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Abstract—This paper addresses the issue of cross-polarized 
field components of an array of antennas as compared to that 
of individual elements of the array. For a single antenna, the 
co- and cross-polarization components are completely 
correlated in terms of phase and amplitude in a given 
direction. The co/cross-pol relations vary as a function of 
angular position from peak of the beam, which is important 
when there is pointing error. More specifically, for the 
reflector antennas, this relation might vary as the antenna 
points in different directions in azimuth and elevation, due 
to the changes in gravity profile, wind effects, temperature 
changes, etc., on the surface and feed/sub/main reflector 
alignment. In an array environment, these changes will vary 
among various antennas in the array, and indeed very small 
mechanical and design variations in the antenna elements (in 
terms of feed horns, feed/reflector misalignments, surface 
variations, etc., will contribute to the cross polarization 
variations.  

Here we present a study of the effects of the variation of 
individual antennas on the overall polarization of an array. 
We first provide a general introduction to the polarization 
concept and formulation and then provide the results of a 
statistical study. Ample plots are provided to illustrate the 
effects. We show that the co/cross polarization ratio for the 
array is no higher than the worst of the individual elements 
and indeed is much lower in the majority of cases. This 
study is useful in the general design of large arrays of small 
reflector antennas in many instances and specifically for the 
NASA/JPL Deep Space Network (DSN). 1, 2  
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1. INTRODUCTION 
JPL/NASA has been studying and performing experiments 
in the use of arrays of relatively small reflector antenna of 
the order of a few meters in diameter instead of single large 
antennas of the order of tens of meter which are presently 
used [1-7]. Among many issues of concern, the effects of 
random phase and amplitude errors among the elements and 
their overall effect on the performance of the array can be 
mentioned and has been studied in some detail.  
 
Another issue of concern is the behavior of co- and cross 
polarization components among the various elements of the 
array and the effect of their random variations on the overall 
polarization of the array. For a given element, the co- and 
cross-pol components are completely correlated in terms of 
phase and amplitude in a given direction. The co/cross-pol 
relation varies as a function of angle from peak of the beam 
and around the beam, which is of significance when there is 
pointing error. Also, this relation might vary as the antenna 
points in different directions in azimuth and elevation, due 
to the changes in gravity profile, wind effects, temperature 
changes, etc. and the corresponding changes on the surface 
and alignments. The co-pol might vary only slightly, but due 
to the very low amplitude level of the cross-pol with respect 
to the co-pol, and its sensitivity to minor physical changes, 
the cross-pol may be affected more substantially. 
 
In an array environment, due to the low levels of the cross-
pol with respect to the co-pol, the very small mechanical and 
design variations in each antenna (in terms of feed horns, 
feed/reflector misalignments, and the surface variations, 
etc.) will have relatively larger effects (both in phase and 
amplitude) on the cross-pol than the co-pol components of 
the electromagnetic (EM) field which will vary among 
various antenna elements in the array. 
 
Antennas for deep space communication are usually 
circularly polarized in order to combat the effects of Faraday 
rotations through the ionosphere. In an array environment, if 
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the array elements are separated by large distances (of the 
order of hundreds of meters or more) the Faraday rotation 
might be different for different elements and its impact on 
the array performance might be of significance and requires 
further study. In this paper, however, we assume that the 
array elements are spaced close enough such that the 
Faraday rotation effect is nearly identical for all the 
elements. 
 
As we will show in the following sections, when the co-pol 
components of the array elements are made to align and be 
in-phase, the cross-pol components will have different phase 
and orientations with the overall effect of producing the 
same or a smaller total cross-pol for the array as compared 
to a single element, and in any case, will always be better 
than that of the worst element of the array. 

