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Terminator Orbits 
• Terminator orbits are a class of 

orbits known to exhibit stable 
behavior when solar radiation 
pressure (SRP) is a significant 
perturbation to the orbit dynamics. 

– Very applicable near small asteroids and 
comets (roughly less than 10 km 
diameter), where gravity and SRP often 
are of equal order of magnitude 
 

• Here, a procedure is applied for 
assessing the long-term stability 
properties of terminator orbits near a 
specific small body of interest. 

– Demonstration here uses a model of asteroid 
6489 Golevka 

– EOM include  effects of solar gravity, solar 
radiation pressure, eccentric small-body orbit, 
arbitrary small-body gravitational potential, and 
arbitrary (but constant) small-body rotation pole. 

• Mission applications 
– Beacon or relay missions 
– Missions that require extended loiter 

or hibernation time 
– Missions concerned about an 

extended “safe”  or planetary 
protection 

– High-precision gravity estimation 
 

• Other applications  
– Indentification of stable dust, impact ejecta, 

and moon orbits 

Geometry of a Terminator Orbit 
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Regular vs. Chaotic Motion 
• Desired characteristics of long-term stable 

orbits 
– Trajectory behavior is robust with respect to 

uncertainty in initial state and system parameters  
– Does not impact the small body 
– Does not escape the small body vicinity 

 
• We develop a procedure for identifying 

such orbits through use of periodic orbit 
and chaoticity analyses. 

– The methodology can also be used to identify other 
types of small-body orbits with similar 
characteristics. 
 

• Chaos in dynamical systems can be 
defined (loosely) as an extreme sensitivity 
to initial conditions. 

– Orbits that evolve very differently for different states 
in the insertion uncertainty ellipsoid are undesirable.  
These are CHAOTIC orbits.  Chaotic orbits have a 
non-zero probability of impacting or escaping the 
small body. 

– It is desirable for the orbits resulting from initial 
uncertainty distribution exhibit behavior similar to 
the target orbit.  Such orbits exhibit REGULAR or 
LONG-TERM STABLE motion. 

Regular Motion Chaotic Motion 

? 
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How do we find regular motion?? 
• Trajectories in an integrable dynamical system, like the 

two-body equations of motion, all exhibit regular motion 
• Perturbing this dynamical system results in chaotic 

dynamics;  however, KAM theory says that regions of 
regular motion may persist in the vicinity of some periodic 
orbits. 

– Perturbations here include solar effects and irregular gravity field 
   Look for regular motion in the vicinity of periodic orbits! 

 
• We hypothesized that long-term stable (i.e., regular) 

motion may be found near periodic terminator orbits in the 
Hill dynamics! 
 

• Step 1:  Identify periodic orbits 
– We look in the autonomous Hill three-body equations of motion (with SRP) 
– These orbits have appropriate timescales for a study of spacecraft 

dynamics. 
 

• Step 2:  Use higher-fidelity dynamical model and measure 
chaoticity of trajectories near the periodic orbits 

– Add an irregular small-body gravity field and an eccentric small-body orbit 
around the Sun. 

– Integrate nearby dynamics and compute the Fast Lyapunov Indicator (FLI) 
measure of chaoticity 
 

• Step 3:  Plot FLI values to distinguish between regular and 
chaotic motion. 

– Gives overview of the available dynamics 
 

High-Fidelity 

Dynamics 
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Periodic Orbits near Golevka 
• A continuous family of periodic terminator 

orbits can be identified in the autonomous 
Hill 3BP with a flat-plate SRP model. 

– Equations parameterized by:  SRP strength 
(depends on s/c mass and area), heliocentric orbit, 
and small-body GM.  

– Family can be parameterized by semi-major axis or 
Jacobi constant 
 

• A numerical differential correction and 
continuation approach of the discrete 
dynamics on a Poincare surface is used to 
find these orbits. 

Periodic Orbits near Golevka 

Periodic Terminator Orbit Elements at Golevka 

Numerically computed initial state     Mean orbit element solution  
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Measuring Chaoticity 
• Chaotic motion is characterized by an exponential divergence of adjacent 

initial states. 
• We can measure the rate of divergence using the Fast Lyapunov Indicator 

• The matrix ψ is a “fundamental matrix” obtained by integrating the 
variational equations. 

– The State Transition Matrix could be used for ψ 
• The FLI is increases monotonically. 

 
• The FLI permits characterization of the dynamics with a finite integration 

interval T 
– In a given interval T, not all chaotic motion will make itself known (e.g., high order 

resonances).  T must be tuned to a duration consistent with the dynamics of interest. 
 

