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Abstract—This paper introduces a new algorithm
for probabilistic motion planning in arbitrary, un-
certain vector fields, with emphasis on high-level
planning for Montgolfieré balloons in the atmosphere
of Titan. The goal of the algorithm is to determine
what altitude—and what horizontal actuation, if any
is available on the vehicle—to use to reach a goal
location in the fastest expected time. The winds can
vary greatly at different altitudes and are strong
relative to any feasible horizontal actuation, so the
incorporation of the winds is critical for guidance
plans. This paper focuses on how to integrate the
uncertainty of the wind field into the wind model and
how to reach a goal location through the uncertain
wind field, using a Markov decision process (MDP).
The resulting probabilistic solutions enable more
robust guidance plans and more thorough analysis
of potential paths than existing methods.

I. INTRODUCTION

This report presents a new method for 3D motion
planning of Montgolfieré (hot air) balloons using
wind models for time-efficient paths. The method
was developed for studying how exploration bal-
loons (perhaps with some modest horizontal thrust
capability) may be used in the atmosphere of Titan,
a moon of Saturn, with an emphasis on goal-based
traversals. Since wind velocities dominate over the
buoyant vehicle’s own actuation in this scenario,
using forecast models of the wind field surround-
ing the moon is critical to effective planning. In
practical applications, however, the actual wind
vector field is not known exactly and may deviate
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significantly from the wind velocities estimated by
the model. To address this issue, our technique
explicitly incorporates wind uncertainty into the
planning algorithm.

Our algorithm is designed for high-level planning
over large scale traversals, resulting in a policy
that provides the desired actuation choice for ev-
ery location. More fundamentally, this algorithm
was also designed to enable mission trade studies,
providing expected traversal times (and measures
of the corresponding risk) for a range of vehicle
actuation types and limits, insertion points, goal
locations, etc. Because of these goals, we ignore
balloon dynamics in the current implementation.
The algorithm may be useful in other atmospheres,
including Earth, Mars, Venus and the gas giants,
and perhaps for any buoyant vehicles operating in
strong vector fields, such as underwater vehicles in
ocean currents.

Two types of vehicle actuation capability are con-
sidered: vertical-only and vertical-and-horizontal.
Vertical actuation changes the vehicle’s buoyancy
to exploit winds at different altitudes. Horizontal
actuation is incorporated as additive velocity and is
presumed weak compared to wind velocity (i.e., the
wind fields are strong).

This report builds on earlier work by the au-
thors [1]–[3], who previously reported determin-
istic, graph-based solutions to the same problem.
Other previous approaches in path planning both
for balloons [4], [5] and for the related problem
of autonomous underwater vehicles (AUVs) in cur-
rent fields [6]–[11] typically suffer from strong
assumptions on the surrounding vector field. To our
knowledge, ours is the first solution that meaning-



fully acknowledges the uncertainty of the vector
field, thus providing a more robust solution and
one useful in evaluating variability risk. Further,
our method accepts arbitrary, 3D, even time-varying
vector fields from the forecast model, rather than
requiring analytical (even constant or linear) vector
fields.

To prepare the motion planning problem, we
first model the uncertainty in the wind field. Then
we formulate the problem of reaching a particular
goal location as a Markov decision process (MDP),
using a discretized space approach. Solving the
MDP provides a policy of what actuation option
(how much buoyancy change and, if applicable,
horizontal actuation) should be selected at any
given location to minimize the expected time-to-
goal. The results also provide expected time-to-goal
values from any given location on the globe.

Below, we describe the problem setup in Sect. II
and describe our approach in Sect. III. Finally,
Sect. IV provides algorithm results for different
goal locations and actuation models. The material
in Sect. II and Sect. III-A follows closely from [2],
with modifications for the probabilistic approach.

II. PROBLEM SETUP

Let the vehicle’s position be denoted by r ,
[x y z]T , where x is in degrees longitude, y is
in degrees latitude, and z is altitude from the
surface of the planet. The wind velocity is de-
fined in a Cartesian coordinate frame fixed to
the local surface tangent such that w(r, t) ,
[wx(r, t)wy(r, t)wz(r, t)]T , where wx, wy, and wz
are the velocities in the easterly, northerly and
vertically upwards directions, respectively.

We can simplify the problem using a partial
decoupling of the Montgolfieré dynamics, based on
the following assumptions: (1) The altitude of the
balloon is fully controllable, subject to maximum
rise and sink rates, denoted vrise and vsink, respec-
tively. This assumption comes from the observation
that the vertical control authority of the vehicle is
large compared to the vertical winds predicted by
the global circulation models of [12], and leads
to ignoring the effects of vertical winds. (2) The
unactuated horizontal velocity of the Montgolfieré
is equal to the local wind velocity. This assumption
comes originally from [4], and means that, in the
horizontal plane, we need only consider the local

wind velocity and not any other thermal or dynamic
state of the Montgolfieré.

