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Abstract— Multirate (decimation/interpolation) filters are
among the essential signal processing components in space-
borne instruments where Finite Impulse Response (FIR) fil-
ters are often used to minimize nonlinear group delay and
finite-precision effects. Cascaded (multi-stage) designs of
Multi-Rate FIR (MRFIR) filters are further used for large rate
change ratio, in order to lower the required throughput while
simultaneously achieving comparable or better performance
than single-stage designs. Traditional representation and im-
plementation of MRFIR employ polyphase decomposition of
the original filter structure, whose main purpose is to com-
pute only the needed output at the lowest possible sampling
rate. In this paper, an alternative representation and imple-
mentation technique, called TD-MRFIR (Thread Decompo-
sition MRFIR), is presented. The basic idea is to decom-
pose MRFIR into output computational threads, in contrast
to a structural decomposition of the original filter as done
in the polyphase decomposition. Each thread represents an
instance of the finite convolution required to produce a sin-
gle output of the MRFIR. The filter is thus viewed as a fi-
nite collection of concurrent threads. The technical details of
TD-MRFIR will be explained, first showing its applicability
to the implementation of downsampling, upsampling, and re-
sampling FIR filters, and then describing a general strategy
to optimally allocate the number of filter taps. A particu-
lar FPGA design of multi-stage TD-MRFIR for the L-band
radar of NASA’s SMAP (Soil Moisture Active Passive) in-
strument is demonstrated; and its implementation results in
several targeted FPGA devices are summarized in terms of
the functional (bit width, fixed-point error) and performance
(time closure, resource usage, and power estimation) param-
eters.
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1. INTRODUCTION

Multi-rate Finite Impulse Response (MRFIR) filters are ubiq-
uitous in today’s Digital Signal Processing (DSP) applica-
tions, which can be found on many space-borne instruments.
Traditionally, the amount of real-time on-board processing
had been limited by the low logic densities of the space-
qualified logic devices. In past decade, with the availability of
high-density and radiation-tolerant Field Programmable Gate
Arrays (FPGAs), reliable and high-order filter designs had
become an increasingly common part of real-time on-board
data processor.

Most of past research ([1], [2], [3], [4]) have been focusing
on the theoretical design aspects of MRFIR filters, such as
the optimal filter length and impulse response. Some work
in ([5], [6]) have touched on the issues regarding the VLSI
(Very Large Scale Integrated Circuit) implementation of par-
ticular MRFIR designs. Nevertheless, there has been a lit-
tle research on the general strategies of implementing arbi-
trary MRFIR designs at the Register Transfer Level (RTL).
In this paper, we introduce a general implementation strategy
of arbitrary MRFIR filters that can help achieve the minimum
number of multipliers. The novelty of this approach is that it
transforms a MRFIR filter design into static scheduling prob-
lems through an alternative view of the filter, called Thread
Decomposition (TD).

The main assumption of TD-MRFIR is that highly recon-
figurable MRFIR designs require use of arbitrary multipli-
ers, and that multiplier implementations are either highly
resource-demanding or bound by the number of embedded
multipliers on the target VLSI device. Thus the main objec-
tive of the TD-MRFIR is to reduce the total multipliers count
by facilitating time-multiplexing where possible.
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The rest of the paper is organized as follows: Before intro-
ducing the concept of TD, the basic concepts of MRFIR and
the traditional way of viewing it as Polyphase Decomposition
are presented in Section 2, as well as why Polyphase Decom-
position cannot always provide insight to the most efficient
implementation. Section 3 explains how the alternative TD
view can fill in the efficiency gap for the three general types
of MRFIR filters, and how an optimal implementation can
be derived by solving the static scheduling problem. Sec-
tion 4 describes in detail some FPGA-related implementation
issues. Section 5 presents both theoretical and empirical com-
parison between TD and polyphase FIR implementations. A
case study of applying the TD-MRFIR methodology to the
Soil Moisture Active Passive (SMAP) L-band radar instru-
ment digital filter design is given in Section 6. Conclusions
are drawn in Section 7 instrument pre-Phase-A study.

