(Preprint) AAS 09-443

LOW-ENERGY BALLISTIC TRANSFERS TO LUNAR HALO
ORBITS

Jeffrey S. Parker*

Recent lunar missions have begun to take advantage of the benefits of low-energy
ballistic transfers between the Earth and the Moon rather than implementing con-
ventional Hohmann-like lunar transfers. Both Artemis and GRAIL plan to imple-
ment low-energy lunar transfers in the next few years. This paper explores the
characteristics and potential applications of many different families of low-energy
ballistic lunar transfers. The transfers presented here begin from a wide variety of
different orbits at the Earth and follow several different distinct pathways to the
Moon. This paper characterizes these pathways to identify desirable low-energy
lunar transfers for future lunar missions.

INTRODUCTION

The Exploration Program’s call to return humans to the Moon requires a means to transfer large
quantities of cargo to and from the Moon for low cost. The cargo may be lunar habitats, vehicles,
fuel, supplies, and even support satellites for the explorers. In later phases, the cargo may be raw
materials mined from the Moon to be shipped back to the Earth. One way to reduce the transport cost
is to use low-energy transfers, i.e., non-Keplerian trajectories that require less fuel than conventional
transfers. The Artemis and GRAIL mission designs have demonstrated the benefits of these low-
energy lunar transfers.”>? It is now of interest to characterize all the different types of low-energy
ballistic transfers that exist between the Earth and the Moon and their applications to practical lunar
missions.
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Figure 1 Two example low-energy ballistic transfers between the Earth and a halo or-
bit on the far side of the Moon, viewed from above in the Sun-Earth synodic reference
frame. Planetary images courtesy of NASA

Low-energy ballistic lunar transfers (BLTSs) are trajectories that a spacecraft may take to ballis-
tically transfer between the Earth and Moon using less energy than a conventional, direct lunar
transfer. Rather than traveling directly from the Earth to the Moon in just a few days, a spacecraft
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on a low-energy BLT travels beyond the Moon and spends three or more months taking advantage
of the Sun’s gravity to raise its energy. The spacecraft arrives at the Moon in such a way that it may
insert into a large three-body orbit, such as a halo or Lissajous orbit, for virtually no fuel; or it may
insert into a low lunar orbit or land on the surface of the Moon using less fuel than if it had arrived
from a conventional, direct transfer.3 Figure 1 shows two example low-energy transfers between
the Earth and a halo orbit on the far side of the Moon. The transfers are viewed from above in the
Sun-Earth synodic reference frame.

This paper takes advantage of dynamical systems theory to generate low-energy transfers between
the Earth and lunar halo orbits. Previous studies have demonstrated the benefits of using dynamical
systems theory to construct, analyze, and categorize low-energy lunar transfers in simplified models
of the solar system.>® This paper studies the problem of generating low-energy transfers in the full
ephemeris model of the solar system, taking into account accurate locations and orbits of each of
the planets in the solar system. Many of the dynamical systems methods that have been shown to be
successful in a simplified model of the solar system are just as successful in the ephemeris model.
This paper presents the process of constructing low-energy transfers, categorizing those transfers
into families, and analyzing those families, all in the ephemeris model of the solar system.

This paper first presents the background of dynamical systems theory and low-energy lunar trans-
fers. It then presents the method used here to construct low-energy lunar transfers using dynamical
system theory. This method provides an easy way to categorize lunar transfers into organized fam-
ilies. The paper studies these families and considers how they vary from month to month. Finally,
the paper provides a discussion of practical applications of this research to lunar missions.

BACKGROUND

This section presents the models and dynamical systems tools that have been used in this research
to construct and analyze BLTs.

Models

The trajectories produced in this paper are significantly influenced by the gravitational forces
of two or more massive bodies. In order to understand the characteristics of these non-Keplerian
trajectories, it is useful to explore simplified models of the solar system. The Circular Restricted
Three-Body Problem (CRTBP) describes a convenient system to model the motion of a spacecraft
in the presence of two massive bodies that orbit their barycenter in circular orbits. The model for-
mulated by the CRTBP is a good first approximation for spacecraft trajectories in the solar system
since many planets and natural satellites traverse orbits that are nearly circular. Low-energy lunar
transfers, however, involve the gravitational interactions of the Sun, Earth, and Moon. The Patched
Three-Body Model provides a simple model that includes all three massive bodies while retaining
the beneficial components of the CRTBP. Finally, the Jet Propulsion Laboratory’s DE421 Plane-
tary and Lunar Ephemerides is used to produce trajectories that are close approximations to real
trajectories in the solar system.

Circular Restricted Three-Body Problem (CRTBP)

The Circular Restricted Three-Body Problem® describes a dynamical model that is used to char-
acterize the motion of a massless particle, e.g., a spacecraft, in the presence of two massive bodies,



e.g., the Earth and the Moon. The model assumes the two massive bodies orbit their barycenter in
circular orbits.

It is convenient to characterize the motion of the third body, i.e., the spacecraft, in a reference
frame that rotates at the same rate as the orbital motion of the two primary masses. The coordinate
frame is centered at the barycenter of the system and oriented such that the z-axis extends from the
barycenter toward the smaller primary, the z-axis extends toward the primary bodies’ orbit normal,
and the y-axis completes the right-handed coordinate frame. In that synodic frame, the two massive
bodies are stationary and the spacecraft moves about the system in non-Keplerian motion.>® It is
convenient to normalize the units in the system such that the following measurements are equal to
one: the distance between the two primaries, the sum of the mass of the two primaries, the rotation
rate of the system, and the gravitational parameter. The equations of motion for the third body in
the normalized rotating frame are equal to:’
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where r; and r3 are equal to the distance from the third body to the larger and smaller primary,
respectively:
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The spacecraft’s position and velocity coordinates in Equations 1 — 5 are given in nondimensional
normalized synodic coordinates; the parameter p is the three-body constant, computed for the Earth-
Moon system by dividing the Moon’s mass by the total mass in the system. In this form it is clear
that the dynamics of the system depend only on the mass fraction p. Furthermore, as p goes to zero,
the dynamics approach two-body dynamics, although represented in a rotating frame.

