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This paper addresses the problem of attitude estimation in fractionated

spacecraft clusters. Each module in the cluster may have either a star-

tracker, a relative attitude sensor, or both. Using results in nonlinear ob-

servability theory, we provide graph-theoretic sufficient conditions for the

attitude of every module to be observable. In particular we show that the

attitude of every module in the cluster can be observed if every module has

either a star tracker with non-collinear stars, or there is a path through the

sensing network from a module with a star tracker to the module without

a star tracker, and each of the relative measurements along the path has

either multiple non-collinear beacons or a single beacon that is not parallel

to the rotation vector of the target module.

I. Introduction

During the lifecycle of a space mission, a number of forms of uncertainty can affect the

design and operation of a spacecraft. Ref. 1 identifies six different types of uncertainty, which

in some cases can comprise both risks and opportunities. Technical uncertainty consists of

events such as an in-flight component failure or a software bug. Environmental uncertainty

consists of impact with space objects, or radiation levels that are beyond their expected

values. Launch uncertainty causes risk due to the possibility of launch failure, but presents

opportunities in the form of the introduction of new launch vehicles. Demand uncertainty

occurs because the need for a particular spacecraft’s services may change dramatically after

launch, for example because of competing providers. Requirements uncertainty can cause

requirements to change during a design cycle. Finally, the funding stream for a given project
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is uncertain, since competing budget priorities can cause the available funding level to fluc-

tuate during its lifetime. In order to provide the best possible return on investment, space

missions should be responsive to uncertainty. A responsive space system can, for example,

continue to operate after component failures, respond quickly to unforeseen threats, and

scale according to the available funding.1

The vast majority of previous and current space missions were designed to achieve their

goals using a single, monolithic spacecraft. Ref. 1 argues that such spacecraft are highly

unresponsive to uncertainty. For example, conventional spacecraft design uses a high degree

of redundancy to mitigate the effects of technical uncertainty, however this can greatly

increase the cost and complexity of a monolithic spacecraft. Funding uncertainty can halt the

development of the entire spacecraft before any services have been provided, while demand

and requirements uncertainty can mean that, even if launched successfully, the monolithic

spacecraft may not address the true needs of the customer.

Recent work proposed the concept of fractionated free-flying spacecraft.1 Instead of a

single, monolithic spacecraft, a fractionated free-flying spacecraft uses multiple spacecraft

modules. These modules are connected only through wireless communication links and,

potentially, wireless power links. The key advantage of this concept, as noted by Ref. 1,

is the ability to respond to uncertainty. For example, if a single spacecraft module in the

cluster fails, a new one can be launched at a lower cost and risk than would be incurred with

on-orbit servicing or replacement of the monolithic spacecraft.

In order to design a fractionated spacecraft system, a number of key questions need to

be answered, including the following:

What are the capabilities of the fractionated spacecraft system, as a function of

the capabilities of the individual modules?

Answering this question is critical for two reasons. First, it enables pre-launch system-

level design of the fractionated spacecraft; if we can answer the above question, then we

can perform trade studies between different modules and between different designs within

each module. Second, it enables the designer to determine how the system will respond to

uncertainty. For example, we can determine how significantly the capabilities of the overall

system will degrade if a particular sensor fails, or if a module is replaced with one with

different capabilities.

The navigation capabilities of the fractionated system are of particular importance. Ref. 1

notes that, while the modules in the cluster may be allowed to drift relative to each other,

knowledge of the relative position and attitude of each spacecraft is essential to avoid collision

and to ensure that communication and power links are maintained. Ref. 1 notes that it

is not necessary, however, for each module to have the hardware necessary to determine
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its inertial position and attitude completely. Instead, the navigation functionality can be

fractionated, so that only one spacecraft knows its inertial position and attitude with the

others determining their position and attitude relative to the navigation module.

In this paper we focus our attention on the attitude estimation capabilities of the fraction-

ated spacecraft system. In particular, we consider the problem of determining the attitude

of every module using all of the hardware available to the fractionated system. This hard-

ware includes star trackers, gyros, and relative attitude sensors. Using concepts of nonlinear

observability from Ref. 2, we present necessary conditions for observability of the attitude

of every module in the cluster. These conditions specify the minimum sensing capabilities

required for the attitude of every module to be determined by an estimation algorithm; this

will enable the derivation of practical estimators for fractionated attitude determination.

II. Related Work

The problem of control and estimation of spacecraft clusters has received a great deal of

attention in recent years. Much of this research focused on the formation control problem,

where spacecraft move in tightly coordinated formations, for example Refs. 3–9. See Ref. 10

for a review of control in spacecraft formations. The problem of estimation for clusters of

spacecraft, and other vehicles, was considered by a number of authors, including Refs. 11–14.

Much of this work deals with the estimation of relative position and velocity using relative

position measurements. Refs. 7,12,15–18 present practical estimators to solve this problem,

including experimental demonstrations with relative sensing carried out by differential Global

Positioning System signals.

In the present paper, by contrast, we are interested in attitude estimation. The extension

of position estimators to attitude estimators is not straightforward for two reasons. First,

attitude kinematics and observation models are nonlinear, whereas translational dynamics

and observation models are linear (in deep space) or can be linearized (if the relative separa-

tion is small). This means that the standard techniques for linear systems, such as Kalman

Filtering and linear observability theory, are not directly applicable. Second, attitude is usu-

ally represented in spacecraft using the four-parameter quaternion, since all three-parameter

representations are singular or discontinuous for certain attitudes.19,20 Attempting to esti-

mate the quaternion using a nonlinear Kalman Filter, however, leads to singularity in the

covariance matrix; see Ref. 21 for further discussion on this topic. Therefore, while the

nonlinear Kalman filters of Refs. 12, 17, 18 have been effective for position and velocity es-

timation, extending these approaches to tackle the problem of attitude estimation is not

straightforward.

