
Driving ATHLETE: Analysis of Operational Efficiency
 Julie Townsend, David Mittman

Jet Propulsion Laboratory, California Institute of Technology
4800 Oak Grove Dr.
Pasadena, CA 91109

818-393-4713, 818-393-0037
julie.a.townsend@jpl.nasa.gov, david.s.mittman@jpl.nasa.gov

Abstract—The All-Terrain Hex-Limbed Extra-Terrestrial
Explorer (ATHLETE) is a modular mobility and manipulation
platform being developed to support NASA operations in a
variety of missions, including exploration of planetary
surfaces. The agile system consists of a symmetrical
arrangement of six limbs, each with seven articulated degrees
of freedom and a powered wheel. This design enables transport
of bulky payloads over a wide range of terrain and is
envisioned as a tool to mobilize habitats, power-generation
equipment, and other supplies for long-range exploration and
outpost construction. In FY2010, ATHLETE traversed more
than 80 km in field environments over eight weeks of testing,
demonstrating that the concept is well suited to long-range
travel. Although ATHLETE is designed to travel at speeds of
up to 5 kilometers per hour, the observed average traverse rate
during field-testing rarely exceeded 1.5 kilometers per hour.
This paper investigates sources of inefficiency in ATHLETE
traverse operations and identifies targets for improvement of
overall traverse rate.

TABLE OF CONTENTS
1. INTRODUCTION ... 1
2. TRAVERSE OPERATIONS 2
3. ANALYSIS OF INEFFICIENCY 4
4. CONCLUSIONS ... 7
ACKNOWLEDGEMENTS ... 7
REFERENCES ... 8
BIOGRAPHIES .. 8

1. INTRODUCTION

The All-Terrain, Hex-Limbed, Extra-Terrestrial Explorer
(ATHLETE) is a multi-functional mobility and
manipulation concept envisioned to support NASA
activities in a variety of space environments. ATHLETE is a
flexible robotic system consisting of a hexagonal platform
supported by six articulated robotic limbs, each of which
can terminate in a wheel for mobility on planetary surfaces
or a variety of tools for operations in low-gravity
environments.

When configured for surface mobility, with a wheel on the
end of each articulated limb, ATHLETE can negotiate a
wide range of planetary surfaces. On benign terrain, the
wheels enable driving to efficiently cover long distances.
When the surface is too soft, steep, or rough for driving, the
limbs are used for walking, permitting extraction from

embedding and mobility progress through areas impassable
to most wheeled rovers.

To demonstrate the ATHLETE concept, the Jet Propulsion
Laboratory (JPL) has designed and constructed several
prototype vehicles, referred to as Software Development
Models (SDM). The primary platform for traverse
demonstrations is the second-generation ATHLETE
prototype, built in 2009 and referred to as SDM-T12. [1, 2]

SDM-T12 consists of a pair of triangular three-limbed
platforms called Tri-ATHLETEs which, when joined by a
cargo pallet, form the hexagonal six-limbed system shown
in Figure 1. Sized to perform demonstrations at
approximately ½ lunar scale, it stands to a maximum height
of just over 4 m and carries a payload of up to 450 kg in
Earth gravity. Each limb has 7 degrees of freedom (DOF),
six for precise positioning and one redundant pitch actuator
to enable each limb to stow compactly.

Figure 1 - ATHLETE prototype carrying a microhab
simulated cargo element during traverse testing at Black
Point Lava Flow, AZ, September 2010.

Over the course of eight weeks in August and September
2010, the long-range traverse capabilities of the ATHLETE
prototype were demonstrated. ATHLETE traversed over
80 km through desert and lava flow terrain, meeting and
exceeding traverse milestones. However, analysis of
traverse data showed that the average traverse rate was
significantly slower than ATHLETE’s typical ground speed
during traverse, suggesting inefficiencies in traverse
operations. [3] The sections that follow investigate the

 978-1-4577-0557-1/12/$26.00 ©2012 IEEE
 1

sources of these inefficiencies and identify potential
remedies to improve traverse rates.