2. MULTI-RATE FIR BASICS

A Finite Impulse Response (FIR) filter with a length of N
taps, input samples x(n), output samples y(n), and coeffi-
cients h(n) can be expressed by the following finite convolu-
tion:

y(n) =
N−1∑
k=0

h(k) ∗ x(n− k). (1)

An upsampling of factor L is achieved by inserting L − 1
zeros between each input samples:

y(n) =
{

x( n
L ) if L divides n;

0 otherwise. (2)

A downsampling of factor M is achieved by taking every M
of the input samples:

y(n) = x(Mn). (3)

A Multi-Rate FIR (MRFIR) is the combination of an FIR with
an upsampling stage and/or a downsampling stage. Figure 1
shows a block diagram of generalized MRFIR.
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Figure 1. Generalized Multi-Rate FIR Block Diagram

An MRFIR with only a downsampling stage (M 6= L = 1)
is a Decimation Filter. Similarly, an MRFIR with only an
upsampling stage (L 6= M = 1) is an Interpolation Filter. Fi-
nally, a Resampling Filter has both the upsampling and down-
sampling stages to achieve a fractional rate change.

Polyphase Decomposition

A naive implementation of a decimation filter consisting of a
full FIR followed by a downsampling stage is very inefficient,
as most of the computations performed by the FIR stage are
thrown away by the downsampling stage. In fact, only 1

M of
the total computations are useful.

Polyphase Decomposition provides an alternative view of
decimation filters, where the downsampling occurs before
the FIR stage, and the outputs are viewed as the sum of M
sub-filters with length of N

M taps. This approach leads to a
more efficient filter design, producing the same results with
no wasted computations. Figure 2 is a textbook ([7]) example
of the Polyphase Decomposition with the delayed inputs.

Figure 2. Delayed Input Polyphase Decomposition ([7])

A straightforward implementation of Figure 2 yields three in-
dependent filters, and the total number of multipliers is still
N if each multiplier runs at one third the input rate. In some
cases this is necessary, since the multipliers might not be
able to run at the input rate. However, in many cases, e.g.
in the later stages of a multi-stage filter bank, the input rate
is low enough such that multipliers can be time-multiplexed
(shared).

There are two basic ways that multipliers running at faster
rates can be shared in the Polyphase Decomposition model.
One way is to share multipliers within each sub-filter. The
other way is to time-multiplex the individual sub-filters. Us-
ing only the first approach, the minimum number of multipli-
ers is M , since each sub-filter must have at least one multi-
plier. Using the second approach alone, the minimum number
of multipliers is the size of each sub-filter N

M . One can even
combine the two ways to further reduce the total number of
multipliers to one (this is requires running the multipliers run-
ning at N times faster than the input rate).

However, in the most common cases, the ratio between the
fastest sustainable multiplier rate and the input rate is smaller
than N but larger than 1. Using the same example from
Figure 2, suppose that the input rate is 30MHz, N = 21,
M = 3, and the multipliers can run at 120MHz, it is not
obvious how to derive an implementation using less than 3
multipliers (the minimum is 2 multipliers as explained in Sec-
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tion 3). In general, the Polyphase Decomposition model of an
MRFIR provides no insight on how to efficiently share mul-
tipliers when the optimal number of multipliers is between 1
and MIN(M, N

M ).

3. THREAD DECOMPOSITION

Instead of continuing the sub-filter analogy, Thread Decom-
position (TD) approaches the MRFIR implementation prob-
lem by examining the necessary computations for each out-
put, and transforming them to a static scheduling problem.
Each of the MRFIR valid output is considered as the result
of a computational thread, whose only goal is to compute a
finite convolution using inputs x(n−N−1) to x(n). The con-
straints of the scheduling problem are the number of available
multipliers and the fact that all threads must complete. Since
each thread has a fixed run time, and new threads are always
spawned in a periodic fashion, solving this static scheduling
problem is rather straightforward. To see why this approach
leads to the most efficient implementation, we first state the
underlying assumptions, followed by a derivation of the min-
imum number of multipliers.

Assumptions

• All coefficients are arbitrary.
• All inputs are arbitrary.
• A single clock domain at the highest multiplier rate.
• No input/output buffering, i.e. real-time streaming filter.
• The objective is to minimize the total multiplier count.

Note that exploiting symmetry and zeros in the impulse re-
sponse are not difficult using TD, but the basic assumption of
arbitrary coefficients makes the demonstration convenient.