2. TRANSMISSION OF THE FIELD  
The most useful parameter of the antenna in the transmit 
mode (see Appendices I and II for details) is the electric 
field vector given as 
 

0
2 ˆ ˆ( , ) ( , ) ( , ) ( , ) ( , )

4
tPZE g p E p

r
θ φ θ φ θ φ θ φ θ φ
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= =

 
 
In which r, is the distance from antenna phase center to field 
point, 0 377 ohmZ ≅ is the free space wave impedance, 

( , ) ( , )g Gθ φ θ φ=  is the voltage gain function related to the 

power gain function, and ˆˆ ˆr lp p r p l= +  is Complex unit 
polarization vector written in terms of the Right-handed 
Circular polarization (RCP) and Left-handed Circular 
Polarization (LCP) complex unit vectors, as explained in 
Appendix II. Thus, the complex polarization vector 
completely describes the state of the polarization of the 
field. Ideally, the polarization for ground-to-space 
applications should be either purely RCP or LCP. However, 
due to various errors, particularly at the feeding stage, as 
will be described later, a certain amount of the cross-pol is 
generated which will not be received by a corresponding 
RCP or LCP receiving antenna and becomes a cause of gain 
reduction and/or interference with other receiving systems. 
 
The electric field of the array can then be written as 
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The power density at a given observation point in space can 
be written as 
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Notice that this is the total power density transmitted by the 
array at a given direction. The actual amount absorbed by 
the receiving antenna will be discussed below. 

3. RECEPTION OF THE FIELD 
The most useful parameter of an antenna in the receive 
mode is the “length” vector which is given as 
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is defined as antenna “length” , λ is the wavelength, and Ra 
is the real part of the receiving antenna impedance, 

a a aZ R jX= + . 
 
Then the open circuit voltage at the receiving antenna due to 
an incoming field is given very appropriately by 
 

* *ˆ ˆ( )t r t r t rV E L E L p p= ⋅ = ⋅  
 
and the power delivered to the receiver can be simply 
calculated. For example, the power delivered to a matched 
load impedance l a aZ R jX= −  is given by 
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In which  

2*ˆ ˆ( )p t rp pη = ⋅  

 
is the polarization efficiency. The received power equation 
above is the familiar Friis transmission formula in which the 
polarization properties of the transmitting and receiving 
antennas have also been incorporated. 
 
For a transmitting array impinging on a single receiving 
antenna, the polarization efficiency is found in the following 
manner. Upon expanding the term 
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We obtain 
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4. SOURCES OF POLARIZATION ERROR  
In an antenna designed for producing a perfect circularly 
polarized wave (RCP or LCP), there are always some errors 
that cause the polarization to be slightly elliptic, which is a 
combination of LCP and RCP. The primary error is caused 
at the generating point of the field, e.g., the design variation 
of the feed horn of a reflector antenna. Other elements and 
components of the antenna system such as mirrors, 
frequency selective surfaces (FSS), etc., may also contribute 
to depolarization at later stages before radiation into space. 
 
At the feed level, the RCP field generation is usually 
achieved by combining two linearly polarized sources of 
equal strength which are normal to each other (90° physical 
rotation) and temporally out of phase by 90° as well. The 
error is caused primarily in one of the following three ways:  
 
i) Amplitude error, α: Ratio of the vertical to horizontal 
amplitude is different from unity. 
 
ii) Phase error, δ: Phase between vertical and horizontal 
components is different from 90°.  
 
iii) Angle error, γ: Angle between vertical and horizontal 
components is different from 90°. 
 
These errors are graphically shown in Figure 1. 
 
Additional cross-pol errors in final radiated field are 
introduced due to the geometry of the feed/sub-
reflector(s)/main reflector, as well as support struts for the 
subreflectors. Of course, these errors may not be identical 
across the various elements of the array and will contribute 
to the final discrepancy in the phases and amplitudes of the 
cross-pol components across the array. 
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Fig. 1– Comparing ideal and actual polarization vectors 

5. ARRAY CROSS-POLARIZATION ERRORS 
Now to assess the effects of the cross-polarization errors of 
the array (assuming RCP as co-pol), we write the co- and 
cross-pol components of the array polarization as 
 