We consider the case that the vehicle may have
horizontal actuators that can generate additional ve-
locity u(t) with respect to the air. Let uhmax denote
the maximum achievable horizontal actuation.

III. APPROACH

A. Spatial Discretization and Transitions

We choose to discretize space using a grid, where
adjacent nodes are separated by ∆x in longitude,
∆y in latitude, and ∆z in altitude. Consider for
now the time-invariant problem, such that the wind
provided by the model, denoted w̄, is fixed at some
T for all t, i.e., w̄(r, t) = w̄(r, T ).

The decoupling described in Section II enables
us to consider the discretization of the three-
dimensional search space first in the horizontal
plane, and then in the vertical plane. We also
discretize the horizontal actuation into nh vectors
that are different in magnitude and/or direction.
Transitions are modeled as follows. Let ri represent
the vehicle position at state si, where each state
designates a spatial cell in the grid. For every
state si, the local wind w(ri, t) is selected at
each visit from a probability distribution (the wind
model and uncertainty is discussed in Sect. III-C).
After selecting the desired horizontal actuation, the
Montgolfieré velocity from state si can be written
as:

vi =
dri
dt

= w(ri, t) + u(si), (1)

which, like w, is defined on the tangent plane. The
horizontal plane is considered first. We discretize
the direction of the Montgolfieré velocity in the
horizontal plane into one of eight segments, as
shown in Figure 1. Which of these segments the
resulting vector vi “points to” determines the cell to
which the vehicle will transition, which we denote
sj . By assuming that the wind is constant in the
interval until the next cell is reached, the time taken
to travel from si to sj is given by:

δti =
dist(ri, rj)
||vi||

. (2)

Here, dist(·, ·) is a function that returns the carte-
sian distance between two points in a spherical
coordinate frame.





Fig. 2. Wind uncertainty model and horizontal transition
probabilities. This example uses a mean wind direction θ̄i =
7◦, with κ = 1

400
(closely corresponding to Gaussian with

σ ≈ 1√
κ

= 20◦); mean wind magnitude wi = 0.54m
s

, with
ρ = 0.2 (so that σi = ρwi = 0.11). The figure includes
a scatter plot of samples drawn from the wind distribution
(top left); polar plot of probabilities of transitioning to each
horizontally adjacent cell (top right); distribution of the wind
direction (middle), and bar plot of probability of horizontal
transitions (bottom).

rewards R from resultant vector for each action,
described as follows and illustrated by example in
Fig. 2. First, a set Θ0 of N sample points are
drawn from the von Mises distribution fVM(θ|0, κ)
and a set W0 of N samples from the standard
normal distribution. (This step is required only
once, whereas the following steps must be done by
iterating for each state si.) Second, we adjust these
samples for the state si. The wind direction samples
are rotated by θ̄i, Θi = Θ0 + θ̄i, and the wind
magnitude samples are adjusted by Wi = σiW0+w̄i
(pardoning the abuse of notation—each sample in
Θ0 and W0 is adjusted individually). Third, we cal-
culate the resultant velocity samples by converting
the random wind samples to Cartesian coordinates
and adding the horizontal actuation:

Vi,a = Wi

[
cos Θi

sin Θi

]
+ ua, (6)

where again the operations involving Wi and Θi

are performed element-wise.
Once we have the resultant samples Vi,a =

{vni,a}Nn=1, we can calculate the transition proba-
bilities P , which are simply made by counting the
samples in each circular sector corresponding to sj :

Pa(si, sj) =
1
N
|Vij,a|, (7)

where | · | represents cardinality and:

Vij,a =
{

vni,a | ∠vni,a ∈ [θij , θij +
π

4
)
}
. (8)

E. Action Space and Rewards

Travel time is used as a transition cost between
states. Note that we do not know the resultant ve-
locity exactly but that we seek the expected reward
for the MDP. We estimate the expected value of the
velocity magnitude as the population mean of the
above Monte Carlo samples:

〈vi,a〉 =
1
N

N∑
n=1

∥∥vni,a∥∥. (9)

The expected immediate reward for the transition
from si to sj under action a is then:

Ra(si, sj) = −dist(ri, rj)
〈vi,a〉

. (10)

Note also that the travel time is identical for all ac-
tions a that have the same horizontal actuation (i.e.,
travel time is not dependent on altitude choice).