Minimum Number of Multipliers

To derive the minimum number of arbitrary multipliers, first
note that the number of unique multiplications per output
sample is N . The uniqueness of the multiplications are guar-
anteed by the fact that all inputs and coefficients are arbitrary.

Define the input sample rate as fin, output sample rate as
fout = fin

M , and the highest multiplier clock rate as fmult.
The number of multipliers Nmult must satisfy the output
throughput requirement foutN :

Nmult ∗ fmult ≥ foutN (4)

Nmult ≥ foutN

fmult
(5)

min(Nmult) = d fout

fmult
Ne (6)

= d finN

fmultM
e (7)

Notice that there is no factor L in this derivation. This is

because the nature of upsampling (inserting zeros) creates
no additional computation requirements on the MRFIR. This
point will be further demonstrated by the Thread Decompo-
sition Diagrams of the interpolation filters.

Thread Decomposition Diagrams

To see how an implementation with min(Nmult) can be
achieved, Thread Decomposition Diagrams can be used to il-
lustrate the static scheduling problem. A TD diagram shows
a snapshot of the concurrently running threads, each repre-
senting a finite impulse convolution that produces an output
value. Each thread begins when the first input sample is avail-
able, and finishes when the output is computed. For example,
a simple N -tap filter with no rate change (M=L=1), N con-
current computation threads are active at any time.

The simple filter example (N = 5) is illustrated in Table 1.
Each input x is multiplied with the corresponding coefficient
h in the same column, and accumulated with the previous
multiplication in the same thread. For convenience, the time
scale is chosen to be 1

fin
. Notice that when fmult = fin, the

number of concurrent threads is exactly the minimum number
of multipliers.

Table 1. TD Diagram for N = 5, M = L = 1

x0 x1 x2 x3 x4 x5 x6 x7 x8
Thread 0 h4 h3 h2 h1 h0
Thread 1 h4 h3 h2 h1 h0
Thread 2 h4 h3 h2 h1 h0
Thread 3 h4 h3 h2 h1 h0
Thread 4 h4 h3 h2 h1 h0
Outputs y0 y1 y2 y3 y4

Now suppose the multipliers can run at twice the input rate,
then the minimum number of multipliers is 3. A straightfor-
ward solution of the multiplier scheduling can be obtained by
dividing the active portions of each column into three parts,
with two multipliers active at every clock cycle, and the third
multiplier active every other clock cycle. The control logic of
such scheduling algorithm can be implemented using a sim-
ple counter.

Decimation Filters—TD diagrams can be constructed for dec-
imation filters in a similar fashion. Table 2 shows the TD di-
agram for M = 2 and N = 6. Notice that the number of
concurrent threads is N

M = 3. Again, the multiplier require-
ment is also 3 when fin = fmult.

Now suppose the multipliers can run at twice the input rate,
then the multiplier requirement is reduced to 2. To solve the
multiplier scheduling problem, one only need to divide each
column by 2 using a simple counter logic.

Interpolating Filters—An interpolating filter inserts L−1 ze-
ros between every input samples. The TD diagram can be
derived in a similar fashion. The only difference is that the
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Table 2. TD Diagram for N = 6, M = 2, L = 1

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9
Thread 0 h5 h4 h3 h2 h1 h0
Thread 1 h5 h4 h3 h2 h1 h0
Thread 2 h5 h4 h3 h2 h1 h0
Outputs y0 y1 y2

columns whose inputs are zero need not to be computed. Ta-
ble 3 shows the diagram for L = 2 and N = 4. Although the
zero-columns can be effectively deleted, they are shown here
for illustration purpose.

Notice that unlike decimation filters, the interpolation fil-
ters do not change the multiplier requirement. This point is
demonstrated by the fact that only a single column per input
time requires real computation, hence the number of multipli-
cations performed per input time is still equal to the number
of concurrent threads in the diagram.

Table 3. TD Diagram for N = 4, M = 1, L = 2

time0 time1 time2 time3
x0 0 x1 0 x2 0 x3 0

Thread 0 h3 h2 h1 h0
Thread 1 h3 h2 h1 h0
Thread 2 h3 h2 h1 h0
Thread 3 h3 h2 h1 h0
Outputs y0 y1 y2 y3

To solve the multiplier scheduling problem when fin <
fmult, one simply needs to divide each non-zero column by
fmult

fin
.