2. TRAVERSE OPERATIONS
While ATHLETE’s traverse performance at Black Point
Lava Flow (BPLF) exceeded the milestone targets for both
overall distance and distance traveled per day, analysis of
traverse data revealed that ATHLETE’s traverse capabilities
were not optimally exercised. Traverse rates averaged over
each day ranged from 1 kph to 1.5 kph. Although this rate
met the milestone requirement, it is remarkably slow when
compared to ATHLETE’s instantaneous ground speeds
during traverse. Over 70% of the distance traveled by
ATHLETE was traversed at speeds between 1.5 kph and
3 kph. This discrepancy suggests inefficiency in traverse
operations. Further analysis revealed that ATHLETE
stopped frequently during traverse, spending no less than
30% of traverse time, and typically more than 40%, sitting
idle. [3]

Figure 2 – The Operator Control Workstation provides
the displays and controls required to remotely operate
the ATHLETE rover.

In the field, ATHLETE traversed in one of two operational
modes, either under control of a remote operator sitting at a
workstation in the base camp or under control of a local
operator walking alongside the vehicle.

Traversing under Remote Operator Control

When controlling ATHLETE from a remote location, the
operator communicates with ATHLETE through a radio
link, but has no direct visual contact with the vehicle. An
operations safety officer accompanies the robot with a
safety kill switch, but voice communication between the
remote operator and the safety officer may or may not be
present. The remote operator’s workstation, shown in
Figure 2, may be located at the field site or another remote

location and is composed of a general-purpose computer
workstation with multiple displays used for tracking the
performance of the vehicle. The robot acquires stereo
images of its environment and those images are displayed to
the remote operator as an aid in determining the distance to
obstacles and general environmental conditions. Remote
operators drive the vehicle through the direct input of
textual commands or through a variety of directional input
devices such as joysticks. In response to predictions of
improved vehicle reliability and performance in 2010, the
operations team developed a simplified driving joystick
based upon the Nintendo Wii Nunchuk Controller, which
can be operated with one hand. The Controller features a
joystick for directional control, roll-axis control for turning
and a dead-man style kill switch.

Figure 3 – The robot-mounted Portable Operations
(PortOps) Laptop and local operator’s PortOps
Handheld provide a complete operations system
independent of the field-deployable operations facility
situated at base camp.

Because of the long traverses planned during the 2010 field
test, the operations team was not guaranteed to have a
working radio link between their field-deployable
operations facility (a converted 40-foot cargo container), or
OpsBox, and the vehicle. Safe vehicle operations require a
low-latency link between the vehicle and its ground-based
command and monitoring computer, which prior to 2010
were solely located within the OpsBox during field-testing.
To accommodate this change in operating paradigm, the
operations team developed a portable version of the ground-
based command and monitoring computer that can be
mounted on the vehicle itself. The portable operations
workstation, or PortOps, shown in Figure 3, was developed
in two parts, a vehicle-mounted Linux laptop that provided
nearly all the functionality of the ground-based operations
computer, and a handheld version that supported Wii
Nunchuk driving and simple command and monitoring
displays. Under normal operating conditions, an operator
with the PortOps Handheld can drive the vehicle from
anywhere within sight and wireless range of the vehicle.
The operator uses the PortOps Handheld command and

 2

monitor touch screens to diagnose and correct minor vehicle
errors. The vehicle-mounted PortOps Laptop is used to
access the full range of ground station diagnostic capability.
During traverse demonstrations at BPLF, the majority of
driving operations were conducted from the PortOps
Handheld, with limited driving performed from PortOps
Laptop and remote ground stations in the OpsBox.

A remote operator could be expected to have good strategic
situational awareness with plenty of processing power and
screen room to display global mapping with robot location
updated in real time from vehicle data. On earth this is GPS
data. Local situational awareness is expected to be the
difficulty for a remote operator and is managed as well as
possible by good sensing and imagery from the vehicle
supported by good ground processing and data visualization
at the workstation.

In practice for ATHLETE at BPLF, GPS drift gave
problematic localization of the vehicle and made it very
difficult for remote operators in the OpsBox to determine if
they were staying on course, particularly over short
distances. Local operators were frequently required to
inform the remote operators that they had veered off course.