Analytic properties of vehicle formations with regard to observability and estimation were
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investigated by a number of authors.11,13, 14 Ref. 11 determined the closed-loop dynamics of

the formation as a function of the observed states. Refs. 13 and 14 formulate the sensing

structure of the formation as a sensing graph and provide graph-theoretic conditions for

observability. These specify what properties the sensing graph must have for the state of

every spacecraft to be observable. These are important results, since without observability

we cannot hope to estimate the state; however they only apply to linear system dynamics and

linear measurements, which cannot model the nonlinear dependence of sensor measurements

on attitude.

Early work in estimation of attitude for a single spacecraft using Kalman Filters is re-

viewed by Ref. 21, and later developments are reviewed by Ref. 19. Attitude estimation

for multiple spacecraft was considered by Refs. 22–27. Ref. 24 uses tight relative attitude

knowledge requirements in spacecraft formations to motivate the derivation of an Unscented

Kalman Filter for attitude estimation, but this estimator still determines only the attitude

of a single spacecraft using its own sensors. Refs. 22, 23 develop a Kalman Filter that uses

relative attitude measurements in order to estimate the relative attitude between two space-

craft. This work is based on a recently-developed optical relative navigation sensor known

as VISNAV; the sensor is described in more detail in Ref. 28. Other optical sensors for

relative attitude determination are described in Refs. 25–27. In the present paper we extend

the work of Ref. 23 by analyzing the problem of attitude estimation in an arbitrary cluster

of multiple spacecraft, with both relative sensors and star trackers, providing new, analytic

results on observability of the attitude kinematics.

III. Background

A. Quaternion Kinematics

In this section we review attitude kinematics, using quaternion notation to represent attitude.

This review follows the development in Ref. 29. Denote as A(q) the attitude matrix mapping

a vector 0r in a reference frame F
(0) to a vector 1r in another frame F

(1), such that:

1r = A(q)0r. (1)

The quaternion q ∈ ℜ4 is a convenient representation for attitude, and is defined by:

q ,





ρ

q4



 , (2)
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where ρ ∈ ℜ3 and q4 ∈ ℜ. For notational simplicity we define the following cross product

matrix:

[a×] ,









0 −a3 a2

a3 0 −a1

−a2 a1 0









, (3)

where a is an arbitrary vector in ℜ3 and ai denotes the i’th element of a. The quaternion is

related to the attitude matrix by:

A(q) = ΞT (q)Ψ(q), (4)

where:

Ξ(q) ,





q4I3×3 + [ρ×]

−ρT



 Ψ(q) ,





q4I3×3 − [ρ×]

−ρT



 . (5)

Successive rotations between frames can be performed by quaternion multiplication, such

that:

A(q(2))A(q(1)) = A(q(2) ⊗ q(1)), (6)

where ⊗ is the quaternion multiplication operator. The quaternion multiplication of q(1)

and q(2) is given by:

q(2) ⊗ q(1) , [Ψ(q(2)) q(2)]q(1) = [Ξ(q(1)) q(1)]q(2), (7)

while the inverse of a quaternion is given by:

q−1 ,





−ρ

q4



 . (8)

Quaternion kinematics are given by:

q̇ =
1

2
Ξ(q)ω =

1

2
Ω(ω)q, (9)
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where ω is the angular velocity of the frame F
(1) defined in frame F

(1). We define:

Ω(ω) ,





−[ω×] ω

−ωT 0



 Γ(ω) ,





[ω×] ω

−ωT 0



 . (10)

Define a difference quaternion ∆q between two quaternions q(1) and q(2) as:

∆q , q(2) ⊗ q(1)−1 =





∆ρ

∆q4



 , (11)

where q(1) rotates frame F
(0) to frame F

(1) and q(2) rotates frame F
(0) to frame F

(2). Then

the kinematics of the difference quaternion can be shown to be:23

∆q̇ = −





[ω(1)×]∆ρ

0



 +
1

2





(ω(2) − ω(1))

0



 ⊗ ∆q, (12)

where ω(1) is the angular velocity of F
(1) expressed in frame F

(1) and ω(2) is the angular

velocity of F
(2) expressed in frame F

(2).

B. Definition of Fractionated Spacecraft Cluster

In this section we define a fractionated spacecraft cluster for the purposes of fractionated

attitude estimation. A fractionated cluster F consists of N spacecraft modules denoted S(1)

through S(N). The cluster has a reference coordinate frame, denoted F
(0), which has its

origin at Ix0 in the inertial frame. We use ir to denote an arbitrary vector r expressed in

frame F
(i), and use Ir to denote a vector in the inertial frame. The reference coordinate

frame is defined relative to the inertial frame such that for an arbitrary vector r:

Ir = Ix0 + A(q−1
0 )0r. (13)

Each module definition S(i) consists of the following parameters:

• Body-fixed coordinate frame, denoted F
(i).

• Module orbit, denoted O(i), consisting of the position 0p(i)(t) and velocity 0v(i)(t) of

the origin of F
(i) in the frame F

(0).

• Module angular velocity, denoted iω(i), expressed in the body-fixed frame F
(i).

• Star tracker set T (i).

6 of 24



• Relative sensor set R(i).