There are five well-known equilibrium solutions to the CRTBP, known as the five Lagrange, or
libration, points.” These points are referred to as L — Ls; this paper adopts the nomenclature that
L; lies between the two primary masses and Ly lies on the far side of the smaller primary, relative to
the barycenter of the system. The Lagrange points in the Earth-Moon system are abbreviated using
the nomenclature LL; — LLj5; the Sun-Earth/Moon Lagrange points are abbreviated EL; — EL5. The
seven Lagrange points near the Earth are depicted in Figure 2.

Patched Three-Body Model

The Patched Three-Body Model®®® uses purely three-body dynamics to model the motion of a
spacecraft in the presence of the Sun, Earth, and Moon. It retains many of the desirable character-
istics of the CRTBP, while permitting a spacecraft in the near-Earth environment to be affected by
all three massive bodies, albeit only two massive bodies at any given moment. When the spacecraft
is near the Moon, the spacecraft’s motion is modeled by the Earth-Moon three-body system. Other-
wise, the spacecraft’s motion is modeled by the Sun-Earth three-body system, where the secondary
body is the barycenter of the Earth and Moon. For simplicity it is assumed that the Earth-Moon sys-
tem is coplanar with the Sun-Earth system. The boundary of these two systems is referred to as the
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Figure 2 A plot depicting the relative proximity of the five Earth-Moon Lagrange
points and the two nearby Sun-Earth Lagrange points. Planetary images courtesy of
NASA.

three-body sphere of influence (3BSOI); it is analogous to the two-body sphere of influence used in
the patched conic method of interplanetary mission design. The 3BSOI is described as the boundary
of a sphere centered at the Moon with a radius rso; computed using the following relationship:
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where muMeon and msy, are the masses of the Moon and Sun, respectively, and a is the average
distance between the Sun and Moon, equal to approximately 1 AU. Thus, the three-body sphere of
influence has a radius of approximately 159,200 km. A sphere of that radius centered at the Moon
includes the Moon’s L; and Ly points, but not the other three L.agrange points.

JPL DE421 Planetary and Lunar Ephemerides

The Jet Propulsion Laboratory and the California Institute of Technology has developed the
DE421 Planetary and Lunar Ephemerides, which is the most accurate model of the solar system
used in this research. The model includes ephemerides of the positions and velocities of the Sun,
the four terrestrial planets, the four gas-giant planets, the Pluto/Charon system, and the Moon. '
The lunar orbit is accurate to within a meter and the orbits of Earth, Mars, and Venus are accurate
to within a kilometer.'?

Halo Orbits in the CRTBP

The CRTBP permits the existence of many classes of orbits, including periodic and quasiperiodic
two- and three-dimensional orbits.> Halo orbits are very interesting and well-known periodic three-
dimensional solutions to the CRTBP.!!-14

Many authors have studied how to take advantage of lunar halo orbits for practical missions to
the Moon.!% 1316 Halo orbits are of particular use for lunar communication and navigation satel-
lites.!”- 18 Figure 3 shows plots of example halo orbits about LL; and LLy. Since the force field in
the CRTBP is symmetric about the =z — y plane, and since halo orbits are asymetric about this plane,
each halo orbit solution to the CRTBP comes in a symmetric pair. The two varieties of halo orbits
are known as Northern and Southern orbits.!3 As one can see in Figure 3, a satellite in a Southern
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Figure 3 Two perspectives of example halo orbits about the lunar L; and L. points.
Left: the halo orbits viewed from above in the Earth-Moon synodic reference frame;
Right: the halo orbits viewed from the side.

orbit spends more than half of its time below the = — y plane, which gives that satellite benefits for
communicating with objects in the Southern hemisphere of the Moon.

Halo orbits do not have a constant set of orbital elements like conic orbits. However, halo orbits
exist in well-defined families, a characteristic that allows a particular halo orbit in a family to be
uniquely specified by a single parameter.!® It is convenient to specify a halo orbit by its z-axis
amplitude, A,, since one may formulate an analytical approximation to a halo orbit using that
parameter as an input.?>-22 Other studies have specified a halo orbit using its Jacobi constant or its
xp-value, namely, the z-value of the location where the halo orbit pierces the x-axis with positive
y-velocity.> 1 Figure 4 shows several Northern LL; and LL halo orbits from the side in the synodic
reference frame to illustrate the relationship between a halo orbit’s shape and its z-axis amplitude.
Figure 5 shows the relationship between a halo orbit’s z-axis amplitude and its period for reference.

In this research, a halo orbit in the CRTBP is specified within its family by A.. A second param-
eter, ', may be used to specify which family of halo orbits is being considered, e.g., Southern LLy
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halo orbits. Once a halo orbit is specified, a third parameter, 7, may be used to identify a single
point in that orbit. This study defines 7 analogous to a conic orbit’s true anomaly, sweeping out
360° per revolution of the halo orbit, such that 7 is equal to 0° at the orbit’s first z-axis crossing that
has positive y-axis velocity.

Halo Orbits in the Solar System

Halo orbits are only truly periodic in simplified models of the solar system, such as the CRTBP.
Since the real solar system includes numerous perturbations, particularly the non-zero eccentricity
of the Sun, Earth, and Moon about their respective barycenters, a spacecraft traversing a halo or-
bit does not retrace its path perfectly from one revolution to the next. The quasi-halo trajectories
generated in this research have been constructed by first approximating them using the Richard-
son analytical expansion?! and then differentially correcting that approximation into the DE421
ephemeris model of the solar system using a multiple shooting differential corrector. The multiple
shooting differential corrector takes a series of trajectory states and adjusts them in order to make the
entire trajectory continuous.'®2%23 The differential correction process is described in more detail in
Appendix A.

Figure 6 shows the difference between a halo orbit about LL2 produced in the CRTBP compared
with the same halo orbit differentially-corrected into the DE421 model of the solar system. One can
see that the DE421 halo orbit is quasiperiodic, tracing out the same vicinity of space on each orbit,
but never truly retracing itself.

