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Abstract— A system to monitor the concentrations of trace 
chemicals in cabin atmosphere is one of the most critical 
components in long-duration human flight missions. The 
Vehicle Cabin Atmosphere Monitor (VCAM) is a miniature 
gas chromatograph mass spectrometer system to be used to 
detect and quantify trace chemicals in the International 
Space Station.  We developed an autonomous computational 
process to quantify trace chemicals for use in VCAM. The 
process involves the design of a measured signal 
quantification scheme, the construction of concentration 
curves (i.e. the relationship between concentration and ion 
count measured by VCAM), the decision rule of applying 
high- or low-gain concentration curves, and the detection of 
saturation, low-signals, and outliers. When the developed 
quantification process is applied, the average errors of 
concentration for most of trace chemicals are found to be 
between 14% and 66%. 1 2  
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1. INTRODUCTION 
The Vehicle Cabin Atmosphere Monitor (VCAM) is a gas 
chromatograph mass spectrometer instrument and is 
designed to autonomously identify trace organic species in 
the International Space Station (ISS) internal air and to 
quantify their concentration [1,2]. VCAM uses a gas 
chromatograph to separate chemicals in terms of time of 
arrival to the mass spectrometer. The chemicals travel 
through a specially prepared glass tube (column) in the gas 
state. The interactions of these gaseous analytes with the 
walls of the column causes different compounds to emerge 
at different times which are called retention times. After the 
chemicals are time separated, VCAM uses a quadrupole ion 
trap mass spectrometer to make unique mass fractionation 
patterns of each chemical analyte by applying a quadrupole 
RF electric field to hyperbolic electrodes and ramping the 
amplitude of the electric field at a constant rate [3].   
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Using the two instruments together, VCAM is designed to 
identify and quantify trace organic species. One of the 
operation requirements for VCAM is the autonomous 
quantification of the concentrations for approximately forty 
trace species within 40% error for a range of concentrations 
guided by the Spacecraft Maximum Allowable 
Concentrations (SMACs). In this paper, we present the 
autonomous process that we developed to quantify the 
concentrations of the trace chemicals. 

2. APPROACH  
VCAM divides the trace gas species to be identified and 
quantified into three priorities: Priority 1, Priority 2, and 
Priority 3. Tables 1, 2, and 3 list these groups and their 
desired detection concentration ranges. Priority 1 has the 
requirement of one hundred percent successful detection and 
identification. Priority 2 and Priority 3 require 80% and 
70% detection and identification, respectively. For all three 
priorities, the error budget for quantification is 40%.  

Designing Signal Quantification Scheme 

In order to quantify the concentrations of the trace species, 
we first must design a scheme to quantify the measured 
signal of an elution peak. We examined three different ways 
to quantify the signal and selected the best performing 
scheme.  

The first approach is to use the total ion count (TIC) under 
an elution peak subtracting an estimated background signal 
as shown in Figure 1. The total ion count is the sum of all 
the ion counts that are measured during the elution peak 
regardless of the mass channel numbers of the mass 
spectrometer. As a result, the total ion count will necessarily 
include contributions from noise or other nearby events.  

The second approach is to use the sum of the ion counts of 
the mass channels only from perceived “data” mass peaks 
based on which mass peaks contributed most greatly to the 
elution peak’s total height.  We call this quantity data ion 
count (DIC). This approach directly couples the peak 
detection performed by the NIST Automated Mass Spectral 
Deconvolution and Identification System (AMDIS) 
algorithm [4,5].  

Figure 2 shows a typical mass spectrum of an elution peak. 
The total ion count under an elution peak is distributed 
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Constructing Concentration Curves 

After the measured signal intensity is quantified in terms of 
integrated number of ion counted, we construct 
concentration curves. These curves capture the relationship 
between quantified signal counts and the physical 
concentration of the eluting chemical. After trying several 
different functional forms, the concentration curves are 
empirically defined as the log-log linear equation:  

 

log10(concentration) = alog10(signal) + b      (1) 

We obtain the optimal value for the slope a and the intercept 
b using a chi-square fitting for each chemical separately. 
Training data were weighted according to measurement 
errors and intrinsic measurement fluctuations. Since we have 
duplicate measurements for the same concentration, we can 
define the measurement fluctuation with the standard 
deviation of the quantified signal. We initially tried a non-
weighted least square fitting method but found that the 
method failed when data contain many outliers and 
fluctuations. Chi-square fitting was found to be less subject 
to such anomalies and noise than a non-weighted least 
square fitting because the chi-square fitting take into account 
the measurement fluctuation and give a lower weight on the 

measurements with higher fluctuations. When the outliers 
and inhomogeneous fluctuations are manually removed, both 
the chi-square fitting and non-weighted least square fitting 
led to a similar concentration curve.  