The star tracker set T (i) consists of nT (i) members, each defining a star tracker. The relative

sensor set consists of nR(i) relative sensors, each member defining the target module, and

the locations of the target beacons in the body frame of the target module. The quaternion

for the attitude of module i is denoted q(i). The quaternion kinematics of module i are

independent of the kinematics of the other modules, and are given by:

q̇(i) =
1

2
Ω(iω(i))q(i). (14)

Given a fractioned cluster F we define the sensing network N (F) as a directed graph where

node i represents module i, and an arc from node i to node j means that there is a relative

sensor on i that has a beacon on module j as its target. A startracker node represents a

module with one or more star trackers.

Definition 1. A path from node i to node j exists if, starting with node i, it is possible to

traverse arcs in the direction of the arc until node j is reached.

The graph representation of a fractioned cluster is illustrated in Figure 1.
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Figure 1. Directed graph representations of two different fractionated sensing networks. Arcs represent relative
attitude sensing, while double circles represent modules with star trackers. In a) a path exists from node 1 to
node 7, but not from node 7 to node 1. In b) no path exists from node 1 to node 7.

C. Star Tracker Sensor Model

In this paper we use the star tracker model of Ref. 29. For notational convenience we assume

that each star tracker in the cluster is given a unique identifying integer from 1 to nT , where

nT ,
∑N

i=0 nT (i) is the total number of star trackers in the cluster. Star tracker i is on module

li and makes observations of nb,i stars. The origin of star-tracker i’s body-fixed coordinate

frame is at lia(i) in frame F
(li). To simplify notation we assume that the star tracker frame
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is aligned with the body frame F
(li) of module li, without loss of generality. This is possible

because the rotation between the body frame of a module and a star tracker on that module

is fixed in the frame of the module and known. Using 0si,j to denote the unit vector pointing

in the reference frame from the origin of star tracker frame i to star j, the star tracker model

is:

bi,j = A(q(li))0si,j, (15)

where A(q(li)) is the matrix describing the rotation from the reference frame to the body

frame of module li. The star tracker is illustrated in Figure 2.

!"##$%&

"'()*&

)*'+&

,-"#&

-#"./*#&
0#"1*&

21"(*&
3)"'*&

2'*#-4")&
0#"1*&

,-"#&5&

,-"#&6&

,-"#&7&

!"#$%&'(!

2
!585&

9$:;)*&5&

<$:=&0#"1*&

5
"
>5?
&

Figure 2. Star tracker model. The unit vector in the reference frame from the star tracker frame to star 1 is
denoted Is1, and is known from star tables. The star tracker uses a visual sensor to observe the location of the
star’s image on the image plane.

D. Relative Sensor Model

In this paper we consider relative sensors that detect a target point, which we refer to as a

beacon, on a target module, and give either bearing, or range-and-bearing measurements.

Sensors that give bearing measurements only include the optical VISNAV sensor of Ref. 23.

This sensor detects optical beacons on a target module and determines their location in the

image plane. Sensors that give range-and-bearing measurements include LIDAR sensors, see

for example Ref. 30 and the references therein. The beacons have known locations in the

frame of the target module. Each relative sensor in the cluster is given a unique identifying

integer from 1 to nR, where nR ,
∑N

i=0 nR(i) is the total number of relative sensors in the

cluster. The origin of relative sensor i’s body-fixed coordinate frame is at liz(i) in frame F
(li).

To simplify notation we assume that the relative sensor frame is aligned with the body frame

F
(li) of module li, without loss of generality. This is possible because the rotation between
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the body frame of a module and relative sensor frame on that module is fixed in the frame of

the module and known. Each relative sensor i is on module ui and makes observations of a

single beacon on module vi. This beacon is fixed at viwi in the body frame F
(vi) of the target

module vi, and we assume that ‖viwi‖ > 0. We assume that each sensor has a single beacon

to simplify notation, without loss of generality. We use liri to denote the vector between the

relative sensor and its beacon in the frame F
(li). The relative sensor observation for sensor i

is denoted ci. For a range-and-bearing measurement:

ci = liri, (16)

while for a bearing-only measurement:

ci =
liri

‖liri‖
. (17)

The relative sensor model is illustrated in Figure 3.
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Figure 3. Relative sensor model. Shown is an optical system that gives bearing information only.

IV. Observability in Fractionated Attitude Estimation

In this section we consider the observability of the cluster attitude state. The cluster

attitude state consists of the quaternion for each spacecraft, and is defined by:

x ,









q(1)

...

q(N)









. (18)
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The attitude state for the system Γ(N ) is in the state space S(N ):

S(N ) , QN , (19)

where Q is the space of valid quaternions:

Q , {x|x ∈ ℜ4, ||x|| = 1}. (20)

We assume that the angular rate of each spacecraft is known and constant in the spacecraft

body-fixed frame. The angular rate can be measured using gyro sensors. While such mea-

surements are subject to gyro bias and noise, estimation of these parameters along with the

spacecraft attitude is beyond the scope of this paper. We assume that all relative sensors

give range-and-bearing measurements. We now define what is meant by observability in a

nonlinear dynamic system.