Local situational awareness for the remote operators was an
even bigger problem than anticipated. ATHLETE’s
navigation cameras often returned images with insufficient
contrast for detecting obstacles, particularly when traversing
dark lava rock. The ground operations system was not
designed to post-process the tactical images to improve
contrast. In addition traversable obstacles like grasses and
desert scrub in the images often obscured dangerous
obstacles, like large rocks or crevices, making it impossible
for remote operators to safely chart paths based on imagery
alone.

Figure 4 – ATHLETE operations at Black Point Lava
Flow were configured for remote driving during those
parts of the testing where the communications
infrastructure was able to support both data return and
voice communication with the local operator.

In most mission concepts, a remote operator sitting
comfortably on Earth or in an orbiting spacecraft would
primarily operate the ATHLETE vehicle. In field-testing of
the ATHLETE prototype, the goal was to demonstrate this
capability and use it for the majority of traverse operations.
Unfortunately, infrastructure limitations prevented remote
operations of ATHLETE in the field at distances greater
than ~2 km from the Base Camp. For this reason, only 5 km
of the 60 km traversed at Black Point Lava Flow (BPLF)
was commanded remotely, as shown in Figure 4. In
addition, when remote commanding was attempted,
infrastructure problems typically resulted in traverse pauses
longer than 10 minutes, so the time cost of this issue isn’t
captured in the data in [3].

Traversing under Local Operator Control

The local operator was intended to be an eyes-on-the-
ground safety check for remote driving operations and a
stopgap operator to move the vehicle through areas with
limited communications coverage. While a local operator
could conceivably be an astronaut working alongside
ATHLETE, the more likely scenario for long-range traverse
is remote operations of ATHLETE while the astronauts
interactively drive a nimble exploration vehicle. However,
due to the aforementioned problems with remote operations,
most of the traverse distance was covered using local
operation.

A local operator walks alongside ATHLETE and controls
the vehicle using the PortOps handheld, using the joystick to
start and stop traverse, selecting drive direction via joystick
position and path curvature via build-in tilt sensors within
the joystick unit. A limited set of supporting commands is
accessible through the touch screen on the handheld
computer, controlling ground speed and general driving
mode. In contingency situations, the local operator can
access the full ATHLETE command set through the
PortOps laptop.

A local operator is expected to have excellent situational
awareness because he or she can see and interpret the terrain
in ATHLETE’s immediate vicinity. The local operator also
has instant visual feedback on ATHLETE’s behavior during
the execution of each command, enabling constant
evaluation of robot trajectory and quick corrections if
necessary. Because the local operator is embedded with the
robot, awareness of the current position on the strategic path
requires extra information. In this case, the local operators
were provided with a handheld GPS unit pre-programmed
with waypoints along ATHLETE’s intended path, giving
them continuously updating direction and distance
information.

Because of the difficulties with remote operation during the
traverse testing at Black Point Lava Flow, the performance
statistics reported in [3] in general reflect performance
during local operations.

 3

3. ANALYSIS OF INEFFICIENCY

As mentioned in the previous section, ATHLETE’s traverse
rate in the field was significantly slower than its ground
speed, indicating a lack of continuous driving. Analysis of
traverse data reveals that traverse progress was frequently
interrupted, and that these interruptions came from a variety
of sources originating in both the ATHLETE system and the
operator interface. Figure 5 illustrates the cause of
termination of each drive command issued during traverse
days at Black Point Lava Flow. In general, drive commands
not followed by a new command within 10 minutes are
excluded from this analysis, to avoid including lunch breaks
and maintenance activities in the results. An exception was
made for drive commands ending in a stall or motor
controller error, to acknowledge that these errors often
require more than 10 minutes to resolve.

As Figure 5 shows, the vast majority of commanded drives
ended in some off-nominal condition that stopped the
vehicle and required initiation of a new command. The
errors originate from idiosyncrasies distributed throughout
the operational system, including ATHLETE hardware,
ATHLETE software, the PortOps controller.

