Parallelizing Lunar Safe Landing Algorithms on the
Tilera Tile64 Processor

. . PRECISION
Terrain Sensing and CANDING

Ny 1$1i ' FUNCTIONS
&5 Recognition Functions
~ SAFE LANDING
_ Terrain Relative Navigation (TRN) FUNCTIONS
De-Orbit w Reduce Navigation Dispersions During
Coast ' ? Breaking Burn and Eliminate Map Tie Error
Hazard Detection and Avoidance (HDA)
Braking 2o Detect Crater, Rock and Slope Hazards
Burn ‘% and Select a Reachable Safe Site
not to scale Hazard Relative Navigation (HRN)
I Navigate Precisely Relative to
B “i? . Hazards Detected On-Board to
% _'_;__ B Terminal Land at Specified Safe Site
" 3;
g T Descent Ag
’&ALHAT VISIdN : — _ . A

iDevelop and mamf authQmGhs}ﬁnar],a mg : 1 -
sensing-system ﬂii' cre ed cargo»f:&né-t@hoh:’jmmé%dm c es

- System will*be capable of identifyifig and] su?f aza,[: _') ¥,
enable a safe precision landing to wifhin ten > 1e§ AT L .
| LTSN i
designated l'and1@ s1tesw on - the Sho(}_ N _ﬂlghtmg&% :}.'_ ﬁ;.::‘;___ﬂ
conditions. - . o S = S
v !'hh‘“- 5 f'l- e ‘i-""'— - o
< Imaging >
< Radar >
< Lidar >

Mosaic of lidar images generated Safety map sent to AFM for
using gimbal as spacecraft descends selection of safe and reachable site

truth elevation map

mosaic e
- close up of lidar

. samples on a hazard -

HDA algorithm detects slope and
roughness hazards and computes safety map

Elevation map
is constructed
from lidar images

Elevation Map Generation
Project 3D samples into 2D
elevation map

¥ Compute Slope & Roughness

& Compute Hazards

\

Compute Safe Site
Selection

HDA on Tile64

. Prowde data to ALHAT for system optimization studies
« Optimize algorithm towards selected resource utilization.

Challenges:

 Original algorithm is single thread C++

 Original algorithm is memory intensive

* One algorithm component’s 'inner-loop' of FP operations
alone used ~13s on a single Tile64 PE

o Input/Output map types depend on algorithmic needs
2. Where possible perform map operations in-place to reduce
memory footprint and memory bandwidth.

o All maps are only used once so next process can over-
write input with output.
3. Single map in shared memory.
4. Parallelize where possible.

2. Inepte ceraft rjetoto mtch scan times
3. Transform each laser return from sensor to LSLF (Lunar
Surface Local Frame)

4. Interpolate laser measurements into up to 4 map cells, each
cell receiving a different weight and incremental sum.

Challenges
1. 65k laser measurements per 128x128 LIDAR flash scan
2. Output memory access is non-monotonic and potentially
“random”

Digital Eleyation Map

-~ /

64bit Map Cell

22bit Float Cumulative £

32bit Float Cumulative W

Samples Samples placed in shared memory

Defines start and stop addresses in shared memory for each PE and
:i'fvlfapan ; sends parameter message to worker bees, who then iterate
distribute internally on the samples in the shared memory segment assigned
to it

PE[O] PE[1] PE[N]

Rotate/Translate
Generate Weights
Generate Sums
Lock Map

Update Map
Release Map
Loop

|2

Rotate/Translate
Generate Weights
Generate Sums
Lock Map

Update Map
Release Map
Loop

\2

Rotate/Translate
Generate Weights
Generate Sums
Lock Map

Update Map
Release Map
Loop

\!

Barrier

2.Run in place

PE[O]
Working Row =0
Compute Elevation
Row = Row + #of PEs
Loop

PE[1]

Working Row =1
Compute Elevation
Row = Row + #of PEs
Loop

PE[N]

Working Row =n
Compute Elevation
Row = Row + #of PEs
Loop

Barrier

v

Challenges

1. Computing initial distances is 'connected components'
2. Computing initial distances requires forwards backwards
processing

PE[O]
Working Row =
0

Init Label

Row += #of PEs
Loop

PE[1]
Working Row =
1

Init Label

Row += #of PEs
Loop

PE[N]
Working Row =
n

Init Label

Row += #of PEs
Loop

S compute Interpoilation value.

Barrier

PE[0]
Working Row
=0

Fill Hole

Row += #of

PE[1]
Working Row =
1

Fill Hole

Row += #of PEs
Loop

v

PE[0]
Forward
Grassfire
Reverse
Grassfire

v

v

Barrier

!

PEs

PE[N]
Working Row
=n

Fill Hole

Row += #of

Loop

PEs

Barrier

v

Loop

v

PE[O]
Edge cleanup

v

Barrier

v

Slope and Roughness

Procedure
1. Compute slope and roughness over a window W for each valid map cell

Challenges
1. When given all 9 coefficients for each window, just the slope and
roughness math takes > 13 seconds on single PE
o ~100 floating point operations + acos + sqrt + fabs / cell
2. Brute force computation of all 9 coefficients required > W*W*9 floating
point operations

Approach
1. Use 2D sliding sums to reduce coefficients math to ~45 floating point
operations
2. Divide sliding sums among 3 PE's
3. Use shared memory to store coefficients
o Faster than per cell IPC
o Faster and lower latency than end of row IPC
4. Remaining PE's compute slope and roughness via round robin
scheduling