Finally, let us more formally define our set of
available actions, A. In the case that horizontal
actuation is considered, this action are chosen from

Ah = {0, uhmaxû1, uhmaxû2, ..., uhmaxûM} ,

where ûm is the unit vector pointing in each of the
M directions allowed. M and the corresponding
directions ûm are chosen by the user as part of the
problem setup; for example, we typically allow ac-
tuation in the direction of each horizontally adjacent
cell and thus M = 8.

The vertical actuation options Av are governed
by the time of travel to the next horizontal cell
and the maximum rise and sink rates. However,
the travel time is a priori unknown—not only
is the wind velocity uncertain, but the distance
traveled dist(ri, rj) is also uncertain because sj
is unknown. Here we again rely on the expected
value of the travel time, this time across all adjacent



horizontal cells. Let Si denote the set of cells
horizontally adjacent to si. Then, given a starting
state si and a horizontal action choice ah ∈ Ah, the
expected travel time is

δ̂ti,ah ≡ E
[

dij
〈vi,ah〉

| si, ah ∈ Ah
]

=
∑
j∈Si

Pah(si, sj) ·Rah(si, sj). (11)

Then δ̂ti,ah is used to determine the minimum and
maximum altitude levels and a vertical actuation
option assigned for each level in between. Defin-
ing the vertical “levels” {k1, k2, ...knz} at altitudes
{z1, z2, ...znz}, each separated in altitude by dis-
tance ∆z, we can define Av for every starting cell
and every horizontal action:

Avi,ah = {kj | zi−vrise δ̂ti,ah ≤ zj ≤ zi+vsink δ̂ti,ah}.

Finally, the action space at every cell is defined as
the combination of horizontal and allowable vertical
actions:

Ai = {ah, av | ah ∈ Ah, av ∈ Avi,ah}. (12)

F. Solving for Minimum Time-to-Goal

To complete the problem setup, we define a goal
location for the Montgolfieré and create a sink state
sg at this location, from which all transitions are
set to have probability zero. Thus, the cumulative
reward will decrease with every transition until
the vehicle reaches the goal location sg. Given
this setup, the MDP solution will determine, for
each given current state si, what is the optimal
immediate action a ∈ Ai so that the expected
cumulative time-to-goal is minimal. This collection
of actions is referred to as the optimal policy π∗.

An undiscounted (γ = 0) MDP solution method
is appropriate because we are interested in the cu-
mulative time elapsed from start to goal. Then, the
total expected reward of a state si (value of si under
policy π∗) V ∗(si) indicates the expected value of
the travel time from a given state si to the goal state.
The value V ∗(si) thus provides the information
needed to evaluate which starting states are most
preferable across the globe. In our implementation,
π∗ and V ∗ were found by a standard value iteration
approach [13].

G. Adjustments for Time-Varying Winds

Although the above description focuses on time-
invariant wind models, extending the solution to
time-varying wind models is relatively straightfor-
ward, with adjustments necessary in two areas: the
definitions of the states S (and their transitions)
and the enforcement of terminal conditions. Be-
low, we first describe our approach for the fully
time-varying solution and then propose a hybrid
approach that is more computationally manageable.

1) Fully Time-Varying Wind Model: For the
fully time-varying case, we extend the set of states
S to include not only global locations but also time,
so that si defines a particular (xi, yi, zi, ti), and
select a time step ∆t and maximum number of time
steps nt. Thus, a transition will include an increase
in the number of time steps equal to

[
Ra(si,sj)

∆t

]
,

where [·] indicates rounding to nearest integer.
This inclusion of time-variance complicates the

terminal conditions. First, presuming we have no
restriction on what time we must reach the goal
location, we create multiple sink states, {si |
(xi, yi, zi) = (xg, yg, zg)}, to represent the position
of the goal over all time steps. Second, we must de-
fine what happens when a transition would exceed
the maximum time nt∆t—We create an additional
“penalty” terminal state sp and send transitions
that would exceed the time limit to sp with an
arbitrarily large cost (negative reward). Thus, the
optimal policy will attempt to avoid exceeding the
maximum time and drive the vehicle towards the
goal location in time.

2) Diurnally Cyclical Wind Model: While the
fully time-varying method provides a valuable
framework, multiplying the number of position
states by nt may result in computationally pro-
hibitive MDP for a desired spatiotemporal reso-
lution. An effective simplification is possible by
noticing that the wind models are often highly
cyclical, with wind patterns similar every day for
many consecutive days. For example, on Titan, this
approach assumes that the largest effects of interest
are due to solar heating and tidal influences, which
are synchronized since Titan’s orbital period about
Saturn is identical to its rotational period.