1

trj
trn tr

n
p p e

n
φ=∑   and   
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tln tl
n

p p e
n

φ=∑  

 
And that of the receiving antenna as 
 

rrj
rr rrp p e φ=   and   rlj

rl rlp p e φ=  
 
The polarization efficiency can, upon some manipulation, be 
written as 
 

2 2 2 21 2 cos( )p tr rr t r t r xt xrp p X X X Xη φ φ = + + − 

 
 
In which cross-pol ratios and relative phases are defined as 
 

, , ,tl rl
t r tx tr tl rx rr rl

tr rr

p pX X
p p

φ φ φ φ φ φ= = = − = −  

 
The efficiency in general will vary in the minimum and 
maximum range provided by 
  

2 2 2(1 )p tr rr t rp p X Xη = ±  
 
However, in cases that receiving antenna has zero cross-pol, 
prl  = 0, or cross-pol components of the elements of transmit 
array cancel due to the phase variations such that ptl  = 0, the 
above equation will be reduced to the simple expression 
 

2 2
p tr rrp pη =  
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When co-pol components of the elements of the array are 
aligned in phase, we have 
 

trn trn
tr

p p
p

n n
= ≈∑ ∑  and ln lnp p

n n
≤∑ ∑  

 
These formulas indicate that due to very small values of 
cross-pol for all elements, the co-pols are nearly identical 
and magnitude of the array co-pol component is the average 
of the co-pol magnitudes of all array elements, and the 
magnitude of the cross-pol of the array is in general less than 
the average of the magnitudes of all individual elements.  
 
In the event of pointing misalignment of one or more 
elements, the individual cross-pols of the elements will vary 
but the above observations are still valid. The total co-pol 
component, however, might become slightly less which is 
the pointing error loss of the array. 
 
It should also be noted that the reduction of the cross-pol at 
a given receiving point does not imply a power transfer into 
the co-pol component or a gain increase. However, it does 
imply less interference into non-target antennas which 
operate at opposite polarization. The actual received power 
into the desired target antenna, however, depends on its 
polarization properties as discussed above. 

6. NUMERICAL EXAMPLES 
At this point we provide a number of examples to illustrate 
the effects of the polarization errors and the change in the 
array cross polarization due to the variations of that of the 
individual elements of the array. 

1- Role of amplitude and phase variations on Cross 
Polarization. Figures 2(a, b) show the plots of the RCP and 
LCP components when there are amplitude errors in the two 
linear components as stated in Section 4. It can be observed 
that due to an amplitude error ratio such that the vertical 
components is twice the horizontal component or vice versa, 
we get an elliptically polarized field. Similarly, in Figures 
3(a, b) the effect of phase error between the two linear 
components (ellipticity and tilt) are clearly observed. Similar 
results have been obtained due to angular tilt of the two 
linear components.  

Notice that in all figures, the total polarization is shown by 
green ellipses, the co-pol by blue circles, the unwanted 
cross-pol by red circles, and finally dashed black circles 
represents the ideal circular polarization cases. 

 

Fig. 2a– Depolarization due to amplitude ratio error=0.5 

 

Fig. 2b- Depolarization due to amplitude ratio error=2 

 

Fig. 3a - Depolarization due to phase error (45° vs 90°) 
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Fig. 3b - Depolarization due to phase error (135° vs 90°) 

2- We present the reduction of cross-pol in a two-element 
array in Figures 4(a, b, c). One element has a phase error of  
 -20° (70° between the vertical and horizontal components 
instead of the ideal 90°) and the other an error of +10° (100° 
instead of the ideal 90°). The reduction of the unwanted 
cross-pol is quite evident in this case. Similar results have 
been obtained for other errors but will not be presented here. 

3- Next, the case of a 10-element array is considered. 
Assuming that the cross-pol phase errors among the 
elements obey a Gaussian distribution with an rms = 20°, the 
results for the array polarization are shown in  
Figure 5. The reduction in cross pol can be clearly seen. 
Similar results are obtained for amplitude and angle errors. 
As a final example we show the case with rms errors of 20° 
for both the phase as well as the rotation angle errors in the 
10 element array. Figure 6 shows the results which indicate 
even more reduction in the cross-pol level of the array. 