Gain Switch Decision Rule 

VCAM performs in a dual-gain mode (high and low) in 
order to increase its dynamic range of concentration 
sensitivity. The gain determines the signal strength by 
varying the pulse duration of the ionization process. A 
higher gain means a longer pulse-duration, more ionization, 
and a higher counts for a given concentration. The reason 
that we use the dual-gain mode is that VCAM has the wide 
desired detection concentration range of the compounds so 
that one fixed gain cannot satisfy the concentration range. 
For example, if the gain is too low, we cannot detect a low 
concentration chemical. Conversely, if the gain is too high, 
we will have a saturated signal for a high concentration 
chemical so that the signal does not grow any further even 
though the concentration increases. As a result, we cannot 
estimate the concentration correctly. Having the dual-gain 
model addresses the shortcoming of the one-gain problems. 
The high-gain mode provides a sufficient signal for a low 
concentration chemical, while the low-gain mode provides 

 

 
Figure 2 - Mass spectra of several chemical species. Each compound has a different mass spectrum with different 

mass peaks and different relative intensities of the peaks. DIC is calculated by adding the ion counts of mass peaks 
shown in the measured spectrum while LIC is calculated by adding the ion counts of mass peaks that coincide with 

library mass peaks in the library spectrum. 



 4 

an unsaturated signal for a high concentration. Both high 
and low gain data are simultaneously taken for every run by 
alternating a long and a short pulse duration. 

Although the dual gain does permit unsaturated detection of 
all specified ranges, we must decide when to use the high or 
low gain data without prior knowledge of sample 
concentration. Since both gain modes have different signal 
levels, we first must construct a concentration curve for each 
mode separately. After the concentration curves for both 
high and low gains are established, we have a choice of 
which gain-mode concentration curves to use for a detected 
signal. Since we have the dual-gain mode, we can select one 
mode that is more reliable than the other and use the mode 
to estimate the concentration. When a saturated signal is 
detected, this means that the high-gain signal is saturated so 
we will use a low-gain mode signal, apply the low-gain 
concentration curve, and report the concentration. 
Conversely, when a low signal is detected, this means that 
the low-gain signal is too weak to use so we will use a high-
gain signal to determine the concentration.  

This gain switch decision rule relies on the algorithm to 
determine whether the signal is saturated or weak. We 
developed a simple empirical algorithm for the 
determination of the saturated or weak signal. We take the 
maximum number of ion counts for the highest peak line 
above mass 33 in order to avoid the persistent N2 and O2 
peaks at 28 and 32, respectively. If the maximum ion count 
is more than 8000, it is considered saturated. If the 
maximum ion count is less than 300, it is considered weak. 
Applying this rule leads to the choice of a more reliable gain 
in case of the existence of a saturated signal or a weak 
signal.  

3. RESULTS  
Selecting Best Signal Quantification Scheme 

In order to establish concentration curves, we measured over 
1100 elution events including over 30 chemicals, 5 different 
concentration values per chemical, and about 3 duplicates 
for each chemical and concentration. Figure 3 shows the 
concentration curves of the chemical species that we tested 
on the VCAM lab standard unit using three different ways to 
quantify a signal (TIC, DIC, and LIC). The symbols 
represent the quantified values of the measured signal and 
the lines represent the fitted concentration curves using the 
measurements.  

As shown in Figure 3, we observed that DIC generates many 
more outliers that the other two ion-count methods (TIC and 
LIC). The large fluctuation of DIC for the same 
concentration is due to the sensitivity of our mass-peak 
finding algorithm to the signal fluctuation. The peak finding 
algorithm determines whether some signal is a contributor to 
a particular elution peak based on the signal sharpness 

relative to the noise/background level. This can vary run to 
run resulting in differing number of mass peaks considered 
contributing. Although this fluctuation is relatively harmless 
to identification, the DIC concentration scheme relies on 
these peaks for its count integration and is distored by such 
run-to-run noise. For this reason, we decided to not use DIC 
as the ion-count determining method for concentration 
curves. 