Figure 5 – Early termination of ATHLETE drive
commands caused frequent stops, resulting in inefficient
traverse operations.

Some commanding difficulties are unique to remote
operations and since remote operation was infrequent at
Black Point Lava Flow, Figure 5 does not accurately
represent their potential effects on long-range traverse
operations. Remote operation primarily affects driving
efficiency by increasing the time spent paused between
mobility commands while the remote operator attempts to
determine a safe and effective course of action. Remote
driving can also decrease the population of medium- and
long-duration mobility commands as the remote operator
stops more often to assess the safety and trafficability of the
terrain.

For each source of traverse inefficiency, measures can be
taken to reduce or even eliminate the effect on ATHLETE’s
long-range traverse performance. The subsequent sections
discuss each source of inefficiency in detail, examining its
underlying cause, its overall effect on driving efficiency,
and measures that may be taken to resolve the issue.

Heading Recommand and Jitter

The chart in Figure 5 reveals that heading recommand and
jitter accounted for more than half of all drive terminations.
Drive commands included in this set traveled less than one
meter before being interrupted by a new command or
stopped by the operator. We attribute these very short drives
to the difficulties of operating using PortOps, in particular
the Wii Nunchuk.

The Nunchuk driving methodology was designed to
accommodate the most common driving commands,
including straight-line drive commands, arcing drive
commands and commands to turn in place. The rolling
motion of the major axis of the Nunchuk translated into a
vehicle heading change, and positioning of the joystick
translated to the initial departure direction. Operators found
both of these controls difficult to finesse, resulting in a trial-
and-error approach to initiating each drive command. Local
operators would start, stop, and restart motion until the
controller produced the desired heading and arc radius.
Obtaining the proper sensitivity of the heading change
control was difficult because operators’ preferences for
sensitivity varied widely. In addition, each Nunchuk device
differed from another in the calibration of the raw data
numbers generated by the joystick and the accelerometer. A
manual calibration procedure was developed to
accommodate this variation, but operators sometimes failed
to execute the calibration. Even when the calibration had
been performed, the Nunchuk sometimes lost calibration
during operation.

Jitter occurred when the Nunchuk issued new drive
commands that superseded a drive already in progress,
causing the vehicle to stop and re-steer. The Nunchuk was
overly sensitive to the turning and arcing elements of the
drives and often interpreted an operator’s unsteady hand as a
change in heading and a new command. To remedy this
source of inadvertent commanding, an “axis lock”
mechanism was created. By pressing and releasing a button
on the Nunchuk, the operator could lock out the creation of
additional drive commands. The use of the “axis lock”
button, in conjunction with the dead-man button, required
some difficult dexterous use of adjacent fingers on one
hand, or the use of fingers on both hands. Releasing the
dead-man switch while attempting to press the “axis lock”
button was another source of inadvertent drive stops.

The data clearly shows that improving the command
interface can substantially improve driving efficiency under
local operator control. A wide variety of solutions are under
consideration. One possible approach maintains the current
operations interface and focuses on improving the

 4

performance of the Nunchuk controller. Adding automatic
calibration and fine-tuning the performance of the joystick
and accelerometer inputs could reduce or eliminate the
observed errors. Another option explores new operational
philosophies, enabling the operator to direct ATHLETE
toward a distant goal rather than manually specifying the
wheel position and path curvature.

Stalled Joints

ATHLETE’s control software includes a current limit for
each actuator to prevent overheating of the motor if the joint
is stalled. As shown in Figure 5, this stall protection stopped
more than 400 drive attempts at Black Point Lava Flow. The
stalls had multiple sources, the most prominent of which
were stalls in the steering actuators and stalls in the thigh
pitch actuators. The contribution of each of these particular
stall errors to the total number of stall errors is shown in
Figure 6.

Figure 6 – The ankle roll (steering) and thigh pitch
actuators were the cause of the majority of stalls during
drives at Black Point Lava Flow.