A. Observability in General Nonlinear Systems

Consider the general nonlinear system, denoted Σ:

ẋ = f(x,u)

y = g(x), (21)

where u ∈ Ω ⊂ ℜk, x ∈ M ⊂ ℜn and y ∈ ℜm. Assume that for every bounded measurable

input u(t) and every x0 ∈ M there exists a unique solution to ẋ = f(x(t),u(t)) such that

x(0) = x0 and x(t) ∈M for all t ∈ ℜ. The following definitions are due to Ref. 2:

Definition 2. A pair of points ξA and ξB are called U-distinguishable if there exists a

measurable bounded input u(t) defined on the interval [0, T ] that generates solutions xA(t)

and xB(t) of ẋ = f(x,u) satisfying xA(0) = ξA and xB(0) = ξB such that xA(t) ∈ U and

xB(t) ∈ U for all t ∈ [0, T ] and g(xA(t)) 6= g(xB(t)) for some t ∈ [0, T ]. We use I(xA, U) to

denote all points xB ∈ U that are not U-distinguishable from xA.

Definition 3. The system Σ is observable at x ∈M if I(x,M) = x.

Intuitively, this means that a system is observable at x ∈M if for every other initial condition

in M the observed time sequence is different somewhere on the interval [0, T ]. Conversely,

the system cannot be observable if there exists any other initial condition in M such that the

observed time sequence is the same everywhere on the interval [0, T ]. In the next sections

we use this definition of observability to derive results relating to attitude estimation in

fractionated spacecraft systems.
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B. Sufficient Conditions for Observability with One Module

In this section, we consider the problem of attitude estimation with one module, which has

a single star tracker. Then the cluster attitude state is simply:

x ,

[

q(1)

]

. (22)

and the attitude kinematics are given by:

ẋ =
[

q̇(1)

]

= f(x,u) = f(x) =
[

1
2
Ω(1ω(1))q(1)

]

. (23)

The observations can be written in the form of (21) as follows:

y = g(x) =









A(q(1))Is1,1

...

A(q(1))Is1,nT









. (24)

Using the definition of nonlinear observability given in Definition 3, we know prove the well-

known result that two non-collinear s1,i are sufficent to ensure observability of the nonlinear

dynamic system described by (23) and (24).

Lemma 1. If any pair of star vectors s1,i and s1,j has s1,i × s1,j 6= 0, then the system

described by (23) and (24) is observable at any x ∈ S(N ).

Proof: To show observability, it suffices to show that g(xA(0)) = g(xB(0)) implies that

xA(0) = xB(0), for any xA(0) ∈ S(N ). Let us pick i and j such that the star vectors s1,i and

s1,j have s1,i × s1,j 6= 0. The condition g(xA(0)) = g(xB(0)) implies that A(q
(1)
A (0))Is1,i =

A(q
(1)
B (0))Is1,i and A(q

(1)
A (0))Is1,j = A(q

(1)
B (0))Is1,j. Since A(q

(1)
B (0)) has a unique inverse

given by A(q
(1)−1
B (0)), this implies that:

A
(

q
(1)−1
B (0))A(q

(1)
A (0)

)

Is1,i = Is1,i =⇒ A
(

∆q(0)
)

Is1,i = Is1,i

A
(

q
(1)−1
B (0))A(q

(1)
A (0)

)

Is1,j = Is1,j =⇒ A
(

∆q(0)
)

Is1,j = Is1,j , (25)

where ∆q , q
(1)−1
B (0) ⊗ q

(1)
A (0), and where we define:

∆q =





∆ρ

∆q4



 . (26)

Equation (25) implies that the star vectors s1,i and s1,i must each be an eigenvector of

the rotation matrix A
(

∆q
)

with eigenvalue unity. This is the case if ∆ρ = 0, in which
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case A
(

∆q
)

is the identity matrix. If ∆ρ 6= 0 then ∆ρ must be parallel to both s1,i and

s1,j since non-identity rotation matrices have exactly one eigenvector with eigenvalue unity,

corresponding to the Euler axis of the rotation. However, since s1,i × s1,j 6= 0 with ‖s1,i‖ > 0

and ‖s1,i‖ > 0, this is not possible. Hence ∆ρ = 0, which implies that xA(0) = xB(0). From

Definition 2 with U = S(N ), this means that I(x,S(N )) = x. Hence from Definition 3 the

system described by (23) and (24) is observable at any x ∈ S(N ). �

C. Necessary and Sufficient Conditions for Observability with Two Modules

In this section, we consider the problem of attitude estimation with two modules, i.e. N = 2.

Then the cluster attitude state is:

x ,





q(1)

q(2)



 . (27)

We can write the cluster dynamics in the form of (21) as follows:

ẋ =





q̇(1)

q̇(2)



 = f(x,u) = f(x) =





1
2
Ω(1ω(1))q(1)

1
2
Ω(2ω(2))q(2)



 . (28)

First, consider the case where there is a star tracker on module 1 and a number of relative

sensors on module 1 giving range-and-bearing measurements between the sensor and beacons

on module 2. Then the observations can be written in the form of (21) as follows:

y = g(x) =



























A(q(1))Is1,1

...

A(q(1))Is1,nT

1r1

...

1rnR



























. (29)

We now give some analytic results relating to the observability of the system defined by (28)

and (29). First, note that the observation uiri from the relative sensor on module ui making
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measurements of a beacon on module vi can be rewritten as:

uiri =A(q(ui))0ri (30)

=A(q(ui))
(

0pvi
+ A(q(vi)−1)viwi −

0pui
−A(q(ui)−1)uizi

)

(31)

=A(q(ui))(0pvi
− 0pui

) + A(q(ui))A(q(vi)−1)2wi −
uizi (32)

Lemma 2. If any pair of star vectors (i, j) has s1,i×s1,j 6= 0 and any pair of relative sensors

(k, l) has 2wk × 2wl 6= 0 then the system defined by (28) and (29) is observable at any

x ∈ S(N ).