Between TIC and LIC, the fitting error of the concentration 
curve is usually smaller with TIC for most of chemicals. One 
disadvantage of using LIC is its sensitivity to mass 
calibration errors and the dissimilarity of the library 
spectrum to the real spectrum. Our system experienced mass 
calibration errors of up to 1 AMU in certain spectral ranges, 
resulting the misalignment of entire significant peaks. 
Similarity of the library spectrum to the observed spectrum 
is also required for LIC to make sense, a requirement which 
held true approximately 75% of the time in our data. On the 
other hand, LIC has a strong advantage over TIC in terms of 
its ability to decompose the ion count from multiple 
chemicals in the case of coelution. However, the 
decomposition is not perfect unless the chemicals in the 
coelution peak have distinguishable library spectra. Most of 
our coeluting chemicals have similar library spectra, which 
complicate the ion count decomposition of the involved 
chemicals. Therefore, we selected TIC as the signal 
quantification method for our concentration curves although 
we are aware of its inability of decomposing the ion count 
under a coelution peak. With more accurate mass calibration 
and the use of the customized spectral library in future 
systems, LIC is predicted to be the most reliable method.     

Obtaining Concentration Curves 

Figure 3 shows that the weighted chi-square fitting is more 
reliable in extracting the overall trend without being 
obscured by outliers. When there are strong outliers (mostly 
in DIC case), the nonweighted least square fitting can be 
wildly affected by the strong outliers. Therefore, we decided 
to use the weighted chi-square fitting to establish the 
concentration curves.  

Tables 2 and 3 show the resulting concentration curves of 
the required chemical species for the high and low gain 
using the chi-square fitting and TIC as the signal 
quantification method. The slope of the log-log curve (a) is 
typically between 1 and 3. The intercept of the log-log curve 
(b) varies considerably from chemical to chemical. The 
high-gain and low-gain curves share a similar slope for the 
same chemical. The intercept of the high-gain curve is lower 
than that of the lower-gain curve because the high-gain 
signal is higher than the low-gain signal for the same 
concentration value.  

The fitting errors of the resulting concentration curves are 
listed in Tables 2 and 3. All concentration curves have a 
fitting error lower than 40%, except the high-gain curve of 
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vinyl chloride and the low-gain curve of ethanol. Since the 
high-gain curve of ethanol has a fitting error smaller than 
40%, we can use the high gain curve for ethanol 
concentration estimation. However, vinyl chloride does not 
have a reliable low-gain curve. In fact, the low-gain curve 
error was so large that we rejected the curve while fitting it. 
The cause of the high fitting error of vinyl chloride curves is 
that the concentration change leads to a relatively small 
change in ion count i.e. we have a low hardware sensitivity 
to vinyl chloride samples. The curve slope (a) is the ratio of 
a change in log10(concentration) to a change in 
log10(signal). Therefore, a large slope means that a change 
in concentration leads to a relatively small change in signal. 
This is shown in the concentration curves of vinyl chloride 
in Figure 2. The relative insensitivity of the ion count to the 
concentration makes very difficult to distinguish different 
concentration using the ion count. This difficulty causes a 
high fitting error and consequently a high error in 
concentration estimation. 

Testing Quantification Method  

Using the established concentration curves, we tested our 
concentration estimation accuracy against new test 
measurement data. The new test data consist of over 700 
elution events with over 25 chemicals, 5 different 
concentration values, and two or three duplicates. The test 
data were not used in establishing the concentration curves 
so they provides an independent way to gauge the accuracy 
of the concentration estimation using the concentration 
curves and the high-low gain switch decision rule. The 
separation between the training data and the test data also 
ensures that we avoid the overfitting of the concentration 
curve.  

The test results are shown in Table 4. The listed numbers are 
the errors of the estimated concentration averaged over 
about 10 elution measurements with about 5 different 
concentration values for each chemical. For 25 chemicals we 
tested, 15 chemicals met the VCAM’s concentration error 
budget requirement, that is, the error should be smaller than 
40%. For 10 chemicals that did not meet the error budget 
requirement, 7 chemicals have errors between 41% and 
66%. The other three chemicals (acetaldehyde, 
perfluoropropane, and vinyl chloride) show significant 
errors. For perfluoropropane and vinyl chloride, the large 
error is explained by the large concentration slope. The large 
slope means that a change in concentration is not well 
differentiated by the level of ion counts. The cause of the 
high error of acetaldehyde is likely due to coelution events 
with acetaldehyde during concentration curve training.  

This test result also provides a way to gauge the 
performance of the high-low gain switch decision rule. For 
ethyl benzene, the dual-gain rule leads to a smaller 
concentration error than using only one gain data. The high 
gain error is 47%, the low gain error 32%, and the dual gain 
error 27%. This improvement is due to the built-in 

intelligence that the decision rule has in determining a 
better-quality concentration curve for a given ion-count 
level.  