Stalled Steering Actuators—As Figure 6 illustrates, stalls of
the steering actuators were a common occurrence, making
up 64% of the errors due to stalled actuators. The reason
these errors were so common is that they occurred in
reaction to an idiosyncrasy of normal ATHLETE traverse
operations.

To explain, the reader must first understand how the stall
check works. The stall check is embedded in the firmware
of the motor controller and controlled by two software
variables, climit and cmax. climit represents the maximum
average current allowable for the actuator, and cmax
represents the maximum current the actuator can ever be
permitted to receive. The motor controller will not send
more than cmax current to the actuator at any time, but will
allow the actuator to receive transient current spikes above
climit for up to three seconds before declaring a stall error.

Due to the high ground pressure on ATHLETE’s tires, the
steering actuators require a continuous current level greater
than climit to steer the wheels when the vehicle is fully
loaded for traverse. The actual current required is greater
than climit, but nowhere near cmax. Because the maximum

steering rate is approximately 28 degrees per second,
steering changes of over 90 degrees require more than 3
seconds to complete, causing the motor controller to declare
a stall in the course of a nominal steering activity.

This situation represents a fundamental mismatch between
the stall monitor and the nominal operating conditions,
which should be addressed. While the three-second time
horizon on the motor controller cannot be changed, it may
be possible to avoid the stall errors by raising the climit for
the steering actuators, if this is deemed safe by the
mechanism experts, or by reducing the maximum steering
rate to keep the actuators within the climit under nominal
conditions. Eliminating unnecessary steering stalls could
improve overall traverse rate by almost 2.5% as measured
by comparing the number of drive commands issued with
intent to drive long distances to the number of those
commands that failed with ankle stall errors.

Stalled Pitch Actuators—Another significant source of
stalled joint errors are the limb pitch joints, in particular the
thigh pitch joints which are responsible for 28% of all stall
errors, and the hip pitch joints, which are responsible for 5%
of all stall errors, as shown in Figure 6.

Unlike the stalls on the steering actuators, the pitch joints
typically stall under high load, with current levels very close
to cmax. This indicates that these stalls reveal true high
loads at the pitch joints. Early in testing, it was observed
that pitch joint stalls were frequently attributable to attempts
to reposition or reorient limbs while vehicle loading was
unevenly distributed amongst the wheels.

While the onboard algorithm for active terrain compliance
effectively distributes loads amongst the wheels during
driving [4], in some common cases, the drive behavior
resulted in attempted wheel reorientation with large joint
loads. In one case, the drive behavior was attempting to
reorient all wheels before initiating the traverse. If the
previous drive activity had ended with uneven wheel
loading due to an error or other discontinuity, this pre-drive
orientation would be performed with an uneven loading
distribution, frequently resulting in a stall. In addition,
repeated use of the active compliance behavior resulted in a
large number of internal limb and body motions, with a side
effect of wheels wandering away from their optimal
kinematic drive poses. This also frequently resulted in
stalled joints. Early in the traverse validation process, both
of these issues were resolved, the first by delaying wheel
reorientation until after the drive had begun, when the wheel
loading distribution was under active control, and the
second by monitoring and correcting the wheel positions
autonomously within the drive behavior.

 5

Figure 7 – Pitch actuator stall rates decreased after
changes to vehicle pose strategies were implemented.

Figure 7 shows the number of pitch joint errors on each test
day. Early tests, before the changes to active terrain
compliance were implemented, had more stalls than were
seen in later test days, after implementation of the changes.
The changes to active compliance were effective in reducing
pitch errors from an average of 15.44 stalls per kilometer
traveled before BPLF to 2.26 stalls per kilometer traveled
during BPLF for an effective reduction of 85%. At this
point, there are probably no additional measures to be taken
short of redesigning the joints to handle greater load or
reducing the cargo weight of the prototype.

Motor Controller Errors

The SDM-T12 ATHLETE prototype has been plagued
during operations with motor controller errors that resulted
in frequent and sometimes long stops, occasionally
requiring motors or controllers to be replaced. Investigation
into this issue in preparation for traverse testing revealed
that these errors most frequently resulted from erroneous
readings of the virtual hall sensors built into each motor’s
encoder disk. Just before the traverse demonstration at
BPLF, a solution was discovered and implemented in the
motor controller firmware.