Proof: Again, to show observability, it suffices to show that g(xA(0)) = g(xB(0)) implies

that xA(0) = xB(0), for any xA(0) ∈ S(N ). Define:

xA(t) =





q
(1)
A (t)

q
(2)
A (t)



 xB(t) =





q
(1)
B (t)

q
(2)
B (t)



 . (33)

The equality g(xA(0)) = g(xB(0)) implies that A(q
(1)
A (0))Is1,i = A(q

(1)
B (0))Is1,i for all i, and

following the proof of Lemma 1, since we have two star vectors with s1,i × s1,j 6= 0 this

implies that q
(1)
A (0) = q

(1)
B (0). Looking now at the relative sensor measurements, g(xA(0)) =

g(xB(0)) implies that:

A(q
(1)
A (0))(0p2 −

0p1) + A(q
(1)
A (0))A(q

(2)−1
A (0))2wi

= A(q
(1)
B (0))(0p2 −

0p1) + A(q
(1)
B (0))A(q

(2)−1
B (0))2wi ∀i, (34)

and since q
(1)
A (0) = q

(1)
B (0), this implies that:

A(q
(2)−1
A (0))2wi = A(q

(2)−1
B (0))2wi ⇐⇒ A(∆q(2))2wi = 2wi ∀i, (35)

where ∆q(2) , q
(2)
B (0) ⊗ q

(2)−1
A (0) and where we have used the fact that attitude matrices

have unique inverses. We define:

∆q(2) =





∆ρ(2)

∆q
(2)
4



 . (36)

As with the proof of Lemma 1, this implies that either ∆ρ(2) = 0 or ∆ρ(2) is parallel to wi

for all i. However since there exists a pair of relative sensors (k, l) such that 2wk × 2wl 6= 0,

and since both ‖2wk‖ > 0 and ‖2wl‖ > 0, we know that ∆ρ(2) is not parallel to wi for all

i. Hence ∆ρ(2) = 0, and so q
(2)
A (0) = q

(2)
B (0) and qA(0) = qB(0). From Definition 2 with
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U = S(N ), this means that I(x,S(N )) = x. Hence from Definition 3 the system described

by (28) and (29) is observable at any x ∈ S(N ). �

Lemma 2 provides a theoretical proof of the intuitive result, that if one module has a star

tracker with non-collinear stars and there is a relative sensor between the modules with non-

collinear beacons, then the attitude of both modules can be determined. Now consider the

case where there is a star tracker on module 1, but that there is a single relative sensor give

range and bearing measurements to a single beacon on module 2. We will show that even

in this case the attitude of both modules can be determined. The observations are:

y = g(x) =















A(q(1))Is1,1

...

A(q(1))Is1,nT

1r1















. (37)

Lemma 3 gives necessary and sufficient conditions for the system described by (28) and (37)

to be observable.

Lemma 3. Assume that there exists a pair of star vectors (i, j) such that s1,i × s1,j 6= 0.

Then at any x ∈ S(N ) the system described by (28) and (37) is observable if and only if
2ω(2) × 2w1 6= 0.

Proof: We first prove the ‘only if’ part of the lemma, that is, we show that the system is not

observable if 2ω(2) × 2w1 = 0. To do so it suffices to show that for any initial state xA(0) ∈

S(N ) there exists another initial state xA(0) 6= xB(0) such that g(xA(t)) = g(xB(t)) ∀t ≥ 0.

Define:

xA(t) =





q
(1)
A (t)

q
(2)
A (t)



 xB(t) =





q
(1)
B (t)

q
(2)
B (t)



 . (38)

and let q
(1)
B (0) = q

(1)
A (0) and q

(2)
B (0) = ∆q(2) ⊗ q

(2)
A (0), where ∆q(2) is as defined in (36).

If we now choose ∆ρ(2)(0) to be nonzero with ∆ρ(2)(0) × 2w1 = 0, using the difference

kinematics (12) we have:

∆q̇(2)(0) = −





[2ω(2)×]∆ρ(2)(0)

0



 = 0

=⇒∆q̇(2)(t) = 0 ∀t

=⇒∆ρ(2)(t) × 2w1 = 0 ∀t (39)
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where we have used the fact that 2ω(2) × 2w1 = 0. The relative sensor measurement with

initial state xA(0) is given by:

1r1(xA(t)) = A(q
(1)
A (t))(0p2 −

0p1) + A(q
(1)
A (t))A(q

(2)−1
A (t))2w1 −

1z1, (40)

while the relative sensor measurement with initial state xB(0) is given by:

1r1(xB(t)) = A(q
(1)
B (t))(0p2 −

0p1) + A(q
(1)
B (t))A(q

(2)−1
B (t))2w1 −

1z1

= A(q
(1)
A (t))(0p2 −

0p1) + A(q
(1)
A (t))A(q

(2)−1
B (t))2w1 −

1z1

= A(q
(1)
A (t))(0p2 −

0p1) + A(q
(1)
A (t))A(q

(2)−1
A (t))A(∆q(2)−1(t))2w1 −

1z1. (41)

Since ∆ρ(2)(t)× 2w1 = 0 with ‖∆ρ(2)(t)‖ > 0 and ‖2w1‖ > 0 we know that 2w1 is the Euler

axis of the rotation described by A(∆q(2)−1), and hence A(∆q(2)−1(t))2w1 = 2w1. Hence:

1r1(xB(t)) = A(q
(1)
A (t))(0p2 −

0p1) + A(q
(1)
A (t))A(q

(2)−1
A (t))2w1 −

1z1 = 1r1(xA(t)) ∀t.