Re-Sampling FIR—The re-sampling FIR is a combination of
the decimation filter and the interpolation filter to achieve a
fractional rate change (3/2, 2/3, etc). The TD diagram of such
a filter can derived from Table 3 and Table 2 with some minor
tweaking of the time scale.

When fmult Is Not Divisible by fin

So far, all the discussions have an hidden assumption, that fin

divides fmult. When such is not the case, a sensible approach
is to lower fmult to f ′mult such that it is divisible by fin. This
approach yields minimum number of multipliers for f ′mult in-
stead of fmult, but does not require additional rate-changing
logic.

Optimality of Thread Decomposition

TD’s optimality refers to the fact that it yields implementa-
tions that facilitates the highest level of multiplier sharing,
or lowest number of multipliers. This can be shown by first
observing that the number of concurrent threads in a TD di-
agram is exactly N

M . Secondly, the solution to the multiplier
scheduling problem is given by dividing the active portion of

Table 4. SMAP Pre-Phase-A Filter Stages

Stage fin MCA N/M Nmult

1 240MHz 0.25 12/4 12

2 60MHz 1 15/5 3

3 12MHz 5 25/5 1

4 2.4 25 50/2 1

each column by the factor fmult

fin
, where the height of the ac-

tive portion is the number of concurrent threads. Finally, no-
tice that the minimum required number of multipliers, given
in Equation 7, is essentially

N
M

fmult
fin

.

Multiplier Clock Advantage

The term fmult

fin
can also be understood as the Multiplier

Clock Advantage (MCA) of the filter implementation. For a
filter design with fixed N

M ratio, the faster the multiplier runs
relative to the input rate, the fewer multipliers are required.
On the other hand, the concept of MCA still applies even in
the cases of fmult < fin, where fmult

fin
< 1 and the total

number of multipliers is more than N
M . This particular case

is demonstrated in the first stage filter of the SMAP radar in-
strument pre-phase-A study (see Section 6), where the input
rate is four times the multiplier rate.

The MCA also has an implication for the multi-stage deci-
mation filter designs. In a multi-stage decimation filter, the
data rate is successively reduced through each of the decima-
tion filter. Assuming that the entire design runs in a single
clock domain, the MCA becomes greater with every stage in
the data flow. This suggests that an implementation-friendly
multi-stage design should allocate more filter taps to the later
stages, where the high MCA helps reduce the total multiplier
count. An example from the SMAP Pre-Phase-A study (Fig-
ure 5) is given in Table 4.

4. FPGA IMPLEMENTATION

Although the TD model uses the notion of threads and
scheduling, the RTL implementation of an MRFIR con-
sists only multipliers, accumulators, multiplexers, coefficient
banks, and counter logic. This section provides discussion
on some of the FPGA-specific issues when implementing an
MRFIR.

Coefficient Banks

Coefficient banks store the constant coefficients for the arbi-
trary multipliers. There are multiple ways to create coefficient
banks, but some are more efficient on FPGA platforms as they
take advantage of the underlying FPGA fabrics. In this paper,
we describe two approaches: SRAM look-up tables (LUT),
and rotating coefficient banks (RCB).
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SRAM Look-up Tables—SRAM look-up tables utilize internal
SRAM in the FPGA fabric to store the coefficients, and can be
directly inferred from HDL source codes. For SRAM-based
FPGA platforms, the approach is especially useful, since the
LUT can be synthesized to utilize the Configuration RAM
(CRAM). For larger LUTs, embedded block RAM (BRAM)
can be utilized.

In addition to lowering register (flip-flop) usage, SRAM-
based LUTs also have an advantage when Single-Event Up-
set (SEU) mitigation is considered. Scrubbing of the FPGA
CRAM is a frequently used technique to remove SEU effects
on the FPGA, and the contents of the CRAM-based LUTs are
automatically scrubbed with the entire FPGA. The BRAM-
based LUTs can also be scrubbed with the entire FPGA in
theory. However, this requires the scrubbing logic to selec-
tively scrub only the BRAM blocks used for LUTs, since
BRAM blocks are often used as data buffers (and should not
be scrubbed).