Figure 8 – Motor controller errors per kilometer
decreased after changes to controller parameters were
implemented.

Figure 8 illustrates the improvement in drive performance
following the motor controller firmware upgrade. The

incidence of motor controller errors was drastically reduced,
from dozens of errors per kilometer during early testing to
consistently fewer than five errors per kilometer at BPLF.
At Black Point Lava Flow, the effect of motor controller
errors on drive efficiency was insignificant, accounting for
less than 0.5% of all stops as shown in Figure 5.

Communication Loss

A critical safety feature of the ATHLETE system is the
command heartbeat, which verifies that the vehicle is under
continuous operator control. If the PortOps laptop fails to
receive a heartbeat signal from the PortOps handheld within
a preset interval, the laptop concludes that operator control
has been lost, and commands ATHLETE to halt all motion.

Figure 5 shows that communication loss between the
PortOps laptop and handheld accounted for over 500 halts in
traverse progress. Some small percentage of these halts were
valid safety reactions caused by depletion of the handheld
battery or the operator wandering too far away from the
vehicle. Most, however, were due to performance issues on
the PortOps handheld or laptop.

Occasionally, the PortOps handheld software would freeze
or crash, causing a loss of communication. More frequently,
processing delays would occur when the handheld or laptop
were performing CPU-intensive operations, delaying the
handling of the heartbeat signal and falsely declaring a
communication loss. Better process management on both
the laptop and the handheld would eliminate this source of
inefficiency.

Limb Repositioning

To solve problems with stalling pitch actuators, the
ATHLETE drive behavior was upgraded to autonomously
monitor and correct wheel positions. The implementation
of this upgrade checks the wheel positions at the beginning
of each drive command and, if necessary rolls up to three
wheels at a time along the ground to the nominal driving
pose. While this functionality is a great improvement in
efficiency over recovery from stalled actuators, analysis
shows that the repositioning activity itself was a source of
significant lost time. Over two hours of traverse time was
spent on repositioning of limbs, accounting for
approximately 4% of the total traverse time.

Large portions of the delays seen during limb repositioning
were due to a problem with the behavior that rolls the
wheels into position. While wheels are rolling, motion
toward the goal position frequently slows to a halt. The stop
goes undetected by the software, which continues running
but making no progress until detected by an operator,
stopped, and restarted. Unsurprisingly, this procedure
results in significant lost time. Unfortunately, the cause of
this problem is not well understood, and may require
significant time and effort to investigate and correct.

While elimination of the software bug would significantly
improve the efficiency of limb repositioning, rolling wheels

 6

into position while the vehicle is stationary will continue to
be a source of lost traverse time. Ideally, future upgrades to
the drive behavior will actively control wheel position
during motion, eliminating the need for pre-drive
adjustments. Integrating this type of active control into an
already complex behavior is expected to be difficult and
time-consuming.

Drive Distance Limitations

Figure 9 illustrates the contribution of drive segments of
different lengths to the overall traverse distance. Short
drives of 1 to 10 meters were used when navigating difficult
terrain, slopes, or the crowded conditions in the base camp.
On benign, open terrain, ATHLETE traveled longer
distances. Drives of 10 to 45 meters typically represent
operator navigation, heading changes, and curving paths,
while drives over 45 meters represent long, straight
traverses.

One prominent source of inefficiency arose from the drive
behavior implementation in ATHLETE’s onboard software.
A characteristic of this behavior limits commanded drives to
no more than 50 meters in length. In the absence of difficult
terrain and other system errors, ATHLETE paused at least
20 times per kilometer as a result of this distance limit.
Figure 5 shows that 537 pauses during traverse were due to
the maximum drive distance limit.

Figure 9 – Traverse distance covered by drive segments
of various lengths.