For some chemicals, the dual-gain error is the same as the 
lowest error between the high and low-gain. This means that 
one gain curve is consistently more reliable than the other 
gain curve. This can happen when the required 
concentration range of a chemical is either very low or very 
high. The high-gain curve would be more reliable than the 
low-gain curve for the very low concentration range, while 
the low-gain curve would be more reliable for the very high 
concentration range. This test result supports that our gain 
switch rule is successful in finding a more reliable gain 
curve for these chemicals. 

For most of other chemicals, the dual-gain error is in 
between the high-gain error and the low-gain error. This 
indicates that the dual-gain method often successfully 
chooses the right gain curve but not always chooses the right 
one. We can improve the performance of the dual-gain rule 
for these chemicals by individually tuning the conditions to 
detect a weak signal and saturation. Currently, the 
conditions are global to all chemicals for simplicity.  

 4. CONCLUSIONS  
We developed a concentration quantification method for 
VCAM the miniature gas chromatograph mass spectrometer 
instrument to be used to autonomously identify and quantify 
trace organic species in the International Space Station (ISS) 
internal air. The quantification method consists of designing 
a signal quantification scheme (TIC, DIC, LIC), establishing 
a concentration curve (relationship between the 
concentration and the quantified signal), and designing a 
dual-gain switch decision rule that chooses a more reliable 
gain curve to apply for a given signal level.  

For this work, we measured over 1800 elution events 
including over 30 chemicals, 5 different concentration 
values per chemical, and about 5 duplicates for each 
chemical and concentration. About 1100 elution events were 
used to establish a concentration curve, and about 700 
elution events were used to test the quantification method. 
For all chemicals except two chemicals (ethanol and vinyl 
chloride), the concentration curve has a fitting error smaller 
than 40%. We tested the concentration curve and decision 
rule by applying them to new independent test runs. The test 
campaign showed that the concentration quantification 
method leads to an error ranged between 14% and 66% on 
average for all chemicals tested except three chemicals 
(acetaldehyde, perfluoropropane, vinyl chloride). The three 
exceptions show a concentration error larger than 100%, 
which is partly explained by the insensitivity of the ion 
count to the change of concentration.  
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The quantification error budget allowed for VCAM is 40%. 
In order to reduce the error to below 40%, several 
approaches are considered for future work. One approach is 
to tune the instrument hardware gain parameters in order to 
increase the reliability and sensitivity of the ion count to the 
change of concentration. Another approach is to individually 
fine-tune the high-low gain switch decision rule in the 
quantification method for each chemical. Assurance that 
training and test data for concentration curve analysis does 
not contain coelutions would also more correctly isolate 
identified compounds and more accurately represent the 
system’s capability. 

This research was carried out at the Jet Propulsion 
Laboratory, California Institute of Technology, under a 
contract with the National Aeronautics and Space 
Administration.  
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Figure 3 - Concentration curves established with three different ion-count methods (TIC, DIC, LIC) and  

two different fitting methods (non-weighted least square fitting and weighted chi-square fitting). 
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Table 1.  VCAM Priority 1,2,3 species and their desired detection concentration range in ppm. 
 

CCoommppoouunndd  RRaannggee  
((ppppmm))  PPrriioorriittyy  

ethanol 1-10 1 
acetaldehyde 0.1-3 1 

acetone 0.5-5 1 
dichloromethane 0.03-5 1 

methanol 0.2-5 1 
octamethylcyclotetrasiloxane 0.05-1 1 
hexamethylcyclotrisiloxane 0.1-2 1 

propylene glycol 0.5-5 1 
perfluoropropane 10-100 1 

1-butanol 0.5-5 2 
benzene 0.01-1 2 
acrolein 0.01-1 2 
pentane 2-20 2 
hexane 2-20 2 

decamethylcyclopentasiloxane 0.1-2 2 
pentanal 0.1-2 2 
hexanal 0.1-2 2 

ethyl benzene 1-10 2 
ethyl acetate 1-10 2 
2-propanol 1-10 2 

ethylene  (plants) 0.05-1 2 
freon 113 2-10 2 

furan 0.01-1 2 
toluene 1-10 2 

xylenes (3) 1-10 2 
1,2-dichloroethane 0.01-0.1 3 

alkyl amines (2) 0.5-5 3 
2-butanone 0.5-5 3 

4-methyl-2-pentanone 2-10 3 
carbonyl sulfide 0.01-1 3 

chloroform 0.02-1 3 
freon 11 2-10 3 
freon 12 2-10 3 
isoprene 0.05-1 3 
limonene 1-10 3 

trimethylsilanol 0.5-5 3 
vinyl chloride 0.05-1 3 
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Table 2. High-gain concentration curves fitted to Log-Log linear equation for several chemical species. 
 