It is interesting to observe that many halo orbits in the DE421 model of the solar system come
much closer to repeating their paths every other revolution. This is due to the fact that many halo
orbits have a revolution period that is approximately half of the orbital period of the two primary
bodies in the three-body system. Since the Moon is orbiting the Earth-Moon barycenter in an
elliptical orbit, the geometrical characteristics of a halo orbit depend on where the Moon is along
its orbit. Every other halo orbit will follow the Moon in approximately the same portion of its orbit.

The differential correction process typically causes the endpoints of a trajectory to shift much
more dramatically than the interior states along the trajectory, assuming that the endpoints are not
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Figure 6 A comparison between a halo orbit produced in the CRTBP and a quasi-
halo orbit produced in the DE421 model of the solar system. The orbits are shown in
the Earth-Moon synodic reference frame.



constrained in any additional way. This research implements a method that involves differentially
correcting many revolutions of an approximate halo orbit together and then pruning the resulting
trajectory in order to generate a trajectory that remains very near the desired reference halo orbit.
This two-step process is illustrated in Figure 7. The DE421 halo orbits generated in this paper have
been constructed by differentially correcting four revolutions of a halo orbit and then discarding the
first and last revolutions, keeping the two interior revolutions.

Analytical Approximation Continuous Trajectory: Quasi-Periodic Orbit:
DEA421 Ephemeris
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Figure 7 An example of the process of differentially-correcting and pruning a halo or-
bit from the Earth-Moon CRTBP into the DE421 Ephemeris model. Left: the nominal
periodic halo orbit in the Earth-Moon CRTBP; Center: the differentially-corrected
trajectory in the DE421 Ephemeris model; Right: the pruned quasiperiodic halo tra-
jectory in the DE421 Ephemeris model.

Each state along a halo trajectory generated in the DE421 model of the solar system is designated
by a 7-value, similar to a halo orbit generated in the CRTBP. However, each revolution of a halo
trajectory in the DE421 model requires a slightly different duration of time to traverse due to the
model’s dynamical perturbations. This paper retains the definition of 7 in the DE421 model by
specifying that 7 is always equal to 0° at each z-axis crossing with positive y-velocity. Therefore,
the rate of change of 7 varies slightly from orbit to orbit; but the reference 7 = 0° definition is
constant.

The final consideration in this discussion is that halo orbit trajectories generated in the DE421
ephemeris vary based on a reference date. In this study, the analytical approximation of the halo
orbit is sent to the differential corrector with the specification that the orbit’s first 7 = Q° state is
set to a reference epoch. The differential corrector will adjust that orbit slightly, but the reference
epoch will typically be near 7 = 0° for the converged trajectory.

In summary, a halo orbit in the DE421 model of the solar system may be specified by the z-
axis amplitude used to model it, A, and by a reference epoch, Tref, used to anchor it in the solar
system. The reference epoch specifies the approximate date that the desired halo orbit pierces the
x-axis with positive y-velocity. This research then inputs a total of four revolutions of an analytical
estimate of the halo orbit into the multiple shooting differential corrector: two revolutions after the
reference epoch plus one "buffer” revolution on each end. After the differential corrector converges
on a continuous trajectory in the DE421 model of the solar system, the trajectory is pruned to only
include two revolutions of the halo orbit. Then any point along the halo orbit may be specified using
the parameter 7.



Invariant Manifolds

Trajectories in a model with two or more massive bodies may be either unstable or neutrally
stable.?* Theoretically, a particle with a perfectly specified state will remain on an unstable orbit
indefinitely. In reality, the state of a spacecraft following an unstable orbit in the presence of any
random perturbation will exponentially diverge over time from its nominal state along the orbit. The
more unstable the orbit, the faster the spacecraft’s deviation will grow. The station-keeping costs for
spacecraft on unstable trajectories have historically been very low: on the order of 1 m/s per month
or less for spacecraft in Sun-Earth/Moon three-body trajectories.”>—28 Although the unstable nature
of a lunar halo trajectory adds station-keeping requirements to a lunar mission, that unstable nature
also enables the capability to transfer to/from the orbit for very little fuel.

An orbit’s unstable invariant manifold (W) contains the set of all trajectories that a particle will
take if it is perturbed anywhere on that orbit in the direction of the local unstable eigenvector.?%3
Similarly, an orbit’s stable invariant manifold (W) contains the set of all trajectories that a particle
may take to asymptotically arrive onto that orbit along the local stable eigenvector. Put another way,
the orbit’s stable invariant manifold is the set of all trajectories that a particle will take backward
through time if it is perturbed in the direction of the local stable eigenvector. The invariant man-
ifolds of libration orbits in the CRTBP have interior and exterior halves, where, for instance, the
trajectories in the interior half of a lunar halo orbit’s manifold immediately approach nearer to the
Moon and vice versa. Figure 8 shows plots of the stable and unstable invariant manifolds of an ex-
ample libration orbit about the Earth-Moon La point. The interior manifold in each case propagates
toward the Moon; the exterior manifold traverses away from the Earth and Moon.

¥ (%107 km)

p 1000 - =
1000 -800 800 400 200 O 200 400 600 1000 -800 800 -400 200 O 200 400 600
X (x10% km) X (x10% km)

Figure 8 The stable (left) and unstable (right) manifolds of a libration orbit about
the Earth-Moon L. point, viewed from above in the Earth-Moon synodic reference
frame.

In practice, mission designers model an orbit’s stable and unstable invariant manifolds by taking
states along the orbit, perturbing them in an appropriate way, and integrating the resulting set of
states through time.31-32 The initial conditions X3 and X{ for the trajectories that may be used to
model an orbit’s stable and unstable manifolds, respectively, may be constructed using the following



equations:
s
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where v° and vU are the stable and unstable ei genvectors of the orbit’s local state transition matrix,
respectively, € is the magnitude of the perturbation, and the sign of the perturbation differentiates
between the interior and exterior halves of the orbit’s manifolds. It is common to normalize the per-
turbations across the entire manifold such that the perturbations have a constant position magnitude,
e.g., 100 km.»