(42)

For all time, therefore, the relative measurements are the same for xB(t) as for xA(t). The

star tracker measurements are the same since they depend only on q(1), which is identical in

xB(t) and xA(t). Hence g(xA(t)) = g(xB(t)) ∀t ≥ 0. Referring to Definition 2 and setting

M = U = S(N ), we see that this means that for any xA(0) there exists an xB(0) 6= xA(0)

and xB(0) ∈ I(xA(0), U). Hence, from Definition 3, the system defined by (28) and (37) is

not observable at any x ∈ S(N )

We now prove the ‘if’ part of the lemma, that is, we show that the system is observable

if 2ω(2) × 2w1 6= 0. It suffices to show that g(xA(t)) = g(xB(t)) ∀t ≥ 0 implies that

xA(0) = xB(0), for any xA(0) ∈ S(N ). The equality g(xA(0)) = g(xB(0)) implies that

A(q
(1)
A (0))Is1,i = A(q

(1)
B (0))Is1,i for all i, and following the proof of Lemma 1, since we have

two star vectors with s1,i × s1,j 6= 0 this implies that q
(1)
A (0) = q

(1)
B (0). Looking now at the

relative sensor measurement, g(xA(t)) = g(xB(t)) implies that:

A(q
(1)
A (t))(0p2 −

0p1) + A(q
(1)
A (t))A(q

(2)−1
A (t))2w1

= A(q
(1)
B (t))(0p2 −

0p1) + A(q
(1)
B (t))A(q

(2)−1
B (t))2w1, ∀t ≥ 0 (43)

and since q
(1)
A (t) = q

(1)
B (t), this implies that:

A(q
(2)−1
A (t))2w1 = A(q

(2)−1
B (t))2w1 ⇐⇒ A(∆q(2)(t))2w1 = 2w1, (44)

where ∆q(2)(t) , q
(2)
B (t) ⊗ q

(2)−1
A (t) and where we have used the fact that attitude matrices
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have unique inverses. This implies that either ∆ρ(2)(t) = 0 or ∆ρ(2)(t) is parallel to 2w1 for

all t ≥ 0. We now show that ∆ρ(2)(t) being parallel to 2w1 for all t ≥ 0 is not possible. The

proof is by contradiction. Assume that ∆ρ(2)(t) 6= 0 and ∆ρ(2)(t) is parallel to 2w1 for all

t ≥ 0. This implies that ∆ρ(2)(0) is parallel to 2w1, i.e. ∆ρ(2)(0)× 2w1 = 0. Using Lemma 4

in the appendix, we can show that the state transition equation for ∆ρ(2)(t) is given by:

∆ρ(2)(t) =

∆ρ(2)(0) −
sin(‖2ω(2)‖t)

‖2ω(2)‖

(

2ω(2) × ∆ρ(2)(0)
)

+
2 sin2

(

1
2
‖2ω(2)‖t

)

‖2ω(2)‖2

(

2ω(2) × (2ω(2) × ∆ρ(2)(0))
)

,

(45)

where we have used the fact that the angular rates of q
(2)
A and q

(2)
A are the same when

expressed in their respective frames. Since ∆ρ(2)(0) is nonzero and parallel to 2w1, and

since 2ω(2) × 2w1 6= 0, we know that 2ω(2) × ∆ρ(2)(0) 6= 0. We also know that ‖2ω(2)‖ > 0.

From Lemma 5 in the appendix, this means that there exists a time t such that ∆ρ(2)(t) is

not parallel to ∆ρ(2)(0), and is hence not parallel to 2w1, which is a contradiction. Hence

∆ρ(2)(t) = 0 ∀t ≥ 0 and so g(xA(t)) = g(xB(t)) ∀t ≥ 0 implies that xA(0) = xB(0). From

Definition 2 with T = 0 and U = S(N ), this means that I(x,S(N )) = x. Hence from

Definition 3 the system described by (28) and (37) is observable at any x ∈ S(N ). �

Lemma 3 shows that, if one module has a star tracker with non-collinear stars, then the

attitude of both modules can be observed using a single beacon if and only if the module

with the beacon rotates and the rotation vector is not parallel to the vector to the beacon.

D. Sufficient Conditions for Observability in Fractionated Attitude Estimation

In this section we consider an arbitrary cluster of N modules with both star trackers and

relative sensors. Then the cluster attitude state is:

x ,









q(1)

...

q(N)









. (46)

We can write the cluster dynamics in the form of (21) as follows:

ẋ =









q̇(1)

...

q̇(N)









= f(x,u) = f(x) =









1
2
Ω(1ω(1))q(1)

...

1
2
Ω(2ω(2))q(N)









. (47)
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The observations are given by:

g(x) =



























A(q(l1))s1,1

...

A(q(lnT
))snT ,nb,nT

l1r1

...

lnRrnR



























. (48)

Condition 1. A node satisfies Condition 1 if it is a star tracker node where the correspond-

ing star tracker has a pair of star vectors s1,i and s1,j such that s1,i × s1,j 6= 0.

Condition 2. A sensing arc satisfies Condition 2 if at least one of the following holds:

1. There are two or more relative sensors (k, l) on the arc with 2wk × 2wl 6= 0.

2. There is at least one relative sensor k on the arc with 2ω(2) × 2wk 6= 0

Theorem 1. If for every node i in the fractionated cluster F that does not satisfy Condi-

tion 1, there exists a path through the sensing graph from a node satisfying Condition 1 to

node i, where each arc satisfies Condition 2, then the system described by (47) and (48) is

observable.