SRAM-based LUTs have a key disadvantage: each LUT
serves up to two multipliers only, since most SRAM blocks
have only two read ports. Nevertheless, this issue can be mit-
igated by breaking up coefficient banks and storing only the
necessary coefficients for the multipliers served by the LUT.
For example, for a 16-tap filter with 4 shared multipliers, each
multiplier only need to access 4 of the 16 coefficients, hence
each LUT only needs to store 8 instead of 16 coefficients.

The following is an example of the SRAM LUT inference in
Verilog:

parameter e0 = ’habcd;
parameter e1 = ’hcdef;
...
parameter eE = ’hdead;

always @ (posedge clk or negedge arst_n)
if (arst_n!==1’b1)

coe[15:0] <= 16’d0;
else case (coe_cnt[3:0])

4’b0000: coe[15:0] <= e0;
4’b0001: coe[15:0] <= e1;
4’b0010: coe[15:0] <= e2;
...

4’b1110: coe[15:0] <= eE;
default: coe[15:0] <= eE;

endcase

Rotating Coefficient Banks— A Rotating Coefficient Bank
(RCB) utilizes register resources to store the coefficients. A
key difference between RCB and other coefficient storage is
that the coefficients are not static in RCB; they are rotated
(shifted to the next coefficient register) upon every valid in-
put to the filter. By rotating the coefficients by a fixed amount,
the multiplier no longer needs a multiplexer to choose which
coefficient to use.

Another advantage of the RCB is that some FPGA platforms
offer register cells with built-in Triple Modular Redundancy
(TMR). Combined with the rotating nature of the RCB, the
coefficients are always protected against SEU, and single-bit
errors are automatically corrected upon the next valid input.

Finally, the RCB has no fan-out limit, as each coefficient en-
try may be accessed by more than one multiplier during each
clock period. The only down-side of the RCB is the high reg-
ister usage. The following is an example written in Verilog:

always @ (posedge clk or negedge arst_n)
if (arst_n!==1’b1)
begin

eff0[15:0] <= e0;
eff1[15:0] <= e1;
eff2[15:0] <= e2;
...
effB[15:0] <= eB;

end
else if (inValid)
begin

eff0[15:0] <= eff1[15:0];
eff1[15:0] <= eff2[15:0];
eff2[15:0] <= eff3[15:0];
...
effB[15:0] <= eff0[15:0];

end

One-Hot Multiplexers

While the use of SRAM LUT or RCB eliminates the need for
the multiplexers that feed coefficient values to the multiplier,
multiplexers are still required to feed the accumulators and
the final output stage. For SRAM-based FPGAs, the nature of
LUT-based logic synthesis could often result in sub-optimal
implementation of large multiplexers. One way to mitigate
the large multiplexer issue is to use one-hot enable signals to
implement the multiplexer. The one-hot enable signals are
logically ANDed with the inputs, then ORed together to pro-
duce the result:

assign SigOut[31:0] =
(accum1[31:0] & {32{valid1}}) |
(accum2[31:0] & {32{valid2}}) |
(accum3[31:0] & {32{valid3}}) |
(accum4[31:0] & {32{valid4}}) ;

When implemented with 4-input LUTs alone, the above 32-
bit 4:1 multiplexer requires only 64 LUT cells. On the other
hand, the same multiplexer using binary selectors would re-
quire 96 LUT cells.

Design and Verification Flow

The TD-MRFIR technique is an RTL-oriented approach to
allow the most control over the final VLSI implementation.

5



Figure 3. DSP-RTL Design Flow

Hence the design and verification flow follows that of a typi-
cal RTL-based flow: RTL design, functional simulation, logic
synthesis, place-n-route, etc. To interface with a typical DSP
design flow from a high-level language such as Matlab, bit-
true fixed-point models proves very useful in a system-level
simulation. In addition, very often the floating-point golden
models used by algorithm designers have subtle phase differ-
ences when compared to the RTL designs. To reconcile the
phase differences between the golden model and RTL design,
sometimes it is necessary to construct a floating-point model
of the RTL design.

Figure 3 shows the complete design and verification flow. The
floating-point RTL model is compared against the floating-
point golden model to determine whether all phase differ-
ences are resolved. The fixed-point RTL model is compared
to the floating-point models to assess the level of quantiza-
tion errors. Finally, the result of the functional simulation
must match that of the fixed-point model bit-by-bit.