As € in Equations 7 and 8 is reduced to zero, the resulting trajectories more precisely model
the orbit’s manifold, however, it takes more propagation time for the trajectories to depart the host
orbit. In the Earth-Moon three-body system, there is little practical difference between the set of
trajectories that implements a perturbation of 10 meters and the set of trajectories that implements
a perturbation of 10 km, assuming that the host orbit does not approach very close to either of the
primary bodies. In practice, such small differences are overwhelmed by unmodeled variations in
solar radiation pressure and other dynamical perturbations. This study assumes that in practice a
spacecraft approaching an Earth-Moon three-body orbit along its stable manifold has arrived on
the orbit once its state is within 100 km of the orbit; € is therefore set to provide a normalized
perturbation with a position magnitude of 100 km.

Low-Energy Ballistic Lunar Transfers

Many techniques have been used to transfer material between the Earth and the Moon. The con-
ventional approach involves sending a spacecraft on a direct transfer, including a large maneuver
at the Earth, a large orbit insertion maneuver at the Moon, and fewer than six days of transfer
duration.!7 This approach has been used by many missions to send spacecraft to low lunar or-
bits, including the Apollo missions and the recent Lunar Reconnaissance Orbiter. By extending the
transfer’s duration by several months and taking advantage of the Sun’s gravity to boost the space-
craft’s energy relative to the Earth, one may substantially reduce or even eliminate the need for the
second large maneuver. The two GRAIL spacecraft require smaller orbit insertion maneuvers to
enter their low lunar orbits than they would if they implemented conventional direct transfers;? the
two Artemis spacecraft require no deterministic orbit insertion maneuvers to enter their respective
lunar libration orbits.! In every practical case studied, the longer lunar transfers require less energy
than conventional transfers; hence, they are known as low-energy ballistic lunar transfers. Table 1
summarizes the high-level energy requirements of typical direct lunar transfers compared with those
of typical low-energy lunar transfers. The transfers compared are representative, do not include any
specific mission constraints or targets, and are meant to be used only for illustration purposes.

Low-energy lunar transfers have been explored in the past using several different strategies. As
early as 1968, Charles Conley began using dynamical systems methods to construct such transfers,
although the transfers he constructed were restricted to two dimensions. Conley’s method involved
constructing a trajectory that transferred from the Earth’s vicinity to the Moon’s vicinity through
the neck region about one of the collinear libration points in the Earth-Moon system.>*

In the late 1980s and early 1990s, Edward Belbruno began developing a method to construct lunar
transfers using his Weak Stability Boundary (WSB) theory.3>37 The method involves targeting the



Table 1 A comparison of the characteristics of different types of lunar transfers to 100 km
low lunar orbits and to lunar halo orbits.>!” These values are representative values and should
only be used for top-level considerations.

Transfer Type  Destination  Lunar Flyby? Injection C3  Orbit Insertion AV Duration

Direct 100 km orbit No -2.06 km?/s? 813 m/s 4.5 days
Direct Halo orbit No -2.26 km?/s? 550 m/s 5.0 days
Direct Halo orbit No -2.26 km?/s? 475 m/s 10 — 30 days
Low-Energy 100 km orbit No -0.6 km?/s? 644.0 m/s 90t days
Low-Energy 100 km orbit Yes -2.0 km?/s? 644.0 m/s 90+ days
Low-Energy Halo orbit No -0.6 km?/s? 0.0 m/s 90t days
Low-Energy Halo orbit Yes -2.0 km?/s? 0.0 m/s 90+ days

region of space that is in gravitational balance between the Sun, Earth, and Moon, without involv-
ing any three-body periodic orbits. Ballistic capture occurs when the spacecraft’s two-body energy
becomes negative, as illustrated by Yamakawa.3® Viacheslav Ivashkin developed a very similar tar-
geting method in the early 2000s.3%42

In the mid 1990s, other methods were developed to construct a lunar transfer that take advantage
of the chaos in the Earth-Moon three-body system.*3** Transfers have been produced using these
methods that require less energy than conventional, direct transfers, but require between nine months
and several years of transfer time.

In 2000, Koon et al. constructed a planar lunar transfer that was almost entirely ballistic using
the techniques involved in Conley’s method.*> Similar to Conley, Koon et al. constructed a transfer
by targeting a trajectory within the interior of the stable invariant manifold of a planar libration
orbit about the Earth-Moon L2 point. Once inside the interior of the stable manifold, the spacecraft
ballistically arrives at some temporarily-captured orbit about the Moon.

Recent research has demonstrated how to use dynamical systems theory to construct low-energy
ballistic lunar transfers in three-dimensions.? %2 This research has shown that a low-energy ballistic
transfer may be modeled as a series of heteroclinic transfers between unstable three-body orbits in
the Sun-Earth system and the Earth-Moon system. Much of this work has been performed in the
Patched Three-Body Model, a useful model for studying the theory behind these orbit transfers. The
present work extends this research by studying the characteristics of low-energy transfers to lunar
halo orbits in the DE421 model of the solar system.

Figure 9 illustrates how a low-energy ballistic transfer may be modeled as a series of orbit trans-
fers in the Patched Three-Body Model. A spacecraft departs the Earth on a trajectory that shadows
the stable invariant manifold of an unstable three-body orbit in the Sun-Earth/Moon three-body
system. The spacecraft does not arrive on that orbit, however, before it ballistically diverts and
then shadows the unstable manifold of that orbit. The trajectory is designed to arrive in the stable
manifold of an unstable three-body orbit in the Earth-Moon three-body system, e.g., an LLy halo
orbit.

Ballistic transfers between the Earth and unstable Earth-Moon three-body orbits are easily iden-
tified by propagating the stable manifold of the target lunar three-body orbit backward in time and
intersecting it with the Earth. The trajectories must be propagated long enough to give them suffi-
cient time to depart the Moon’s vicinity, enter the Sun-Earth three-body system, and fall back to the
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Figure 9 Modeling a ballistic lunar transfer as a series of heteroclinic transfers be-
tween unstable three-body orbits in the Patched Three-Body Model.