Elevation Map

PE[0] PE[1]
Compute row and Compute row and
Column rolling sum column rolling sums
for coefficients 1-3 for coefficients 4-6
Update row segment Update row segment
status status

PE[2]
Compute Row and
column rolling sums
for coefficients 7-9
Update row segment

status
|

Shared Memory Row Segment status and Coefficients 1-9

[

PE[3]
Col=0

Busy Loop wait
Compute Slope and
roughness from
Coefficients 1-9

Col += #PEs -3
Loop

/

PE[N]

Col = #PEs -3

Busy Loop wait
Compute Slope and
roughness from
Coefficients 1-9

Col += #PEs -3
Loop

Row Barrier

Hazard Detection

Procedure
1. Threshold Slope and Roughness to find hazards

2. Dilate and Erode hazard map

3. Invert hazard map to non-hazard map
4. Label connected non-hazardous regions
5. Measure and mark largest safe region

Challenges
1. Parallelize connected components

Approach

1. Structured map contains 2 16bit Booleans and 32bit area label

2. Parallelize Slope and Roughness thresholding

3. Parallelize Dilate and Erode
o Each PE works on rows where row mod # of PEs = PE
o Results are stored in temp memory until next PE is finished
o IPC used at end of row to release previous PE

4. Parallelize inversion of hazard to non-hazardous

PE[O] PE[1] PE[N]

Working Row =0 Working Row =1 Working Row = n
Process Row Process Row Process Row
Row += #of PEs Row += #of PEs Row += #of PEs
Loop Loop Loop

Barrier

\

Marks pixel as obstacle if slope and roughness threshold exceeded

“No obstacle” map

PE[O] PE[1] PE[N]
Working Row =0 Working Row = 1 Working Row = n
Grow Object Grow Object Grow Object
Send msg to next Send msg to next Send msg to next
Recv msg from prev Recv msg from prev Recv msg from prev

Wait for msg Wait for msg Wait for msg

000
Msg received Msg received Msg received
Update Map Update Map Update Map
Row += #of PEs Row += #of PEs Row += #of PEs
Loop Loop Loop
Barrier

Each PE waits until the next PE is finished before moving to the next Row

Hazard Map

PE[O]

Row =0

Fill in unknown area
Invert Hazard map
Row += #of PEs
Loop

PE[1]

Row =n

Fill in unknown area
Invert Hazard map
Row += #fof PEs
Loop

Barrier

PE[N]

Row =n

Fill in unknown area
Invert Hazard map
Row += #of PEs
Loop

PE[O]
Connected
components blob
labelling

Find biggest blob
Broadcast biggest
blob label

Barrier (wait for biggest blob)

PE[O]

Row =0

Label Safe/Not Safe
Row += #of PEs
Loop

PE[1]
Row=1

Row += #tof PEs
Loop

Label Safe/Not Safe

PE[N]

Row =n

Label Safe/Not Safe
Row += #of PEs
Loop

Barrier

v

Grassfire cycles/s vs. # of
PEs

e e e e e e . e §

» Majority of time is spent in Slope and Roughness calculations

» Adding sample frames to map throughput increase is linear with # of PEs.
* This function has many cache misses due to random memory accesses,
though memory bottlenecking does not seem to be coming into play.

* Most other functions begin diminishing returns at 8-10 PEs.

What didn't work

Message passing call per map cell
o Attempted in Map Accumulate
o Attempted in slope and roughness calculations
o Reason: PE's spent all their time sending or receiving messages.
Software caching of shared memory writes. Re-ordering writes to make
memory access as monotonic as possible to minimize cache misses.
o Tried insert sort, binary trees, address hashing of transformed scan data
in accumulate
o Reason: Time spent in re-ordering writes was equal or greater than
cache miss penalty savings.
8 bit binary operations in dilate, erode and label
o Compare/branch faster than binary operations
o Reason: C standard allows for logical short-circuiting. Logical short circuit
of A||B||C||D||E faster than bitwise A|B|C|D|E, then compare
Cache blocking
o Reordered 'for loops' to make better use of cache sets
o Reason: Enough map lines already fit in cache.

Re-optimize Slope & Roughness from the current 3-5 PE
split to a 4-12 PE split

Parallelize region or grassfire labeling

o Process is a “connected components” type problem and is
difficult to parallelize. Taking lessons from FPGA
Implementations of connected components for ideas.

Combine algorithms to reduce passes through shared

memory

o "Blur the lines” between algorithm steps. Instead of Step
A, B, C, with hard demarcations, work becomes Step A,
A/B, B, B/C, C with fuzzy demarcations.

o Decreases code readability but increases temporal
locality.

Conclusions

1. Shared memory is faster than messaging when PE's are
close enough to memory banks.
o Messaging required explicit IPC calls

2. An |PC call per map cell is very inefficient, spin loop on
shared memory objects performance was better than IPC.

3. Shared memory can be optimized with intelligent arranging of
PEs used. A “square” array of PEs was better than
“rectangular” array due to reduced Manhattan distances
between PEs. The latency for setting up and tearing down a
shared memory access and/or a message passing call is
reduced with shorter distances between PEs

	Slide Number 1
	Terrain Sensing and �Recognition Functions
	Hazard Detection and Avoidance (HDA) overview
	HDA Tasks Sequences
	HDA on Tile64
	HDA
	General Approach
	Accumulate
	Accumulate
	Accumulate
	Average
	Grassfire
	Grassfire
	Slope and Roughness
	Slide Number 15
	Hazard Detection
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Performance Scaling
	Performance Scaling (cont)
	What didn't work
	What Else Can Be Attempted?
	Conclusions