While increasing this distance limit would improve drive
performance by significantly reducing the number of stops
per kilometer, as shown in Figure 10, changing the
command philosophy for long traverse operations could be
even more effective. Particularly when operated by a remote
operator, it is probably more efficient to set a waypoint in
ATHLETE imagery and have the robot work out the
direction and distance to the waypoint and break the drive
up into its own manageable chunks. This paves the way for
more autonomous onboard capability in obstacle avoidance
and path planning. It also brings the operator up to a more
strategic level in which an operator can evaluate a future
strategic waypoint and update the vehicle’s path seamlessly.

For local operations, if image analysis isn’t handy, the
vehicle could calculate an arbitrary waypoint in the correct
direction to get the same effect. Changing to this type of
operations concept would completely eliminate errors due to
distance limits.

Figure 10 – Mobility command efficiency improves with
increased maximum arc length by reducing the number
of stops per kilometer.

4. CONCLUSIONS
Analysis of data from long-range traverse testing of the
ATHLETE prototype shows that traverse operations were
inefficient and that these inefficiencies were due to frequent
interruptions in traverse progress from a variety of sources.
Examination of individual sources of traverse interruptions
revealed that ATHLETE’s average traverse rates could be
significantly improved by addressing each of these issues.

Solutions to improve efficiency vary widely. Some, like
revision of the ankle pitch current limit, have the potential
for significant efficiency in return for relatively little effort.
Others, including changes to the traverse philosophy and
onboard software implementations have the potential to
dramatically improve performance, but require significant
time and manpower to realize.

ACKNOWLEDGEMENTS
The research described in this paper was carried out at the
Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics
and Space Administration. ATHLETE development at JPL
is lead by Principal Investigator Brian Wilcox and is
conducted under the Human-Robot Systems Project led by
Rob Ambrose of JSC with funding from the NASA Office
of the Chief Technologist, Game Changing Division.

 7

REFERENCES

[1] Wilcox, B.H., “ATHLETE: A Cargo-Handling Vehicle
for Solar System Exploration,” IEEE Aerospace
Conference, 2011.

[2] Heverly, M., Matthews, J., Frost, M., and McQuin, C.,
“Development of the Tri-ATHLETE Lunar Vehicle
Prototype,” Proceedings of the 40th Aerospace
Mechanisms Symposium, May 2010.

[3] Townsend, J., “ATHLETE Mobility Performance in
Long-Range Traverse," AIAA Space 2011 Conference
and Exposition, September 2011.

[4] Townsend, J., Biesiadecki, J., and Collins, C.,
“ATHLETE Mobility Performance with Active Terrain
Compliance,” IEEE Aerospace Conference, 2010.

BIOGRAPHIES
Julie Townsend is a Robotics
Software Engineer at the Jet
Propulsion Laboratory, where she
has been developing, testing and
operating robots since 2001. Julie is
the Lead Test Engineer for the
ATHLETE robots, a position she has
held since the integration of the first

ATHLETE prototypes in 2005. Julie also helped develop
and test the Mars Exploration Rovers and still supports
operations as a Rover Planner, creating command
sequences for Opportunity’s mobility systems and robotic
arms. She has a B.S. in Aeronautics and Astronautics
from MIT and an M.S. in Aeronautics and Astronautics
from Stanford University

David Mittman is a senior member
of the Planning Software Systems
Group in the Planning and
Execution Systems section at the Jet
Propulsion Laboratory. David is the
Task Manager for Human-Systems
Interaction within the NASA Office
of the Chief Technologist’s Human-

Robotic Systems Project, and oversees the
implementation of new operations technologies for JPL’s
ATHLETE robot. David also leads the development of a
set of common inter-center advanced operations
technologies for JPL’s ATHLETE rover, JSC’s Space
Exploration Vehicle, ARC’s K10 rovers and LaRC’s
Lunar Surface Manipulation System crane.

 8

 9

	Driving ATHLETE: Analysis of Operational Efficiency
	Table of Contents
	1. Introduction
	2. Traverse Operations
	3. Analysis of Inefficiency
	Heading Recommand and Jitter
	Stalled Joints
	Motor Controller Errors
	Communication Loss
	Limb Repositioning
	Drive Distance Limitations
	4. Conclusions
	Acknowledgements
	References
	Biographies