Earth. Some transfers require only 100 days to complete; others require more time due to additional
revolutions about the Earth.

Dynamical systems theory provides the framework to parameterize a ballistic lunar transfer. A
BLT in the Patched Three-Body Model may be characterized using six parameters:>’

1. F': The family of unstable three-body orbits that includes the target lunar orbit, e.g., the family
of Southern halo orbits about the L, point.

2. A: The specific three-body orbit within the family F'. Other papers interchange A, with the
orbit’s Jacobi constant or xg-value.

3. 6: The angle between the Sun-Earth axis and the Earth-Moon axis at the point of arrival at
the lunar orbit.

4. p: The perturbation direction, i.e., whether the BLT implements the interior or exterior stable
manifold of the lunar orbit.

5. 7: The arrival location on the lunar orbit, i.e., the specific trajectory within the orbit’s stable
manifold to traverse. This parameter is also directly related to the manifold’s perturbation
magnitude e.

6. Atp,: The propagation duration.

The first five parameters define the initial conditions for a trajectory that is then propagated back-
ward in time for a duration of time equal to At,,. Assuming that the parameter set produces a BLT,
the trajectory will have at least one close approach with the Earth when propagated backward in
time. It may be the case that the first perigee passage does not encounter a desirable state to inject
from, e.g., it may be at an undesirable altitude or inclination, but a later perigee passage does en-
counter a desirable injection state. The propagation duration At,,, must be large enough to permit
the trajectory to propagate to the best perigee passage.
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BALLISTIC LUNAR TRANSFERS IN THE DE421 MODEL

The dynamical systems methods that enabled the clear analysis and construction of low-energy
ballistic lunar transfers in the Patched Three-Body Model in previous studies apply to the DE421
model of the solar system as well. The Sun, Earth, and Moon orbit their respective barycenters in or-
bits that are not far from circular; the Moon’s orbital plane is within 5.2 degrees of the Earth’s orbital
plane. Thus, many trajectories that exist in the Patched Three-Body Model are good approximations
of trajectories that exist in the real solar system.

Low-energy ballistic lunar transfers are constructed in this study in the same way that they have
been constructed in the Patched Three-Body Model. An unstable three-body orbit is selected as
a target orbit near the Moon. The orbit’s stable manifold is propagated and intersected with the
Earth. Those trajectories that intersect the Earth may be used as ballistic transfers from the Earth
to the target orbit via the orbit’s stable manifold. The most significant adjustment to this procedure
involves the construction of the target three-body orbit in the DE421 model. This process was
described earlier in this paper. Ballistic lunar transfers may be uniquely specified in the DE421
model using a set of six parameters that is similar to the set used to describe transfers constructed
in the Patched Three-Body Model. This set includes the parameters: { F, A, Trt, p, 7, Atm },
where T specifies the reference epoch and replaces the parameter # from the previous set of
parameters.

Table 2 summarizes the set of parameters that generates an example BLT in the DE421 model,
shown in Figure 10. The parameters F', A,, and Ty define the Southern LL, halo orbit that is
shown in Figure 11. One can see that the multiple shooting differential corrector adjusted the state
of the analytical approximation of the halo orbit such that the reference epoch is no longer at the
7 = 0° point, but at the 7 ~ 3.84° point. A particular trajectory in the halo orbit’s stable manifold
is then generated that corresponds to the parameters 7 and p in Table 2, which propagates backward
in time to a perigee with an altitude of 185 km. The distance between this trajectory and the Moon
is shown in Figure 12. One can see that this trajectory asymptotically arrives at the orbit from the
“Exterior” direction.

FAMILIES OF BALLISTIC LUNAR TRANSFERS

A set of BLT parameters may be used to generate the initial conditions of a trajectory that
is propagated backward in time to construct a ballistic lunar transfer. If one set of parameters
{F', A,, T}, p/, 7/, At], } generates a trajectory that originates from a LEO orbit with an alti-
tude of 185 km, then it is typically the case that a small deviation in either T or 7" will generate a
trajectory that originates from a LEO orbit with a slightly different altitude. However, small devia-
tions in both of those parameters may often be designed to generate a new trajectory that originates
from a LEO orbit with the same 185 km altitude. In that case, the two sets of parameters define two

different ballistic lunar transfers that are in the same family of transfers.

Figure 13 illustrates how BLTs may be organized into families. In this example, the BLT shown
in Figure 10 with the parameters given in Table 2 is used as a reference trajectory. The BLT’s
parameters are all held constant, except for the parameters Tref and 7, which are systematically
varied through all combinations of values shown in Figure 13. Ateach combination, a new trajectory
is propagated and analyzed to determine its new perigee altitude. One can see in Figure 13 that by
reducing T and increasing 7 an appropriate amount, one can produce new trajectories that also
have a perigee altitude of 185 km, and vice versa. By reducing both T}.¢ and 7, one builds trajectories
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Table 2. The parameters used to produce the BLT shown in Figure 10.

Parameter Value
F The family of Southern Earth-Moon L2 Halo Orbits
A, 30,752 km (0.08 normalized distance units)
Trer 15 January 2017 12:57:36 Ephemeris Time
T 280.2°
p “Exterior”
At 115.9 days
500000.0 ' '
Insertion Point ,
Range to halo: 100 km, MDD'? s
0.0 no maneuvers require& Orbit

—  -500000.0
£ LL, Halo
=

-1000000.0 |

-1500000.0

Sun J
‘—_
~2000000.0 -1000000.0 5000000 0.0 500000.0 1000000.0
X (km)

Figure 10. An example BLT produced in the DE421 model using the parameters specified in Table 2.