5. COMPARISON BETWEEN TD AND NON-TD
APPROACHES

In this section, we attempt to show the advantages of the
TD approach over polyphase decomposition by comparing
benchmarks such as resoure utilization. An analytical com-
parison based on theoretical limits of multiplier sharing is
presented first, followed by experimental results.

Limits of Multiplier Sharing

As mentioned in Section 2, multi-rate filters inspired by
polyphase decomposition share multipliers either within each
sub-filter, or by time-multiplexing the sub-filter. Neither ap-
proach is absolutely superior than the other. For the sake of
simplicity, only the first approach is compared against TD-
FIR.

Figure 4 shows the relationship between the theoretic limits
of the multiplier count and increasing MCA ( fmult

fin
) for three

approaches: polyphase FIR, TD-FIR, and plain FIR without
multiplier sharing. The y-axis represents the number of mul-
tipliers. The x-axis represents MCA. For obvious reasons the

1

M

N/M

N

1 N/M

N
m

ul
t

MCA (fmult/fin)

Polyphase FIR
TD-FIR

Plain FIR

Figure 4. Multiplier Count vs. Multiplier Clock Advantage
(MCA)

plain FIR’s multiplier count is not affected by the MCA. The
polyphase FIR cannot have less than M number of multipli-
ers, since each sub-fitler must have at least 1 multiplier. On
the other hand, TD-FIR always has an absolute limit of 1 mul-
tiplier. Both TD and polyphase approach their absolute limit
when MCA= N

M as a function of x−1. In theory, Figure 4
shows that TD-FIR is always better at sharing multipliers than
polyphase FIR.

Testing Methodology

To measure the comparative advantage of TD-FIR over
polyphase decomposition, a performance test is devised. The
test is conducted by implementing three different FIR design
samples in both TD-FIR and polyphase decomposition. The
performance measurements include resource usage numbers
such multiplier and flip-flop count, as well as dynamic power.

The three FIR design samples are taken from the pre-Phase-A
study of Soil Moisture Active Passive (SMAP) L-Band Radar
Digital Filter (see Section 6). The first filter is N= 15, M= 5.
The second filter is N= 25, M= 5. The third filter is N=
50,M= 2.

The TD-FIR implementations are performed by hand-coding
based on TD diagrams of each filter. The polyphase im-
plementations are performed by an automated HDL gener-
ator software called Xilinx AccelDSP. The AccelDSP con-
verts high-level descriptions of FIR designs (in Matlab lan-
guage) to Verilog/VHDL descriptions, which can then by
synthesized like the hand-coded designs. Both the TD-FIR
and polyphase implementations are synthesized and place-n-
routed by the same Xilinx tool-flow. The tool-flow target is
Xilinx VirtexII-3000.

The term comparative advantage is used to emphasize the fact
that results are normalized by the maximum throughput rate
of the filter implementation. The reason for the normalization
is because different implementations of the same FIR design
can often differ in the fmult

fin
ratio, making direct comparisons
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of resource usage and dynamic power difficult. By dividing
each number by the throughput (input) rate of each imple-
mentation, architectural differences are removed. For exam-
ple, an FIR implementation that uses 10 multipliers and can
stream at a maximum input rate of 10MHz has a normalized
multiplier usage of 10/10 = 1 multiplier/MHz.

Results

The results of performance test are presented in Tables 5,6,
and 7. Both the absolute and normalized numbers are pre-
sented. The term LUTs refers to the number of 4-input Look-
Up Tables (LUTs, the basic logic elements of Xilinx Virtex
FPGAs). The normalized resource and power consumption
indicate an obvious comparative advantage of TD-FIR over
polyphase FIR implementations in all aspects.

