space.

REFERENCES
[1] OrbitalHub, http://orbitalhub.com/?cat=113

[2] Phoenix Mars Mission,
http://phoenix.lpl.arizona.edu/faq.php

[3] Daniel Allard, Charles Edwards, “Development of a Relay
Performance Tool for the Mars Network,” 2009 IEEE
Aerospace Conference, March 7-14, 2009.

[4] http://www.w3.org/XML/

[5] http://json.org

 BIOGRAPHY
Dan Allard has worked as a software engineer at the Jet
Propulsion Laboratory for the past 19 years. He is the
software architect and a lead developer of the Mars
Operations Relay Service (MaROS) under development in
support of ongoing and next-generation Mars Network
missions. Prior to this he was the technical lead on the
development of the Relay Data Engineering (RDE) system
provided for accountability of relay performance over the
Phoenix era. Other recent work includes the development
of a message-based ground data system for the Mars
Science Laboratory as well as research and development of
ontology-based distributed communications in the space
link and battlefield environments.

Acknowledgements

The research described in this paper was carried out at the
Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics
and Space Administration.

http://phoenix.lpl.arizona.edu/faq.php
http://www.w3.org/XML/

 12