40000
20000
15-JAN-2017
12:57:36 ET:
= =3.84°
g 0 t \n
; =0% /
15-JAN-2017
09:04:20 ET
~20000
_40000 s P r P S |
—60000 —40000 —20000 0 20000 40000
X (km)

Figure 11. The halo orbit specified by F', A., and T, in Table 2.
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Figure 12 The distance between the BLT and the Moon as the trajectory approaches
and arrives at the LL- halo orbit.
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Figure 13 A map of the perigee altitude that each BLT trajectory encounters as a
function of T, and 7. The 185-km contour is highlighted, which includes the nominal
BLT presented in Table 2.

that come closer to the Earth at their perigee point, and vice versa.

The exercise given above may be extended to allow T to vary across an entire month and 7 to
vary across 360° to observe full families of BLTs. Figure 14 shows such a state space map given
the parameter set summarized in Table 3. The figure shows a plot that maps the perigee altitude
of each trajectory generated using each combination of Ti.¢ and 7. The darkest regions contain the
parameters that produce useful BLTs; the white fields contain parameters that generate trajectories
that never approach the Earth. Figure 15 shows the same map with several trajectories plotted to
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Table 3. The parameters used to produce the results shown in Figure 14.

Parameter Value

F The family of Southern Earth-Moon Ls Halo Orbits

A, 30,752 km (0.08 normalized distance units)
Tret 1 Jan 2017 00:00:00 ET < T < 31 Jan 2017 00:00:00 ET
T 0° < 7 < 360°

p “Exterior”

At 180 days

Injection Altitude (km)

350F
1400000
300
1350000
250 1300000
2200 1250000
S
S 1200000
S 150
1150000
100
1100000
50 50000
0 1 1 1 1 Il 0
0 5 10 15 20 25 30

Halo Reference Epoch (days since 01-JAN-2017 ET)

Figure 14 A state space map that shows the perigee altitude of each generated tra-
jectory as a function of T} and 7. The darkest regions include the combinations of
Trer and 7 that yield useful BLTs.

illustrate the trajectories that may be generated using these parameters.

Families of BLTs may be identified in the BLT state space map shown in Figure 14 by tracing
those combinations of T.s and 7 that have a perigee altitude of some desirable value, e.g., 185
km. Figure 16 shows samples of the combinations of Tief and 7 that generate BLTs with injection
altitudes of 185 km. The points displayed in black correspond to trajectories that traverse closer to
EL than EL; and vice versa. Table 4 presents a summary of the characteristics of a sample of the
BLTs identified in Figure 16. Each of these BLTs is a member of a family of similar trajectories,
whose characteristics vary smoothly away from those presented in the table. There are certainly

many families of BLTs unrepresented in the table.

The quickest transfer identified in Figure 16 requires fewer than 83 days between the injection
and the point when the trajectory has arrived within 100 km of the lunar halo orbit. The vast
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Table 4 A summary of the characteristics of a sample of the BLTs identified in Figure 16.
*The reference epoch is given as a duration of time, in days, away from 1 Jan 2017 00:00:00
Ephemeris Time.

A Reference T EL:/ C3 Transfer #Earth #Lunar Injection Inclination (deg)
#  Epoch® (days) (deg) EL; (km?%/s2) At(days) Flybys Flybys Equatorial Ecliptic
1 12.060302 334.519 2 —0.2902 133.76 0 0 23.225 28.192
2 12.211055 333.736 2 —0.3457 132.91 0 0 131.701 151.274
3 14.170854 283.655 2 —0.3444 118.36 0 0 51.319 69.045
4 15.226131 271.069 2 —0.4944 108.76 0 1 32.329 51.431
5 15.820146 279.419 2 —0.4296 171.62 0 0 85.326 103.860
6 20.351759 238.347 2 —0.6556 130.11 0 0 115.737 137.694
7 20.351759 239.232 2 —0.5856 145.20 0 0 21.877 22.738
8 22.311558 221.17M1 2 —0.6904 137.51 0 1 35.973 13.527
9 23.819095 206.901 2 —0.7153 129.17 0 0 22.180 10.275
10  20.050251 180.970 2 —1.8533 171.79 0 1 97.684 92.972
11 25.025126 164.113 2 —1.9222 146.35 0 1 20.490 4271
12 27.286432 137.373 2 —2.0307 176.72 0 2 38.302 36.809
13 28.190955 168.405 2 —2.0880 122.46 2 2 19.325 30.359
14 28.040201 185.608 2 —1.0318 145.08 0 1 34.251 11.315
15 28.040201 185.630 2 —1.6144 145.75 0 2 103.995 126.244
16 0.000000 55.325 2 —0.9032 179.35 2 1 143.590 121.792
17 0.150754 63.382 2 —0.6429 97.90 0 0 23.372 0.836
18 0.452261 54.781 2 —0.6608 132.55 0 0 145.538 168.969
19 1.507538 66.990 2 —1.1266 113.39 0 1 166.454 144.152
20 8.592065 59.539 2 —0.8393 178.32 0 1 99.214 87.676
21 8.592065 59.962 2 —0.6791 165.37 0 0 14.732 20.434
22 6.030151 144.580 2 —0.6940 170.11 0 3 23.140 17.669
23 27.889447 53.118 2 —0.9637 140.22 1 2 11.452 28.632
24 28.040201 15.470 2 —0.4261 172.37 0 1 27.743 40.712
25 28.190955 34.787 2 —0.5891 105.30 0 0 148.336 171.495
26 28.341709 43.756 2 —0.5740 96.55 0 0 20.962 3.797
A Reference T EL:/ C3 Transfer #Earth #Lunar Injection Inclination (deg)
#  Epoch® (days) (deg) EL; (km?%/s2) At(days) Flybys Flybys Equatorial Ecliptic
27 2.110553 245.420 1 —0.5465 91.66 0 0 20.003 4.747
28 2.412060 247.372 1 —0.6290 172.42 1 0 54.249 30.825
29 2.110553 251.704 1 —0.6311 178.46 1 2 59.547 36.213
30 2.261307 255.586 1 —0.5150 154.75 0 0 65.164 44.035
31 6.934673 122.568 1 —0.7340 165.38 0 0 20.624 28.138
32 6.783920 138.709 1 —0.5098 164.58 0 2 124.809 129.384
33 11.457286 38.141 1 —1.1299 167.55 0 2 39.917 26.275
34 14.170854 65.695 1 —0.5599 143.25 0 0 19.771 14.374
35 14.170854 70.107 1 —0.6869 123.22 0 0 106.493 129.791
36 14.170854 73.417 1 —0.6246 115.20 0 0 87.048 110.261
37 16.733668 222.850 1 —0.7658 179.64 0 1 137.534 126.323
38 16.733668 223.945 1 —0.6178 171.17 0 0 11.994 14.627
39 17.035176 192.365 1 —1.5154 156.53 1 1 28.596 51.902
40  22.160804 108.406 1 —2.0107 120.17 0 1 18.754 5.377
41 23.819095 87.587 1 —0.6915 167.13 0 0 50.748 32.372
42 28.190955 313.713 1 —0.4043 177.60 0 0 140.309 130.765
43 28.492462 285.732 1 —0.4568 109.17 0 1 10.097 14.214
44 3.165829 227.614 1 —1.9572 169.47 7 2 153.358 172.197
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Figure 15 The same state space map shown in Figure 14 with example BLTs shown
around the perimeter.