To set up the cyclical MDP, we simply wrap the
states S so that the time dimension now represents
“time of day” (for the celestial body of interest)



(a) No horizontal actuation (uhmax = 0)

(b) With horizontal actuation (uhmax = 1[m/s])

Fig. 3. Expected time-to-goal plots using optimal MDP pollcy
for a goal location at −15◦ N, −100◦ E (labeled ‘G’) , with
and without horizontal actuation. Color indicates the expected
time to reach the goal from each cell (in Earth days; note
different scales on each subplot). A cross section at an altitude
of 1000 m is shown.

rather than absolute time. As a result, there is
no maximum time limit. Terminal conditions are
set to be all states whose position matches the
goal location, as before. This hybrid approach can
be the best compromise between computation /
memory limitations and the desire to capture the
time complexity of the winds.

IV. RESULTS

We applied the above approach to simulations
of a Montgolfieré balloon in the atmosphere of
Titan. Nominal wind field values were taken from a
wind field model [12], with uncertainty values κ =
0.0025 for direction and ρ = 0.20 for magnitude.
The MDP was solved via value iteration until the
maximum change in value over all states changes
less than ε = 1 [Earth day] between iterations.

A. Stationary Wind Model

Figure 3 displays the expected time-to-goal
(AKA time-to-go) of the vehicle from anywhere on
the Titan globe, equivalent to the “value” V (si) of
each state when the optimal policy π∗ is employed.

(a) uhmax = 0[m/s], sample path 1

(b) uhmax = 0[m/s], sample path 2

(c) uhmax = 1[m/s], sample path 1

(d) uhmax = 1[m/s], sample path 2
Fig. 4. Possible paths for goal location 68◦ N, 50◦ E
and start location 20◦ N, 0◦ E, with and without horizontal
actuation. The paths shown represent random samples of the
transition probabilities generated along the optimal policy. The
size of the circles along the path increases with time to show
the progress of the vehicle, while the color inside the circle
indicates vehicle altitude. Note that paths in subplots (a) and
(b) involve wrapping the globe.

For each plot, the time-to-goal at only one horizon-
tal slice (at z = 1000m) is shown. Using such plots,
our method demonstrates its utility, for example, in
quantifying how horizontal actuation changes the
“reachability” of the goal location.

Figure 4 shows example vehicles paths super-
imposed on reachability plots for a different goal
location. The path is randomly generated from a
manually selected starting location, following the
optimal policy π∗, and moving according to the
state transition probabilities P . Note that since the
transitions are uncertain, visiting the same location
multiple times might result in different transitions,
as happens in the unactuated case. The motion
planning algorithm guides the vehicle to the goal,
despite the uncertainty of the path and transitions.

B. Diurnally Cyclical Wind Model

Figure 5 provides the time-to-goal plots using
a cyclical time wind field model for an actuated
vehicle. When compared to the time-invariant ver-
sions, the time-varying results generally show a



Fig. 5. Time-to-goal plots with cyclically time-varying wind
fields and uhmax = 1[m/s]. The superimposed white arrows
represent the wind velocity vectors—there exist four vectors at
each location, showing the winds at four evenly-spaced times
throughout the Titan day.

Fig. 6. Histogram of time-to-goal durations, showing the dis-
tribution of sample path times under varying vehicle horizontal
actuation capabilities.

shorter time-to-goal. Presumably, the vehicle can
take advantage of shifting winds and be less likely
to “get stuck” in areas that have small magnitude
winds during part of the day.

As noted for Fig. 4, paths generated using the
optimal policy π∗ are subject to probabilities P
and therefore uncertain. Figure 6 gives a sense of
the distribution of the time taken over these paths.
For this analysis, N = 1000 paths are generated
from a selected starting location to the goal location
under π∗, for each of four different horizontal
actuation limits (uhmax = {0, 0.25, 0.5, 1.0}[m/s]).
One can see that the times can vary dramatically,
especially as the horizontal control authority of
the vehicle decreases. Thus, our MDP approach
is useful in assessing variability and risk across
different scenarios.

V. CONCLUSION

We have presented a new method for 3D motion
planning of Montgolfieré balloons that incorporates
the uncertainty of surrounding wind fields to plan
robust, time-efficient paths. We have demonstrated

this method for planning vehicle paths in the at-
mosphere of Titan for varying horizontal actuation
limits and both a stationary wind model and a time-
varying (cyclical) model. Our stochastic approach
can provide insights not accessible by deterministic
methods; for example, one can evaluate variability
and risk associated with different scenarios, rather
than only viewing the expected outcome.
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