 

Fig. 4a – Polarization for 1st element with -20° phase 
error 

 

Fig. 4b – Polarization for 2nd element with +10° phase 
error 

 

Fig. 4c – Polarization for the array of the 2 elements 

 
Phase = 90 + 20°rms: 74.61, 97.43, 85.49, 112.35, 68.22, 
90.65, 101.05, 112.01, 120.88, 91.72 
 
Fig. 5 – Polarization of a 10-element array with elements 
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of random phase errors with 20° rms 
 

 
Phase = 90 + 20°rms  = 60.17, 75.15, 68.77, 137.01, 77.69, 
104.96, 86.15, 107.77, 74.70, 61.95 
Angle = 90 + 20°rms = 74.61, 97.43, 85.49, 112.35, 68.22, 
90.65, 101.05, 112.01, 120.88, 91.72 
 
Fig. 6 – Polarization of a 10-element array with elements 
of random phase and angle errors, both with 20° rms. 

7. SUMMARY AND CONCLUSIONS 
In this paper, we have presented a systematic formulation of 
the cross polarization problem for the individual antennas as 
well as arrays of such antennas. We have established bounds 
for the errors of the array cross polarization in terms of the 
individual element errors. Have identified and formulated 
the source of some the errors and finally have provided 
specific numerical examples for single antennas as well as 
arrays, which help in establishing bounds on the required 
errors for the elements of the arrays. 
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APPENDIX I. ANTENNA TRANSMISSION AND 
RECEPTION OF ARBITRARILY POLARIZED PLANE 

WAVES 
Here we present a useful summary of the reception of an 
arbitrarily polarized plane wave by an antenna of a given 
polarization. A detailed account of the various aspects of 
this subject may be found in references [8-13]. 

An antenna can be essentially and completely characterized 
by three parameters: 

1- Impedance, aZ  

2- Gain function ( , )G θ φ  

3- Polarization Vector function ˆ ( , )p θ φ  

We briefly describe each of these three parameters. 

Antenna impedance basically characterizes its matching 
compatibility with the propagation medium on the one hand 
and with the receiver or transmitter circuitry on the other 
hand. It is given as  

 a a aZ R jX= +  

In which aR and aX  are the resistive and reactive 
components of the impedance. The resistance can also be 
decomposed as 

 a rad lossR R jX= +  

In which radR is the radiation resistance, and lossR  
represents the ohmic and other internal antenna losses. 

The power gain function, ( , )G θ φ [or voltage gain 

function ( , ) ( , )g Gθ φ θ φ= ], represents the antenna’s 
ability to transmit or receive in different directions and is a 
real positive function, such that 

 
2

0 0

( , )sin( ) 4G d d
p p

θ φ θ θ φ p=∫ ∫  

Finally, polarization vector is a complex unit vector function 
which describes both time (phase) and space (polarization) 
properties of the antenna in different directions. A useful 
description of this important vector is given in Appendix II.  

The most useful parameter of the antenna in transmit mode 
is the electric field vector, which in terms of the above three 
parameters and the total transmitted power, tP , is given as: 

0
2 ˆ ˆ( , ) ( , ) ( , ) ( , ) ( , )

4
tPZE g p E p

r
θ φ θ φ θ φ θ φ θ φ

p
= = , 

and  0
2( , ) ( , )

4
tPZE g

r
θ φ θ φ

p
= , 

in which 0 377 ohmZ ≅ , is the free space wave 
impedance, and r is the distance from the antenna to the 
point at which the field is observed. 

The most useful parameter of the antenna in the receive 
mode is the “length” vector which is given as 

0

ˆ ˆ( , ) ( , ) ( , ) ( , ) ( , )aRL g p L p
Z

θ φ λ θ φ θ φ θ φ θ φ
p

= =  

and  
0

( , ) ( , )aRL g
Z

θ φ λ θ φ
p

= , 

in which /c fλ = (with c the speed of light and f the 

frequency), is the wavelength, and aR is the antenna 
resistance. 