majority of the transfers shown require a launch energy in the range of —0.75 km?/s? < C3 < —0.35
km?/s2. The transfers that include a lunar flyby often require less launch energy, particularly those
that involve a lunar flyby on the outbound trajectory soon after injection. Several BLTs have been
identified that require a C3 as low as —2.1 km?/s?, implementing a lunar flyby at an altitude of
approximately 2000 km. Figure 17 shows the relationship between the required injection C3 and
the transfer duration; Figure 18 compares the required injection C3 with the lowest lunar periapse
altitude. One can see a clear correlation in Figure 18 that the closer a trajectory gets to the Moon
during the transfer, the lower the injection C3 may be. Additional lunar flybys or Earth phasing
orbits may help provide the geometry needed for a particular mission.

The BLT state space map shown in Figures 14 — 16 will repeat perfectly from one synodic month
to the next in the Patched Three-Body Model, since the model is symmetric. The characteristics
of the BLT state space map generated in the DE421 model of the solar system will vary from one
synodic month to the next, although similar features will repeat. Figure 19 shows a map of the
perigee altitude of trajectories generated from the same set of parameters presented in Table 2, but
for a wider range of Tier and 7: Trr is varied over three months and 7 is varied over two halo orbit
revolutions. One can see the same features from cycle to cycle, but the details of the state space map
vary. Significant variations are observed between the first halo orbit revolution (0° < 7 < 360°)
and the second (360° < 7 < T20°), mostly as a consequence of the non-zero eccentricity of the
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Figure 16 Combinations of T} and 7 that generate BLTs with perigee injections at
an altitude of 185 km. The points displayed in black correspond to trajectories that
traverse closer to EL; than EL;; points shown in gray travel closer to EL; than EL,.
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Figure 18 The relationship between the injection C3 value and the lowest lunar
periapse altitude during each ballistic lunar transfer identified in Figure 16. The
points displayed in black correspond to trajectories that travel closer to EL; than
EL;.

Moon’s orbit about the Earth-Moon barycenter.

Ballistic lunar transfers between the Earth and a halo orbit with reference epochs that span the
course of an entire year are compared in a single state space map by wrapping the transfers into a
synodic month. Figure 20 compares the locations of BLTs in such a map, identifying the relationship
between Trer and T across an entire year, where the abscissa axis of the plot displays the duration of
time between Tp.¢ and the beginning of the current synodic month, rather than Tt directly.

The features observed in many performance characteristics of the identified BLTs repeat from
synodic month to month. Figure 21 shows the relationship between the required injection C3 and
the transfer duration for each identified BLT in a year, shaded according to the BLT’s synodic
month; Figure 22 compares the injection C3 with the minimum perilune altitude. One can see very
discernable patterns in the BLT parameter relationships that repeat in each synodic month shown.

The largest variations observed from one synodic month to the next correspond to differences
in the BLT injection inclination, in both equatorial and ecliptic reference frames, as illustrated in
Figure 23. It is apparent when studying the plots shown in Figure 23 that BLTs depart the Earth
from orbital planes at nearly any inclination during each synodic month. It is expected that the
equatorial inclination of the BLT injection points will vary from one synodic month to the next
due to the Earth’s obliquity angle, however, significant variations also exist from month to month
when observing the BLT injection points’ ecliptic inclination values. The variations in the geometry
during the year have a more pronounced effect when the trajectories fly near the Earth or Moon.

Discussion

The techniques described here to produce and analyze BLT state space maps may be extended
to build state space maps of transfers between the Earth and any unstable three-body orbit in the
Earth-Moon system. This paper has limited the scope of this exploration to a very specific type of
transfer: one that is designed to transfer from 185 km above the Earth’s surface to a specific LLs
halo orbit via that orbit’s exterior stable manifold using only the tangential injection maneuver and
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Figure 19 The same state space map shown in Figure 14 extended to cover 90 days
of reference epochs and two revolutions of the halo orbit.

no more than 180 days of transfer time. Clearly the potential trade space of BLTs is very large.
Nevertheless, even the limited scope of this paper identified a large number of families of BLTs,
departing from the Earth each and every day at nearly any injection inclination.

The techniques presented here may be applied to the problem of transferring a spacecraft from
any arbitrary orbit onto a trajectory to the Moon. It may be the case that a spacecraft is already
in some orbit about the Earth and must then transfer onto a low-energy BLT — this has been the
case with the two Artemis spacecraft.! In the case of Artemis, the two spacecraft were stationed in
high orbits about the Earth prior to any consideration of how they would transfer onto a low-energy
lunar transfer. A BLT state space map may be catered to these unique needs by tracing contours in
the maps of BLT parameters that correspond to the specific mission requirements, e.g., contours of
altitude and equatorial inclination that intersect the initial orbit.