Table 5. TD vs. Polyphase (N=15,M=5)

Parameters TD-FIR Polyphase
Input Rate 167MHz 100.3MHz
Multipliers 3 5
Flip-Flops 259 529

LUTs 264 329
Dynamic Power 22mW 22mW

Normalized MHz−1

Multipliers 0.02 0.05
Flip-Flops 1.55 5.27

LUTs 1.58 3.28
Dynamic Power 0.13mW 0.22mW

Table 6. TD vs. Polyphase (N=25,M=5)

Parameters TD-FIR Polyphase
Input Rate 34MHz 32MHz
Multipliers 1 5
Flip-Flops 241 1063

LUTs 244 896
Dynamic Power 16mW 30mW

Normalized MHz−1

Multipliers 0.03 0.16
Flip-Flops 7.09 33.22

LUTs 7.18 28
Dynamic Power 0.47mW 0.94mW

6. APPLICATION

A Reusable IP Core in the ISAAC framework

The TD-MRFIR IP core described in the previous sections
has been implemented as a reusable and parameterizable
IP core in the ISAAC [8] framework. ISAAC (Instrument
ShAred Artifact for Computing) is a technology currently un-
der development at JPL. It is aimed to provide a highly ca-
pable, highly reusable, modular, and integrated FPGA-based
common instrument control and computing platform that can
be shared by multiple Earth Science and Planetary Explo-

Table 7. TD vs. Polyphase (N=50,M=2)

Parameters TD-FIR Polyphase
Input Rate 6.4MHz 3.8MHz
Multipliers 1 2
Flip-Flops 856 1035

LUTs 1086 661
Dynamic Power 37mW 26mW

Normalized MHz−1

Multipliers 0.16 0.53
Flip-Flops 133.75 272.37

LUTs 169.69 173.95
Dynamic Power 5.78mW 6.84mW

ration instruments. Please refer to [8] for more details on
ISAAC.

Soil Moisture Active Passive (SMAP) L-Band Radar Digital
Filter

The TD-MRFIR technique has been successfully applied and
demonstrated in the pre-Phase-A design of SMAP L-Band
radar on-board processor’s 240MHz 4-stage decimation fil-
ter. This multi-stage filter accepts 4x60MHz (de-muxed from
240MHz) digital input data, and successively filters and dec-
imates the data rate to 1.2MHz. The four decimation stages
are illustrated in Figure 5 (taken from [9]). The internal mul-
tipliers of all four stages run at a single clock rate of 60MHz.

The implemented FPGA target contains 3 complex filters to
resolve three 1MHz sub-bands within a 5MHz bandwidth.
To implement all three complex filters, a Quadrature De-
modulation stage is used for each sub-band, and the multi-
stage filter is instantiated six times. For detailed algorithmic
discussions, please refer to [10].

Figure 5. SMAP Digital Processor Filter Design ([9])

1st Stage: N = 12, M = 4, L = 1

The first stage of the filter is a 12-tap filter with the decimation
factor of 4. This filter is the only stage where fmult < fin.
Since the input data rate is four times of the multiplier clock,
the input is de-multiplexed to 4 simultaneous streams before
entering the filter. The output of this filter is 60MHz digital
data. Table 8 shows TD diagram in the multiplier time scale
(60MHz), where three concurrent threads are running. How-
ever, since the multipliers are running at 1

4 of the input rate
(60MHz), the minimum number of multipliers is greater than
the ratio N/M (Equation 7 yields 12 multipliers).

For every clock period, there are 4 parallel inputs into the
filter (time clk0 has inputs x0, x1, x2, and x3). These inputs
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must each be multiplied by a coefficient concurrently.

To derive a solution to the multiplier scheduling problem, one

must consider the active portions of 4 adjacent columns (e.g.

clk2) at a time. The solution is that 12 arbitrary multipliers are

needed to compute the 12 unique multiplications per clock

period.

2nd Stage: N = 15, M = 5, L = 1

The second stage is a 15-tap filter with a decimation factor of

5 and input rate of 60MHz. With fmult = fin, Equation 7

yields that the minimum number of multipliers is 3. Schedul-

ing of the multipliers is straightforward from the TD diagram

Table 9. The output of this stage is 12MHz digital data.

3rd Stage: N = 25, M = 5, L = 1

The third stage is a 25-tap filter with a decimation factor of 5

and input rate of 12MHz. Due to a large MCA (60/12 = 5),

this stage only needs a single multiplier.

Table 10 shows the TD diagram of the 3rd stage filter with the

input time scale (each column is 5 multiplier clock periods).

Since the number of concurrent threads is 5, a single multi-

plier running every clock cycle can perform all the required

multiplications.