Then the open circuit voltage at the receiving antenna due to 
an incoming field tE is given very appropriately by 

 * *ˆ ˆ( )t r t r t rV E L E L p p= ⋅ = ⋅  

The power delivered to the receiver can then be simply 
calculated. For example, the power delivered to a matched 
load l a aZ R jX= − is given by 

 
2 2

2

( )
4 4 (4 / )

t r t t r
r p p

a a

V E L PG GP
R R r

η η
p λ

= = =  

In which pη is the polarization efficiency defined as 

 
2*ˆ ˆ( )p t rp pη = ⋅  

The power equation above is the familiar Friis transmission 
formula in which the polarization properties of the transmit 
and receive antennas have also been incorporated. 
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For completeness, it should be mentioned that, in general, 
under different matching conditions, the received power can 
be written as 

2 2
2 2

2

( )
4 4 (4 / )

m m t r t t r
r p m p

a a

k k E L PG GP V k
R R r

η η
p λ

= = =  

In which km is a matching constant less than unity. 

APPENDIX II. DEFINITION OF POLARIZATION 
VECTOR 

Polarization vector is a complex unit vector function which 
describes both time (phase) and space (polarization) 
properties of the electromagnetic field in different 
directions. 

Referring to Figure A.1, an incident plane wave with a 
coherent polarization is, in general, elliptically polarized and 
can be considered as a combination of two orthogonal linear 
wave components in the plane normal to the direction of 
propagation (e.g., x and y directed or horizontal, h and 
vertical, v) wave components given as 

 ˆˆ ˆh vp p h p v= +  

 In which ĥ  and v̂  are orthogonal unit vectors in 
the horizontal (parallel to the ground) or “vertical” (in the 
plane of incidence) directions. The incident wave can be 
equally decomposed into a pair of right-hand circularly 
polarized (RCP) and left-hand circularly polarized (RCP) 
components with respect to the direction of the propagation 
and given as 

ˆˆ ˆr lp p r p l= +  

In which r̂ and l̂ are complex unit vectors which are 
related to the horizontal and vertical real unit vectors by 

1 ˆˆ ˆ( )
2

r h jv= − , 
1ˆ ˆ ˆ( )
2

l h jv= +  

The inverse relations are also given as 

1ˆ ˆˆ( )
2

h r l= + , ˆˆ ˆ( )
2
jv r l= −  

in which 1j = − .  

Notice that complex vectors which have a hybrid nature 
(being both time phase vectors and space vectors), must be 

dealt with proper care. In particular, the inner product of the 
complex vectors u  and v is defined as *.u v in which * 
designates complex conjugation and affects the complex 
scalar components of the vector v . Thus we have 

* *ˆ ˆˆ ˆ 1r r l l⋅ = ⋅ =  

and  * *ˆ ˆˆ ˆ 0r l l r⋅ = ⋅ =  

(For a complete and comprehensive discussion of circularly 
polarized waves and complex vectors, Reference [13] is 
suggested.) 

The linear x or horizontal unit vector ĥ represents an 
oscillating field along the horizontal (x) axis, while the 
linear y or vertical unit vector v̂ represents an oscillating 
field along the vertical axis. The RCP unit vector 
r̂ represents a unit vector rotating in the positive 
(counterclockwise) direction, while the LCP unit vector 

l̂ represents a unit vector rotating in the negative 
(clockwise) direction. 

Now, in view of the above definitions, the circular right- and 
left-polarized components of the plane wave can be related 
to its linear (horizontal and vertical) components by  

1 ( )
2r h vp p jp= + , 

1 ( )
2l h vp p jp= −  

And conversely, 

1 ( )
2h r lp p p= + , ( )

2v r l
jp p p= − −  

In time domain we have 

2( ) Re( e )j t
x xp t p p= , 2( ) Re( e )j t

y yp t p p=  

These last two can be used for the actual calculation of the 
field values in time. For clarity, graphic representations of 
the RCP and LCP field behavior in space-time coordinates 
are given in Figures A.2 and A.3, respectively. 
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