It should be noted that the process of constructing a low-energy BLT in the DE421 model is not
strictly smooth. The multiple shooting differential corrector iterates until a trajectory is generated
that is continuous in position and velocity within some tolerance. In general, a very small change
in an input parameter to the differential corrector, e.g., A,, will yield a very similar trajectory.
However, there are rare discontinuities between trajectories that are theoretically adjacent in a family
of BLTs — discontinuities that result from a distinct change in the number of iterations required in
the differential correction process. In addition, round-off error may present slight discontinuities in
the characteristics of a family of BLTs due to the unstable nature of low-energy BLTs, their duration,
and their potential interactions with the Earth and Moon. Finally, the parameters that produce a BLT
on one machine using one integration scheme may not produce the exact same trajectory on another
machine using different hardware and/or software due to the unstable nature of low-energy ballistic
lunar transfers.
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Figure 20 The combinations of T} and 7 that yield BLTs during 12 months, relative
to the beginning of each synodic month. The first month, which starts at a reference

epoch of 1 Jan 2017 00:00:00 Ephemeris Time, is shown in the lightest shade and each
consecutive synodic month thereafter is plotted in a darker shade.
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Figure 21 The relationship between the injection C3 value and the duration of the
transfer for each BLT identified in Figure 20. The first month, which starts at a
reference epoch of 1 Jan 2017 00:00:00 Ephemeris Time, is shown in the lightest shade
and each consecutive synodic month thereafter is plotted in a darker shade.
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Figure 22 The relationship between the injection C3 value and the lowest lunar
periapse altitude during each ballistic lunar transfer identified in Figure 20. The first
month, which starts at a reference epoch of 1 Jan 2017 00:00:00 Ephemeris Time, is
shown in the lightest shade and each consecutive synodic month thereafter is plotted
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Figure 23 The equatorial (left) and ecliptic (right) inclination of the BLT injection
point for each BLT identified in Figure 20. The first month, which starts at a reference
epoch of 1 Jan 2017 00:00:00 Ephemeris Time, is shown in the lightest shade and each
consecutive synodic month thereafter is plotted in a darker shade.

APPLICATIONS TO PRACTICAL MISSION DESIGN

Low-energy ballistic lunar transfers are a good trajectory choice for robotic missions to the Moon.
They do not require any new technology; their transfer durations are operationally realistic; and
they may be used to either reduce the fuel requirements of a mission or increase the payload mass
of the system. A 100-day transfer is long enough to provide sufficient time for spacecraft check-
out, trajectory correction maneuvers, and safety reviews prior to a critical event upon arrival at the
Moon. Low-energy BLTs between the Earth and low lunar orbits or the surface of the Moon require
less energy than conventional, direct trajectories. Missions to lunar three-body orbits, such as halo
orbits, receive the greatest benefits by the implementation of a BLT. A BLT to an unstable halo
orbit does not require a large orbit insertion maneuver — direct transfers, on the other hand, require
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orbit insertions with AVs up to 500 m/s or more. Finally, low-energy ballistic transfers may also
be constructed from lunar orbits to the Earth using the same theory. In those cases, low-energy
transfers may be more flexible when targeting a specific entry condition upon arrival at the Earth.

CONCLUSIONS

Low-energy ballistic lunar transfers (BLT's) are constructed in this research using dynamical sys-
tems methods. Previous work has demonstrated how to build a BLT using dynamical systems theory
in a simplified model of the solar system; this research extends that work into the more realis-
tic DE421 model of the solar system, provided by the Jet Propulsion Laboratory at the California
Institute of Technology.

This research has developed a method to build low-energy BLTs between the Earth and unstable
three-body orbits at the Moon, such as halo orbits about either the Earth-Moon L; or Ly point. It
has been found that this technique provides a simple way to parameterize a BLT using only six
parameters. These parameters may be systematically varied to identify and categorize families of
BLTs. Given knowledge of these families of BLTSs, a mission designer may be able to quickly survey
a large variety of BLTs when selecting a trajectory for a specific mission.

Families of BLTs may be easily constructed and organized on a BLT state space map. It has been
found that these state space maps vary from one synodic month to the next due to the asymmetric
nature of the real solar system; yet many of the features do repeat from month to month. These
features provide a means to quickly identify useful lunar transfers in a state space map in an arbitrary
month.
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APPENDIX A: MULTIPLE SHOOTING DIFFERENTIAL CORRECTION

A multiple-shooting differential corrector is used in this paper to link many unstable trajectory
segments together to form a single, fully continuous trajectory. This differential corrector may
be characterized as an iterative algorithm, where each iteration involves two levels of differential
correction. The algorithm is described in detail in the literature, %2223

The process begins by characterizing a trajectory by a set of segments, separated by patchpoints.
Each trajectory segment is continuous in position and velocity, but the overall trajectory is not
necessarily continuous across each patchpoint. The algorithm iteratively adjusts the state of each
patchpoint in order to transform the set of trajectory segments into a single, continuous trajectory.
The algorithm continues iterating until the resulting trajectory satisfies a set of desired constraints,
e.g., continuity within some tolerance. The two levels of correction are described as follows.

Level I. The Level I differential correction process is a single-shooting algorithm that is designed
to update the velocity of each patchpoint in the current sequence of segments, one at a time,
such that the final state of each segment intersects the position and epoch of the following
patchpoint. In this way, the Level 1 process transforms the set of discontinuous trajectory
segments into a single trajectory that is continuous in position and time. The trajectory still
includes velocity discontinuities at each patchpoint.
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Level II. The Level II differential correction process updates the position and time of every patch-

point in the trajectory simultaneously in order to reduce the sum of all velocity discontinuities
in the trajectory. The result is a trajectory that is discontinuous in position, but has a reduction
in total AV after the following execution of Level L

Each pass through the two levels reduces the level of discontinuity in the trajectory, provided that
the process is converging toward a continuous solution. Additional constraints may also be placed
on the trajectory such that the process converges on a trajectory that meets specific mission design

goals.
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