• Other chaoticity indicators include the Maximum Lyapunov Exponent (MLE) 
and the Lyapunov Characteristic Exponent (LCE). 
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Sample Terminator Trajectories 

Regular 
Motion: 

Chaotic 
Motion: 

Escape Less-Regular Impact 
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Anatomy of a Chaoticity Map 
• A “chaoticity map” can be plotted by computing the FLI on a range of initial 

conditions. 
– Here, 2-D maps are created by varying one orbit element for each periodic orbit found. 

 

Regular Motion 
•  Smooth Variation in the FLI 
•  Relatively low FLI values 

Chaotic Motion 
•  Abrupt Variation in the FLI 
•  Relatively large FLI values 

•  Some FLI values off the scale 

Nominally Impacting 
•  Shown in dark blue 

Escaping 
•  Smoothly varying FLI 

value   
•Beyond the escape 

boundary 

Periodic Orbit 
Solutions 

•  Black line through the 
center 

Escape Boundary 
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Study of Terminator Orbits near 
6489 Golevka 

• Our procedure for finding long-term stable terminator orbits can be applied 
to any small body/spacecraft combination.   

– Here, 6489 Golevka has been chosen as an example.  The orbiting spacecraft is 800 kg with 
a 40 m^2 area. 

• A region of regular motion must 
be 6-D!  Regular behavior must 
exist for a given semi-major 
axis in all maps! 
 

• Map characteristics vary with:  
spacecraft mass-to-area ratio, 
integration time, which orbit 
element is varied, small-body 
properties, etc. 
 

• Variations in FLI value due to 
parameter variations can also 
be mapped 
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Comparison with Existing Terminator 
Orbit Analysis Tools 

• This approach to studying the characteristics of terminator orbits is 
complementary to results from the existing analytical tools. 

– Quick search and mission characteristics provided by analytical tools 
– Periodic orbit and chaoticity analysis can provide mission refinement and detail 

for a small body of interest 
 

• Key contributions: 
– Existing methods are general – this method is specific 
– Application of analytical results are limited by inherent assumptions – Domain of 

applicability is very broad for this method 
– Can provide information when analytical assumptions do not apply 
– Provides new information on resonant phenomenon and the extent of the stable 

region of motion 

 
• Nothing is free though…. This method is numerically intensive! 
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Comparison with Analytical Results 
for Golevka 

• Maximum terminator orbit size 
– Using the escape Jacobi energy to 

determine maximum terminator size is 
found to be overly conservative for 
Golevka. 

– Numerically continuing the periodic orbit 
family is found to be an excellent way of 
identifying the maximum terminator orbit 
size. 
 

• Minimum terminator orbit size 
– Guidance of 1.5 times the 1:1 resonance 

did not consider SRP… which can be 
significant for bodies of this size! 

– We find the minimum to vary with time and 
orbit elements.  At best, the minimum size 
is found to be about 3 times the 1:1 
resonance radius. 
 

• Discussion of stability region 
– Linear stability does not give any 

information about the extent of the stable 
region. 

– Chaoticity analysis provides a quantitative 
measure of the size of the domain of stable 
motion around the periodic solution.  

– Further, chaoticity analysis identifies 
terminator orbits that become unstable after 
multiple revolutions around the Sun due to 
resonances. 
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Conclusions 
• A method has been presented for assessing the long-term stability 

characteristics of terminator orbits near small bodies. 
– Periodic orbits are computed numerically to serve as the “backbone” of the stable 

terminator search space. 
– Dynamics for states adjacent to the periodic orbits are characterized using the 

Fast Lyapunov Indicator of chaoticity and compiled in chaoticity maps. 
– Method permits inclusion of the SRP, solar gravity, and irregular small-body 

gravity effects for the specific environment of interest. 
 

• This method of analysis complements existing findings. 
– After general characteristics are given by quick analytical methods, this method 

can help in generating a more detailed trajectory design. 
– This method provides information for situations where assumptions in the 

analytical results do not hold. 
– This method assesses the size of the region of regular/stable motion and 

identifies destabilizing resonances. 
 

• If interested, please attend the presentation of our companion paper 
on Thursday morning!   
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Periodic Orbit Analysis: 
Bifurcations 

• A bit of an aside: 
– Analysis of periodic orbit families allows bifurcating families to be identified. 
– Below is an example of a periodic orbit of a family that bifurcates from the main terminator 

orbit family.  It repeats itself every 4 revolutions around the body. 
– For lack of space, this paper doesn’t cover these orbits as much as we intended.  Description 

and analysis of the stability properties of these results will appear in future work. 
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