Proof: To show observability, it suffices to show that g(xA(t)) = g(xB(t)) ∀t implies that

xA(0) = xB(0), for any xA(0) ∈ S(N ). Define:

xA(t) =









q
(1)
A (t)
...

q
(N)
A (t)









xB(t) =









q
(1)
B (t)
...

q
(N)
B (t)









. (49)

Then, to show that g(xA(t)) = g(xB(t)) implies that xA(0) = xB(0), it suffices to show that

g(xA(t)) = g(xB(t)) implies that q
(i)
A (0) = q

(i)
B (0) for all i. From Lemma 1 this is true for all

i where node i satisfies Condition 1.

We now consider the case where module i does not have such a star tracker. From the

assumptions of the present theorem, there exists a path from a node satisfying Condition 1

to module i, where each arc satisfies Condition 2. Let this path have length L and define

pj as the node number at location j along the path, such that pL = i and p1 is a node

satisfying Condition 1. We know show that g(xA(0)) = g(xB(0)) implies that q
(pj)
A (0) =

q
(pj)
B (0) for j = 1, . . . , L. The proof is by induction. Since node p1 satisfies Condition 1,
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from Lemma 1 we know that g(xA(t)) = g(xB(t)) implies that q
(p1)
A (0) = x

(p1)
B (0). Now

assume that g(xA(t)) = g(xB(t)) ∀t implies that q
(pk)
A (0) = q

(pk)
B (0) for any node pk in

the path. We now show that g(xA(t)) = g(xB(t)) ∀t and q
(pk)
A (0) = q

(pk)
B (0) implies that

q
(pk+1)
A (0) = q

(pk+1)
B (0). Since there is a sensing arc between node pk and pk+1 there is one or

more relative sensor on module pk taking measurements of beacons on module pk+1. Looking

at the measurement from these sensors, g(xA(t)) = g(xB(t)) ∀t implies that:

A(q
(pk)
A (t))(0p2 −

0p1) + A(q
(pk)
A (t))A(q

(pk+1)−1
A (t))viwi

= A(q
(pk)
B (t))(0p2 −

0p1) + A(q
(pk)
B (t))A(q

(pk+1)−1
B (t))viwi ∀t ∀i s.t. ui = pk and vi = pk+1,

(50)

and since we have assumed that q
(pk)
A (t) = q

(pk)
B (t), this implies that:

A(∆q(pk+1)(t))viwi = viwi ∀t, ∀i s.t. ui = pk and vi = pk+1, (51)

where ∆q(pk+1)(t) , q
(pk+1)
B (t) ⊗ q

(pk+1)−1
A (t). We define:

∆q(pk+1)(t) =





∆ρ(pk+1)(t)

∆q
(pk+1)
4 (t)



 . (52)

As with the proof of Lemmas 2 and 3, (44) implies that either ∆ρ(pk+1)(t) = 0 or ∆ρ(pk+1)(t)

is parallel to viwi for all i and for all t ≥ 0. However since the relative sensor satisfies

Condition 2, the latter is not possible. Hence ∆ρ(pk+1)(0) = 0, and so q
(pk+1)
A (0) = q

(pk+1)
B (0).

Then, by induction, g(xA(0)) = g(xB(0)) implies that q
(pj)
A (0) = q

(pj)
B (0) for j = 1, . . . , L

and since pL = i this means that g(xA(0)) = g(xB(0)) implies that q
(i)
A (0) = q

(i)
B (0) for all

i. Hence g(xA(0)) = g(xB(0)) implies that xA(0) = xB(0) for any xA(0) ∈ S(N ). From

Definition 2 with T = 0 and U = S(N ), this means that I(x,S(N )) = x. Hence from

Definition 3 the system described by (47) and (48) is observable at any x ∈ S(N ). �

Theorem 1 shows that the attitude of every module in the cluster can be observed if every

module has either a star tracker with non-collinear stars, or there is a path through the

sensing network from a module with a star tracker to the module without a star tracker, and

each of the relative measurements along the path has either multiple non-collinear beacons

or a single beacon that is not parallel to the rotation vector of the target module.
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V. Conclusion

In this paper we have presented sufficient conditions for observability of the attitude of

a fractioned spacecraft system. We have shown that the attitude of every module in the

cluster can be observed if every module has either a star tracker with non-collinear stars,

or there is a path through the sensing network from a module with a star tracker to the

module without a star tracker, and each of the relative measurements along the path has

either multiple non-collinear beacons or a single beacon that is not parallel to the rotation

vector of the target module. Our ongoing work uses the observability results presented here

to develop practical nonlinear estimation techniques and to determine empirically how the

attitude estimation capabilities of the fractionated system depend on the capabilities of the

individual modules.
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VII. Appendix

Lemma 4. Consider two quaternions q1 and q2 defining rotations between a reference frame

F
(0) and frames F

(1) and F
(2) respectively. Frame F

(1) has rotation rate 1ω1 and frame F
(2)

has rotation rate 2ω2. Define the difference quaternion as ∆q = q2 ⊗ q−1
1 . Further define

∆ρ and ∆q4 such that:

∆q =





∆ρ

∆q4



 . (53)

Then if 1ω1 = 2ω2 = ω, the state transition function for ∆ρ is given by:

∆ρ(t) = ∆ρ(0) −
sin(‖ω‖t)

‖ω‖

(

ω × ∆ρ(0)
)

+
2 sin2

(

1
2
‖ω‖t

)

‖ω‖2

(

ω × (ω × ∆ρ(0))
)

. (54)