Chemical Name  Slope (a) Intercept (b) Fitting error (%) 
ethanol 1.74 -8.64 33 

acetaldehyde 1.09 -5.36 14 
acetone 2.52 -13.77 18 

dichloromethane 1.68 -9.13 20 
octamethylcyclotetrasiloxane 2.57 -13.38 24 

perfluoropropane 3.73 -19.36 28 
benzene 1.57 -8.59 18 
pentane 2.94 -16.22 25 
hexane 2.13 -11.58 24 

pentanal 1.44 -7.24 12 
hexanal 3.01 -15.23 30 

ethyl benzene 1.21 -6.05 36 
ethyl acetate 1.71 -9.22 31 
2-propanol 1.7 -9.1 16 
freon 113 2.35 -13.58 4 

furan 1.86 -9.85 9 
toluene 1.44 -7.49 24 
xylenes 1.14 -5.52 37 

1,2-dichloroethane 2.25 -11.56 22 
2-butanone 1.93 -10.25 15 

4-methyl-2-pentanone 1.72 -9.36 24 
chloroform 2.14 -11.59 30 

freon 11 3.55 -20.26 31 
vinyl chloride 5.97 -30.04 88 

octane     
heptanal 2.2 -11.1 34 

average over all chemicals 2.2236 -11.7388 25 
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Table 3. Low-gain concentration curves fitted to Log-Log linear equation for several chemical species. 
 
 

Chemical Name  Slope (a) Intercept (b) Fitting error (%) 
ethanol 3.16 -12.82 70 

acetaldehyde 1.72 -6.24 22 
acetone 1.46 -6.19 17 

dichloromethane 1.46 -6.25 17 
octamethylcyclotetrasiloxane    

perfluoropropane 3.22 -13.12 36 
benzene 1.47 -6.3 13 
pentane 1.68 -7.48 13 
hexane 1.27 -5.42 19 

pentanal    
hexanal 1.91 -7.1 9 

ethyl benzene 1.34 -5.26 11 
ethyl acetate 1.37 -5.9 35 
2-propanol 1.26 -5.25 16 
freon 113 1.07 -4.79 3 

furan    
toluene 1.11 -4.32 23 
xylenes 1.38 -5.17 21 

1,2-dichloroethane    
2-butanone 1.6 -6.62 19 

4-methyl-2-pentanone 1.2 -4.99 19 
chloroform 1.39 -6.03 24 

freon 11 2.04 -9.37 17 
vinyl chloride    

octane 1.16 -4.51 5 
heptanal    

average over all chemicals 1.6135 -6.6565 20 
 



 11 

 

 

 

 

 

 

 

 

Table 4. Concentration estimation error by applying the concentration curves fitted with a training data set to 
a test data set for several chemical species. The estimation error is the difference between the estimated 

concentration and the real concentration relative to the real concentration. The high-gain and low-gain errors 
is the estimation error using the high-gain and low-gain concentration curves, respectively. The dual-gain 

error is given by applying the gain decision rule to determine which gain to use for concentration estimation.  
 

Chemical  high-gain error 
 low-gain 

error  dual-gain error 
                       ethanol 25 185 25 
                  acetaldehyde 494  494 
                       acetone 55 43 45 
               dichloromethane 25 16 24 
  octamethylcyclotetrasiloxane 40  40 
              perfluoropropane 85 112 99 
                       benzene 68 39 66 
                       pentane 109 26 37 
                        hexane 44 39 43 
                      pentanal 23  23 
                       hexanal 40 36 41 
                 ethyl benzene 47 32 27 
                 ethyl acetate 44 36 39 
                    2-propanol 29 35 29 
                     freon 113 59 32 35 
                         furan 32  32 
                       toluene 43 23 41 
                       xylenes 45 33 42 
            1,2-dichloroethane 26  26 
                    2-butanone 14 24 14 
          4-methyl-2-pentanone 37 36 38 
                    chloroform 69 24 53 
                      freon 11 24 26 28 
                vinyl chloride 335  335 
                        octane  39 39 
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