4th Stage: N = 50, M = 2, L = 1

The fourth and last stage is a 50-tap with a decimation factor

of 2 and input rate of 2.4MHz. Again the high MCA allows

for a single multiplier to be shared by 25 concurrent threads.

Due to the large size, the TD diagram will not be shown in

this paper.

Functional Verification

The filter design is simulated using synthetic radar data in-

puts, and the result of the RTL functional simulation is com-

pared to a Matlab floating-point simulation. The relative er-

rors are presented in Figure 6 with all three sub-bands. Ad-

ditional verifications based on meaningful radar performance

parameters can be found in [10].

Resource Usage

The resource usage for the 240MHz design is listed in ta-

ble 11. The XQR2V series is a flight-qualified FPGA part

based on the Xilinx Virtex-2 FPGA architecture. The XC5V

series is a commercial-grade FPGA based on the Xilinx

Virtex-5 FPGA architecture. The resource usage includes

all 6 instances of the multi-stage filters and 3 quadrature de-

modulators.

Timing

The timing goal of the pre-Phase A design is to study the

feasibility of running a 60MHz fully contained in a Virtex2

series FPGA. The final design is timed by the Xilinx-provided

Figure 6. RTL Simulation vs. Floating-Point

Table 11. SMAP 240MHz Design Resource Usage

FPGA XC5VFX130T-1 XQR2V3000-4
Used/Total % Used/Total %

# Mult 68/120 57% 68/96 71%

# Slices 3,864/20,480 19% 8,278/14,336 58%

# Flip Flops 9,887/81,920 12% 9,680/28,672 33%

# 4-input LUTs 11,199/81,920 13% 14,064/28,672 49%

tools to run at up to 85.4MHz on a XQR2V3000-4, and up to

120MHz on the commercial XC5VFX130T-1.

Power Consumption

Power consumption estimation was made using Xilinx

XPower tool with industrial temperature range. Again this

includes all six instances of the filters.

Table 12. SMAP 240MHz Design Power Consumption

Estimation

FPGA XC5VFX130T-1 XQR2V3000-4
Dynamic 0.10W 0.89W

Quiescent 1.78W 0.38W

Total 1.88W 1.26W

7. CONCLUSIONS

In this paper we have presented a systematic and general strat-

egy to implement a wide variety of Multi-rate FIR designs.

We have also showed that the strategy yield results with the

minimum number of multipliers when the inputs and coeffi-

cients are arbitrary. A case study of application for imple-

mentation of digital filter design in meeting the requirements

of SMAP pre-Phase-A design is also given.
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Table 8. TD Diagram for 1st Stage SMAP Filter

clk0 clk1 clk2 clk3 clk4
x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19

Thrd 0 h11 h10 h9 h8 h7 h6 h5 h4 h3 h2 h1 h0
Thrd 1 h11 h10 h9 h8 h7 h6 h5 h4 h3 h2 h1 h0
Thrd 2 h11 h10 h9 h8 h7 h6 h5 h4 h3 h2 h1 h0
Outputs y0 y1 y2

Table 9. TD Diagram for 2nd Stage SMAP Filter

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24
Thrd 0 h14 h13 h12 h11 h10 h9 h8 h7 h6 h5 h4 h3 h2 h1 h0
Thrd 1 h14 h13 h12 h11 h10 h9 h8 h7 h6 h5 h4 h3 h2 h1 h0
Thrd 2 h14 h13 h12 h11 h10 h9 h8 h7 h6 h5 h4 h3 h2 h1 h0
Outputs y0 y1 y2

Table 10. TD Diagram for 3rd Stage SMAP Filter

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 x25 x26 x27 x28 x29
Thrd 0 h24h23h22h21h20h19h18h17 h16h15h14h13h12 h11h10 h9 h8 h7 h6 h5 h4 h3 h2 h1 h0
Thrd 1 h24h23h22 h21h20h19h18h17 h16h15h14h13h12 h11h10 h9 h8 h7 h6 h5 h4 h3 h2 h1 h0
Thrd 2 h24h23h22 h21h20h19h18h17 h16h15h14h13h12 h11h10 h9 h8 h7 h6 h5
Thrd 3 h24h23h22 h21h20h19h18h17 h16h15h14h13h12 h11h10
Thrd 4 h24h23h22 h21h20h19h18h17 h16h15
Outputs y0 y1
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