Proof: Ref. 23 shows that, for constant 1ω1 and 2ω2, the state transition matrix for the
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difference quaternion ∆q is given by:

∆q(t) = Ω̄(2ω2)Γ̄(1ω1)∆q(0), (55)

where:

Ω̄(2ω2) ,





cos
(

1
2
‖2ω2‖t

)

I3 − [ψ(t)×] ψ(t)

−ψT (t) cos
(

1
2
‖2ω2‖t

)



 (56)

Γ̄(1ω1) ,





cos
(

1
2
‖1ω1‖t

)

I3 − [ζ(t)×] −ζ(t)

ζT (t) cos
(

1
2
‖1ω1‖t

)



 (57)

and:

ψ(t) ,
sin

(

1
2
‖2ω2‖t

)

2ω2

‖2ω2‖
(58)

ζ(t) ,
sin

(

1
2
‖1ω1‖t

)

1ω1

‖1ω1‖
. (59)

We can write:

∆q(t) =





A B

C D



 ∆q(0), (60)

where:





A B

C D



 =





cos
(

1
2
‖ω‖t

)

I3 − [ψ(t)×] ψ(t)

−ψT (t) cos
(

1
2
‖ω‖t

)









cos
(

1
2
‖ω‖t

)

I3 − [ζ(t)×] −ζ(t)

ζT (t) cos
(

1
2
‖ω‖t

)



 .

(61)

Using the fact that 1ω1 = 2ω2 = ω and multiplying out the matrices to find B, we get:

B = − ζ(t) cos
(1

2
‖ω‖t

)

+ [ψ(t)×]ζ(t) + ψ(t) cos
(1

2
‖ω‖t

)

(62)

= − ψ(t) cos
(1

2
‖ω‖t

)

+ [ψ(t)×]ψ(t) + ψ(t) cos
(1

2
‖ω‖t

)

= 0. (63)
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Since B = 0, we can write ∆ρ(t) = A∆ρ(0), and multiplying to find A it can be shown that:

A = cos2
(1

2
‖ω‖t

)

I3 − 2[ψ(t)×] cos
(1

2
‖ω‖t

)

+ [ψ(t)×][ψ(t)×] + ψ(t)ψ(t)T

= I3 −
sin(‖ω‖t)

‖ω‖
[ω×] +

2 sin2(1
2
‖ω‖t)

‖ω‖2
[ω×][ω×], (64)

where we have used the identity aaT ≡ ‖a‖2I3 + [a×][a×] for a vector a ∈ ℜ3. Substituting

(64) into ∆ρ(t) = A∆ρ(0) we obtain:

∆ρ(t) = ∆ρ(0) −
sin(‖ω‖t)

‖ω‖

(

ω × ∆ρ(0)
)

+
2 sin2

(

1
2
‖ω‖t

)

‖ω‖2

(

ω × (ω × ∆ρ(0))
)

. (65)

�

Lemma 5. Let:

∆ρ(t) = ∆ρ(0) −
sin(‖ω‖t)

‖ω‖

(

ω × ∆ρ(0)
)

+
2 sin2

(

1
2
‖ω‖t

)

‖ω‖2

(

ω × (ω × ∆ρ(0))
)

. (66)

If ∆ρ(0) 6= 0, ω is not parallel to ∆ρ(0) and ω 6= 0, then there exists a time t ≥ 0 such that

∆ρ(t) is not parallel to ∆ρ(0).

Proof: Define:

u , ω × ∆ρ(0) v , ω × (ω × ∆ρ(0))

w , −
sin(‖ω‖t)

‖ω‖
u +

2 sin2
(

1
2
‖ω‖t

)

‖ω‖2
v (67)

Then ∆ρ(t) is parallel to ∆ρ(0) only if w is zero or w is parallel to ∆ρ(0). Since ω×∆ρ(0) 6= 0

we know that u 6= 0, and since u and v are not parallel, we know that w 6= 0 for all t such

that 0 < t < π
‖ω‖

. We now show that there exists a t such that w is not parallel to ∆ρ(0).

Let us first assume that there exists a time t∗ such that w is parallel to ∆ρ(0), that is:

k∆ρ(0) = −
sin(‖ω‖t∗)

‖ω‖
u +

2 sin2
(

1
2
‖ω‖t∗

)

‖ω‖2
v, (68)
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where k is a nonzero scalar. Rewriting (68) we obtain:

k∆ρ(0) =au + bv (69)

a = −
sin(‖ω‖t∗)

‖ω‖
b =

2 sin2
(

1
2
‖ω‖t∗

)

‖ω‖2
. (70)

From the definition of u we know that the vectors u and ∆ρ(0) are not parallel, and we also

know that u and v are not parallel. If v is parallel to ∆ρ(0) then ∆ρ(t) is not parallel to

∆ρ(0) for all 0 < t < π
‖ω‖

since ∆ρ(t) is the sum of two vectors parallel to ∆ρ(0) and one

non-zero vector not parallel to ∆ρ(0). If v is not parallel to ∆ρ(0) then the matrix formed

by the vectors u, v and ∆ρ(0) is invertible, meaning that (68) has at most one solution for

(a, b, k) and hence (68) has at most one solution for t∗ on 0 < t < π
2‖ω‖

. Hence any t such

that 0 < t < π
2‖ω‖

and t 6= t∗ does not satisfy (68), from which we conclude that there exists

a t such that w is not parallel to ∆ρ(0). Since w 6= 0 for all t such that 0 < t < π
‖ω‖

, this

means there exists a t such that ∆ρ(t) is not parallel to ∆ρ(0). �
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